
Abstract 
Objectives: It is a challenging task to generate and identify an optimal test set that satisfies a robust adequacy criterion, 
like data flow testing. A number of heuristic and meta-heuristics algorithms like GA, PSO have been applied to optimize the 
Test Data Generation (TDG) problem. The aim of this research work is to handle the automatic Test Data Generation prob-
lem. Methods/Statistical Analysis: This research work focuses on the application of Artificial Bee Colony (ABC) algorithm 
guided by a novel Fitness Function (FF) for TDG problem. The construction of FF based on the concept of dominance rela-
tions, weighted branch distance for ABC to guide the search direction. Ten well known academic programs were taken for 
experimental analysis. The proposed algorithm is implemented in C environment. Findings: To examine the effectiveness 
of ABC algorithm in Test Data Generation, ten academic programs were taken experiment. The effectiveness of proposed 
algorithm is evaluated using average number of generations and coverage percentages achieve parameters. The experi-
mental results show that proposed ABC algorithm requires less number of generations in comparison to other algorithms. 
It is also noted that the proposed algorithm coverage almost all def-path for all programs. Application/Improvements: 
The experimental results depict that the ABC algorithm performs far better than other existing algorithm for optimizing 
test data. 
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1.  Introduction
Software testing is most vital phase in the process of mak-
ing good quality software. The aim of the software testing 
is for the improvement in quality and reliability of the soft-
ware product. It consumes more the 50% cost of making 
the software. The cost of software testing is proportional 
to the size of input search space. Hence automatically 
generating and identifying an optimal test data will def-
initely diminish the cost of software. The generation of 
automatic test data is still a research field and many test-
ing tools are available with capture and playback features 
to automate the execution of test scripts. However, the 
test cases are manually selected by the human tester and 
may not be optimal. Hence to reduce human effort as well 
cost benefit, lots of research is going in this direction. The 

term “Software Testing” involves functional and struc-
tural testing. Structural testing is more efficient because 
of its capability of finding more defects in the software1. 
Structural testing involves testing the code in such a man-
ner that each statement, branch, path and/or structure is 
tested at least once. From literature, it is observed that data 
flow test adequacy criteria is widely popular, efficient and 
effective method which is based on the “definitions” and 
“uses” of various data items2. TDG can be viewed as an 
optimization problem in software testing. Many heuristic 
algorithms have been applied for improving the Test Data 
Generation process. Some of these are Genetic Algorithm, 
Tabu Search, Ant Colony Optimization, Simulated 
Annealing, Particle Swarm Optimization (PSO) have 
been used with mixed results3. The detailed description 
of these algorithms is given in related work section. It is 

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(39), DOI: 10.17485/ijst/2016/v9i39/100733, October 2016
ISSN (Print) : 0974-6846 

ISSN (Online) : 0974-5645



Artificial Bee Colony based Test Data Generation for Data-Flow Testing

Indian Journal of Science and Technology2 Vol 9 (39) | October 2016 | www.indjst.org

also observed that in recent years, ABC algorithm attracts 
researchers due to its simplicity, capability of solving large 
complex problems, few control parameters and ease to 
use. In this research, an ABC based algorithm is proposed 
for test data optimization. ABC algorithm proves its com-
petency in various research fields like design digital IIR 
filters4 to estimate electricity energy demand5 image pro-
cessing and data clustering6,7, Wireless Sensor Networks8 
and many more. Hence, the intent of this study is to 
investigate the potent of ABC algorithm for generating 
the optimal test cases. The main intent of this study is to 
examine the application of ABC algorithm in the area of 
software testing especially for optimal test suite genera-
tion. In the proposed approach, ABC algorithm leaded by 
a novel Fitness Function is proposed to generate test data 
using data flow coverage criteria. The Fitness Function 
is based on dominance relation between the nodes of a 
program’s control flow graph with branch distance and 
branