
Abstract
Objectives: It is a challenging task to generate and identify an optimal test set that satisfies a robust adequacy criterion,
like data flow testing. A number of heuristic and meta-heuristics algorithms like GA, PSO have been applied to optimize the
Test Data Generation (TDG) problem. The aim of this research work is to handle the automatic Test Data Generation prob-
lem. Methods/Statistical Analysis: This research work focuses on the application of Artificial Bee Colony (ABC) algorithm
guided by a novel Fitness Function (FF) for TDG problem. The construction of FF based on the concept of dominance rela-
tions, weighted branch distance for ABC to guide the search direction. Ten well known academic programs were taken for
experimental analysis. The proposed algorithm is implemented in C environment. Findings: To examine the effectiveness
of ABC algorithm in Test Data Generation, ten academic programs were taken experiment. The effectiveness of proposed
algorithm is evaluated using average number of generations and coverage percentages achieve parameters. The experi-
mental results show that proposed ABC algorithm requires less number of generations in comparison to other algorithms.
It is also noted that the proposed algorithm coverage almost all def-path for all programs. Application/Improvements:
The experimental results depict that the ABC algorithm performs far better than other existing algorithm for optimizing
test data.

Artificial Bee Colony based Test Data Generation for
Data-Flow Testing

Sumit Kumar1, D. K. Yadav2 and D. A. Khan2

1Department of Information Technology, KIET, Ghaziabad – 201206, Uttar Pradesh, India;
sumitkumarbsr19@gmail.com

2NIT, Jamshedpur - 831014, Jharkhand, India; dkyadav@nitjsr.ac.in, dakhan.ca@nitjsr.ac.in

Keywords: Artificial Bee Colony, Branch Testing, Data Flow Testing, Structural Testing, Test Data Generation

1.  Introduction
Software testing is most vital phase in the process of mak-
ing good quality software. The aim of the software testing
is for the improvement in quality and reliability of the soft-
ware product. It consumes more the 50% cost of making
the software. The cost of software testing is proportional
to the size of input search space. Hence automatically
generating and identifying an optimal test data will def-
initely diminish the cost of software. The generation of
automatic test data is still a research field and many test-
ing tools are available with capture and playback features
to automate the execution of test scripts. However, the
test cases are manually selected by the human tester and
may not be optimal. Hence to reduce human effort as well
cost benefit, lots of research is going in this direction. The

term “Software Testing” involves functional and struc-
tural testing. Structural testing is more efficient because
of its capability of finding more defects in the software1.
Structural testing involves testing the code in such a man-
ner that each statement, branch, path and/or structure is
tested at least once. From literature, it is observed that data
flow test adequacy criteria is widely popular, efficient and
effective method which is based on the “definitions” and
“uses” of various data items2. TDG can be viewed as an
optimization problem in software testing. Many heuristic
algorithms have been applied for improving the Test Data
Generation process. Some of these are Genetic Algorithm,
Tabu Search, Ant Colony Optimization, Simulated
Annealing, Particle Swarm Optimization (PSO) have
been used with mixed results3. The detailed description
of these algorithms is given in related work section. It is

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(39), DOI: 10.17485/ijst/2016/v9i39/100733, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology2 Vol 9 (39) | October 2016 | www.indjst.org

also observed that in recent years, ABC algorithm attracts
researchers due to its simplicity, capability of solving large
complex problems, few control parameters and ease to
use. In this research, an ABC based algorithm is proposed
for test data optimization. ABC algorithm proves its com-
petency in various research fields like design digital IIR
filters4 to estimate electricity energy demand5 image pro-
cessing and data clustering6,7, Wireless Sensor Networks8
and many more. Hence, the intent of this study is to
investigate the potent of ABC algorithm for generating
the optimal test cases. The main intent of this study is to
examine the application of ABC algorithm in the area of
software testing especially for optimal test suite genera-
tion. In the proposed approach, ABC algorithm leaded by
a novel Fitness Function is proposed to generate test data
using data flow coverage criteria. The Fitness Function
is based on dominance relation between the nodes of a
program’s control flow graph with branch distance and
branch weight. Experiments on 10 well known academic
programs were performed and the results are promis-
ing and imply that the suggested ABC algorithm is more
suitable to generate structural test cases as compared to
Random, GA and PSO. The paper structure is as follow:
Section 2 describes automated software TDG process and
related work. Section 3 gives information about Data Flow
Testing (DFT). Section 4 describes the ABC algorithm.
The proposed methodology is defined in Section 5 and
discussion on results of our approach is given in Section
6. Finally, outcomes of research work are concluded in
Section 7.

2.  Related Work
It has always been a challenging task to generate opti-
mal test data based on any adequacy criteria. In past few
decades, a lot of research was done on test data genera-
tion. This literature survey is mainly focused on Test Data
Generation approach based on meta-heuristic algorithms
in structural testing. In early 90s, Genetic Algorithm is
mainly used for automatically generating test data using
Branch Testing9–12. In13 used control flow graph informa-
tion for identifying the paths to be travelled and generated
test data for such paths using GA. However, data flow
coverage approach has not got the same attention because
of its difficulties to find test cases around data flow depen-
dencies of a program14. GA is mostly preferred in Data
Flow Testing techniques15–18, but GA has chances of
obtaining local optima in the search space solution and

the slow convergence rate. To overcome the demerits of
GA, in19 proposed PSO. PSO has also been applied for
test data generation. In20,21 applied PSO for Test Data
Generation according to branch adequacy criteria and
their research shows that PSO works efficiently compared
to GA. But many times PSO also fall in local optima and
premature convergence. In22 applied the ABC algorithm
for path testing. A new technique for TDG using DFT is
presented. In this work, an improved Fitness Function is
developed by including weight of a branch while calculat-
ing the branch distance thereby taking into account the
nesting level and complexity of a branch. This provides a
more robust fitness value.

3.  Background

3.1  Data Flow Analysis
Data Flow Testing contains data flow information,
extracted from control flow graph. Detailed information
about these has been found. In Data Flow Testing, all the
variables are defined either as “definition” occurrence
(def) or “use” occurrence. A value associated with a vari-
able is called “definition” whereas when a value is referred
to a variable known as “use” occurrence. The “usage”
of a variable can be beyond sub-categorized as a “com-
putational use (c-use) or a predicate use (p-use)”. The
occurrence of “c-use and p-use” depends on usage of the
value of variables for selecting execution path. If a state-
ment is predicate statement, then it is p-use otherwise it
is c-use. Figure 1 shows average of three subjects program
and Figure 2 shows CFG of the program. Table 1 shows all
def-use paths for an average of three subjects program.

3.2  Dominator Tree
In a CFG, node “a” is said to dominate node “b” if every
path from starting node (source) to “b” contains “a”, where
each node’s children are the nodes it immediately domi-
nates. This forms a dominator tree23. The corresponding
dominator tree (DomT (G)) for an average of three sub-
jects program shown in Figure 3.

3.3  Artificial Bee Colony Algorithm
The ABC algorithm was developed by Dervis Karaboga
in 2006 for solving constrained optimization problems
such as task scheduling, knapsack, Travelling Salesman
Problem (TSP), classification, clustering, path planning,

Sumit Kumar, D. K. Yadav and D. A. Khan

Indian Journal of Science and Technology 3Vol 9 (39) | October 2016 | www.indjst.org

Figure 1.  Average of three subjects program.

 1

21

4 3

2

5

22

6 7

13

20

12

11 10

19

9 8

14

18

15 16

17

Figure 2.  CFG for average of three subjects program.

Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology4 Vol 9 (39) | October 2016 | www.indjst.org

Table 1.  All def-use paths for average of three
subjects program

Var def node use-node def-use path
m1

m2

m3

Avg

1

4

2-3

2-4

4

12-13

12-14

14-15

14-16

16-17

16-18

5-6

5-7

7-8

7-9

9-10

9-11

1-2-3

1-2-4

1-4-1

1-12-13

1-12-14

1-14-15

1-14-16

1-16-17

1-16-18

4-5-6

4-5-7

4-7-8

4-7-9

4-9-10

4-9-11

forecasting and many more. The main reason for this
upsurge in usage of ABC algorithm is owing to the fact
that it is simple to use and has very less number of user
defined parameters. ABC is a meta-heuristic algorithm
which consists of a population of individual vectors
in a D-dimensional space it is defined in terms of food
sources which represents an individual feasible solution
for the problem. The position of food sources is evolved
during the different phases of ABC algorithm which is
divided into three main phases namely employed bees
phase, onlooker bees phase and scout bee phase, where
each of the different phases is signified by different types
of bees namely employed bees, onlooker bees and scout
bee, which operate during their respective phases of the
overall algorithm. In Artificial Bee Colony algorithm,
number of employed bees, onlooker bees and number
of food sources, represented by the population vector is
same. Each bee moves towards a particular food source
and tries to improve the food source position in its adja-
cent neighborhood. While, there is only one scout bee in
ABC.

The entire population consists of SN food sources, that
are to be evolved upon by three subroutines or three types
of bees as stated earlier i.e. employee bees, scout bees and
onlooker bees. These bees/subroutines work on the basis
of the Fitness Function to evaluate the effectiveness of a

 1

21 4
3

2

5
22

6 7

13

20

12

11 10

19 9 8

14 18

15 16

17

Figure 3.  Dominator tree of an average of three subjects
program.

food source which represents a prospective solution. The
Fitness Function used is stated as:

	 � (1)

Employee bees form the first subroutine and each bee
relates to a particular food source selected by it, the bee
then exploits the solution to find a better candidate solu-
tion, according to the Equation given below. Afterwards,

Sumit Kumar, D. K. Yadav and D. A. Khan

Indian Journal of Science and Technology 5Vol 9 (39) | October 2016 | www.indjst.org

exploitation of the new food source is reported with
onlooker bees.

	 � (2)

The functioning of onlooker bees is rather differ-
ent from the functionality of employed bees. Onlooker
bees exploit the solution by roulette wheel mechanism,
i.e. each onlooker bee selects a candidate solution based
on probability, with respect to its quality to process the
solution further. Onlooker bees perform this operation of
probabilistic selection on the basis of the Equation given
below.

	 � (3)

Sometimes, we use a different type of bee called
scout bee to explore the search space. Scout bees come
into effect when we are unable to improve a candidate
solution after a number of iterations which have been
arbitrarily defined earlier. Three scout bees are sent itera-
tively to search for a new candidate solution in the search
space until we are able to satisfy a termination condition,
i.e. the maximum number of generations is achieved.
The number of employee bees and onlooker bees equals
the number of candidate solutions in a particular search
space.

4.  Proposed Approach

4.1  ABC based Test Data Generation
The framework of automatic TDG mainly consists of two
phases i.e. test environment construction and ABC algo-
rithm phase. The first phase of this framework is the test
environment construction. In this phase we perform the
following:

Static analysis on PUT.•	
Construct fitness function. •	
Instrument the PUT.•	
Extract the def-use paths and dom paths.•	

In the ABC phase initialize the initial position of food
sources randomly, no. of bees, colony size, ub and lb.
The proposed ABC based Test Data Generation frame-
work accepts the CFG of the program and data flow path.
This information is computed by our self-developed tool
reported in24. It is also used to remove infeasible paths. The
proposed algorithm is shown by flow chart in Figure 4.

Figure 4.  Proposed ABC based Test Data Generation
framework.

The steps of the proposed approach are given as:
Step 1: �Assign the initial position of food sources ran-

domly, no. of bees, colony size, ub and lb.
Step 2: �Compute the nectar amount (coverage info) of

every food source.
Step 3: �Start the Employed Bee Phase, compute Fitness

Function and update position of food source.
Step 4: �Compute the probability function to check the

effectiveness of food source.
Step 5: �Start the Onlooker Bee Phase, compute Fitness

Function and update position of food source.
Step 6: �When a food source is abandoned, and then gen-

erates new position of food source using Scout Bee
Phase.

Step 7: �If convergence achieved or max generations
reached, then stop and find best positions of food
source. Otherwise repeat step 3 to 4.

4.2  Fitness Function
Fitness Function is significant in finding the optimal solu-
tion in TDG problem as fitness information is used to
direct the search process. The performance of the particle

Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology6 Vol 9 (39) | October 2016 | www.indjst.org

in a PSO is judged on the basis of the fitness function.
Every particle’s fitness value is compared to every other
particle’s fitness value in order to calculate the optimal
solution. DFT coverage criteria are picked to derive the
fitness function. Def-use paths are the combination of use
node and definition node. Def-use paths does not have
concrete path between the nodes in control flow graph
and thus represents a node-node fitness function. The
Fitness Function proposed in improved by including
branch weight to examine test data for DFT coverage cri-
teria. The improved Fitness Function takes into account
the difficulty of branch predicates, thereby assigning bet-
ter fitness value to test data.

For a dcu-path (d, m), where d is the def. node and m
is the c-use node, the fitness value f (d, m, ti) of test case ti
(i=1...p) is given by Equation below:

	 � (4)

Where,

dom (d):”dominance path of the def. node”.•	
dom (m): “dominance path of the c-use node”.•	
cdom (d, t•	 i) and cdom (m, ti): “the covered nodes of
dom (d) and dom (m), respectively”.
wbd•	 i (d, ti) and wbdi (m, ti): “branch weight for the
definition node and the c-use node respectively using
eq.9”.

Similarly, for a dpu-path (d, (m1, m2)), where d is the
definition node and (m1, m2) is the p-use edge, the fitness
value f (d, (m1, m2), ti) of test case ti (i = 1... p) is given by
Equation below:

	 � (5)

Where,

dom (d): “dominance path of the definition node”.•	
Dom (m•	 1) and dom (m2): “the dominance paths of the
p-use edge nodes respectively”.
Cdom (d, t•	 i), cdom (m1, ti) and cdom (m2, ti), “the
covered nodes of dom (d), dom (m1) and dom (m2)
respectively”.
wbd•	 i (d, ti), wbdi (m1, ti) and wbdi (m2, ti) “branch
weight for the definition node and the p-use node
respectively using Equation 9”.

The target is covered if the fitness value of ti is 1.
Branch distance and branch weight are also used if

only partial aim is acquired. Branch distance and branch
weight are calculated using Equation 10 and 15. Weight

branch distance wbd (x, ti), where x is the intended node
and ti (i = 1...p) is an individual of the present population
(test case) is evaluated as follows:

	 � (6)

4.3  Branch Distance Computation
Branch distance of a node is calculated by Equation 7.

	 � (7)

Where, approach level is the nearest point of the execution
to the intended point. If the target node is not executed,
branch distance is computed at the node, where control
flow deviated on the basis of the values of the variables
and constants included in predicates used at the node. If
the predicate holds true branch distance is set to 0, other-
wise k, where k refers to the penalty factor for deviating
from its expected path to the real executed path. The
value of the branch distance is normalized between range
0 and 1 using normalized function v. To compute branch
distance for single and multiple predicates having logical
and arithmetic expressions as per in25.

4.4  Branch Weight Computation
Branch weight plays major role in calculating Fitness
Function in the proposed study. In order to drive the
efficient Fitness Function of a particle, it is required that
a branch is assigned weight based on the reachable diffi-
culty of the branch in execution. Branch weight is directly
proportional to nesting weight and predicate weight.

It is difficult to reach the branch having deep nesting
level. For branch i(bhi) (1< = i< = z) nesting weight of the
branch can be calculated as:

	 � (8)

Where, wnest is the weight of i-th nested branch, nesti is the
ith nesting level and nestmax is the max nesting level.

Nesting weight can be normalized by using Equation
12.

	 � (9)

The predicate conditions are also accountable for sat-
isfying the difficulty level. There could be many predicate
conditions in a program, which will have different diffi-
culties in satisfying it. The predicate condition ‘==’ will

Sumit Kumar, D. K. Yadav and D. A. Khan

Indian Journal of Science and Technology 7Vol 9 (39) | October 2016 | www.indjst.org

be more difficult to satisfy as compared to ‘>’, ’<’ or ‘! = ’.
Table 2 depicts the reference weights for different predi-
cate conditions.

In any program, many conditions could be present in
one branch predicate. Let’s consider the branch predicate
of bhi (1< = i< = z) contain n conditions. For each condi-
tion conj (1< = j< = n), its referral weight wref (conj) can
be calculated as per Table 4. When predicate branch bhi
is the combination of multiple conditions n joined with
AND operator, its predicate weight is square root of the
sum of w2

ref (conj) and if bhi is the combination of mul-
tiple conditions n joined with OR operator, its predicate
weight is set to minimum of the values in the weight set
wref (conj).

	 �(10)

Predicate weight can be normalized by using Equation
11.

	 � (11)

For each predicate of bhi (1< = i< = z), the associated
corresponding weight wi can be calculated as the joint
sum of w’nest(bhi) and w’pd (bhi).

	 � (12)

Where β is the adjustment coefficient and it is set to 0.5
for the experiment.

5.  Result and Discussion

5.1  Experimental Setup
To validate the proposed ABC based TDG approach,
experiments are performed on some widely used 10 aca-
demic programs and details of these programs are shown
in Table 3. The parameters tuning of ABC, PSO and GA
are shown in Table 4.

Table 2.  Reference weight of predicate condition

S. No. Condition Type Weight
1 = = 0.9
2 <,<=,>,>= 0.6
3 Boolean 0.5
4 != 0.2

Table 3.  Benchmark programs

Prog.
No.

Program #Vars LOC
#def-use

Paths
1 Quadratic Equation 5 37 20

2 Triangle Classifier Problem 4 41 11

3 Next Date 5 107 66

4 Calendar Problem 10 121 80

5 Line in a Rectangle 8 67 52

6 Avg. Marks of 3 Subjects 4 42 15

7 Income Tax Problem 8 45 34

8 Prime Number 2 27 12

9 MidVal 4 32 19

10 Factorial of a number 2 21 8

Table 4.  Algorithmic parameter settings

Algorithm Parameters Value

Common
Parameters

Population Size 10, 15, 20, 25
Maximum number of

generations 103

Number of experiments
for each program 100

Fitness Function As given by Equation 7
and Equation 8

ABC

Colony Size 20
No. of Bee (Onlooker,

employed Bee) 5

Limit 10

PSO

Inertia weight Varies from 0.4 to 0.9
 c1 and c2 c1=c2=2.0

Vmax Varies according to the
program

GA Population selection
method

Roulette Wheel

Crossover probability 0.8
Mutation probability 0.15

5.2  Performance Evaluation Parameter
To compare the efficiency and the accuracy of proposed
ABC with PSO, GA and random search, the following
performance evaluation parameters are defined:

Average number of generations: It is the average of •	
evolutionary generations for achieving the 100%
data flow paths coverage. The stopping condition for

Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology8 Vol 9 (39) | October 2016 | www.indjst.org

each program is either 100% def-use coverage or 103

iterations.
Average percentage coverage achieved: It is the aver-•	
age of data flow paths coverage of all test input in each
experiments.

5.3  Results
This sub section describes the results of proposed ABC
based Test Data Generation based on performance
evaluation parameters as explained above. To assess the
performance of proposed approach ten benchmark pro-
grams are considered. The proposed approach is applied
using C language on a core i3 processor with 2 GB RAM
using window operating system. For every program
each algorithm runs 1000 times individually to check
the effectiveness of proposed approach. The proposed
ABC-based approach is compared with GA proposed
by Varshney and Mehrotra, PSO and random search.
The overall experimental results for the ABC, PSO, GA
and Random with respect to 10 benchmark programs on
population size 10 are shown in Table 5 and Table 6. The
experimental results depict that proposed ABC approach
takes less number of generations and achieves higher
average coverage as compare to PSO-based, GA-based

Figure 5.  Graphs for average generation vs. population
size.

Table 5.  Experimental results on average no. of
generation

S. No. Program ABC PSO GA Random

1 Quadratic
Equation 138 157 271 659

2 Triangle Classifier
Problem 184 217 341 862

3 Next Date 226 275 409 843

4 Calendar
Problem 183 205 263 498

5 Line in a
Rectangle 107 102 257 743

6 Avg. Marks of 3
Subjects 34 51 108 668

7 Income Tax
Problem 39 45 62 75

8 Prime Number 6 9 12 15

9 MidVal 4 4 5 17

10 Factorial of a
number 4 5 7 9

Table 6.  Experimental results on average coverage

S. No. Program ABC PSO GA Random

1 Quadratic Equation 99 98 95 88

2 Triangle Classifier
Problem 97 97 96 84

3 Next Date 99 98 94 82

4 Calendar Problem 100 98 95 86

5 Line in a Rectangle 98 99 96 92

6 Avg. Marks of 3
Subjects 100 100 100 98

7 Income Tax Problem 100 100 99 97

8 Prime Number 100 100 100 100

9 MidVal 100 100 100 100

10 Factorial of a
number 100 100 100 100

and random Test Data Generation approach. On the basis
of experimental results we can conclude that proposed
ABC based Test Data Generation approach outperforms
when compared to PSO-based, GA-based and random

Sumit Kumar, D. K. Yadav and D. A. Khan

Indian Journal of Science and Technology 9Vol 9 (39) | October 2016 | www.indjst.org

Figure 6.  Graphs for average coverage on benchmarks
program.

Test Data Generation approach. The graphical compari-
son of the proposed algorithm and other algorithm being
compared using average number of generations and cov-
erage percentage achieve parameters is shown in Figure 5
and Figure 6 respectively. From these figures, it is clearly
stated that proposed algorithm take less number of gen-
eration to coverage the maximum def-path.

6.  Conclusion
In this study, ABC based algorithm is applied for test data
generation. It is an NP-hard problem and conventional
methods are not given accurate results for such type of
problems. It is also noted that these methods have no
capability to change itself according to problem domain.
Hence, to generate the optimize suite of test data and
also to overcome limitations of conventional methods,
an ABC based algorithm is adopted to deal this problem.
ABC algorithm is characterized by the bee behavior and
this algorithm has strong exploration and exploitation
capabilities among same class of algorithms. In this work,
ten benchmark problems of different dimensions are
used to examine the performance of the proposed ABC

algorithm. The performance of the proposed algorithm
is measured on two performance matrices and also com-
pared other well know algorithms exist in literature such
as random search, GA and PSO for data-flow coverage. It
is seen that proposed algorithm coverage most of def-path
for all benchmark programs. It is also concluded that pro-
posed algorithm outperforms than other algorithm being
compared. In future, we intend to execute the proposed
algorithm on more real and industrial programs.

7.  References
  1.	 Zhu H, Patrick AV, Hall John HR. Software unit test cov-

erage adequacy. ACM Computing Surveys. 1997 Dec;
29(4):366–427.

  2.	 Rapps S, Weyuker EJ. Selecting software test data using
data flow information. IEEE Transactions on Software
Engineering. 1985 Apr; 11(4):367–75.

  3.	 Harman M. The current state and future of search based
software engineering. Proceedings of the 29th International
Conference on Software Engineering; Minneapolis, USA.
2007 May. p. 342–57.

  4.	 Karaboga N. A new design method based on Artificial
Bee Colony algorithm for digital IIR filters. Journal of the
Franklin Institute. 2009 May; 346(4):328–48.

  5.	 Varshney S, Mehrotra M. Search based software Test Data
Generation for structural testing: A Perspective. ACM
SIGSOFT Software Engineering Notes. 2013 Jul; 38(4):1–6.

  6.	 Sahoo G, Kumar Y. A two-step Artificial Bee Colony algo-
rithm for clustering. Neural Computing and Applications;
2015 Nov. p. 1–15.

  7.	 Horng MH, Jiang TW. Multilevel threshold selection based
on the Artificial Bee Colony algorithm. Artificial Intelligence
and Computational Intelligence. 2010 Oct; 6320:318–25.

  8.	 Hashim A, Ayinde BO, Abido MA. Optimal placement of
relay nodes in Wireless Sensor Network using Artificial
Bee Colony algorithm. Journal of Network and Computer
Applications. 2016 Apr; 64:239–48.

  9.	 Harman M, McMinn P. A theoretical and empirical study
of search-based testing: Local, global and hybrid search.
IEEE Transactions Software Engineering. 2010 Mar-Apr;
36(2):226–47.

10.	 Jones BF, Sthamer HH, Eyres DE. Automated structural
testing using Genetic Algorithms. Software Engineering
Journal. 1996 Sep; 11(5);299–306.

11.	 McMinn P. Search-based Software Test Data generation:
A Survey. Journal of Software Testing, Verification and
Reliability. 2004 Jun; 14(2):105–56.

12.	 Pargas RP, Harrold MJ, Peck R. Test-Data Generation
using Genetic Algorithms. Journal of Software Testing,
Verification and Reliability. 1999 Dec; 9(4):263–82.

Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology10 Vol 9 (39) | October 2016 | www.indjst.org

13.	 Ahmed MA, Hermadi I. GA-based multiple paths test data
generator. Elsevier Computers and Operations Research.
2008 Oct; 35(10):3107–24.

14.	 Kumar S, Yadav DK, Khan DA, Varshney S. A compara-
tive study of automatic Test Data Generation for Data Flow
Testing using GA, PSO and BPSO. International Journal of
Applied Engineering Research. 2015; 10(55):2329–36.

15.	 Ghiduk A S, Harroldand MJ, Girgis MR. Using Genetic
Algorithms to Aid Test-Data Generation for Data-Flow
Coverage. Proceedings of IEEE 14th Asia-Pacific Software
Engineering Conference; 2007 Dec. p. 41–8.

16.	 Girgis MR. Automatic Test Data Generation for Data Flow
Testing using a Genetic Algorithm. Journal of Universal
computer Science. 2005 Jun; 11(6):898–915.

17.	 Vivanti M, Mis A, Gorla A, Fraser G. Search-based Data-
Flow Test Generation. IEEE International Symposium
on Software Reliability Engineering (ISSRE); 2013 Nov.
p. 370–9.

18.	 Mahajan M, Kumar S, Porwal R. Applying Genetic
Algorithm to increase the efficiency of a data flow–based
Test Data Generation approach. ACM SIGSOFT Software
Engineering Notes. 2012 Sep; 37(5):1–5.

19.	 Karaboga D, Akay B. A comparative study of Artificial Bee
Colony algorithm. Applied Mathematics and Computation.
2009 Aug; 214(1):108–32.

20.	 Windisch A, Wappler S, Wegener J. Applying Particle
Swarm Optimization to software testing. Proceedings of
the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO“07); 2007 Jul. p. 1121–8.

21.	 Mao C. Generating test data for software structural testing
based on Particle Swarm Optimization. Arabian Journal of
Science and Engineering. 2014 Jun; 39(6):4593–607.

22.	 Mala DJ, Mohan V. ABC tester - Artificial Bee Colony based
software test suite optimization approach. International
Journal of Software Engineering. 2009 Jul; 2(2):15–43.

23.	 Varshney S, Mehrotra M. Search-based Test Data Generator
for data-flow dependencies using dominance concepts,
branch distance and elitism. Arabian Journal for Science
and Engineering. 2016 Mar; 41(3):853–81.

24.	 Kumar S, Yadav DK, Khan DA, Srivastava A. A tool to
generate all DU paths automatically. IEEE Conference
on Computing for Sustainable Global Development
(IndiaCom); 2015 Mar. p. 1780–5.

25.	 Tracey N. A search-based automated test-data generation
framework for safety-critical systems. Systems Engineering
for Business Process Change; 2002. p. 174–213.

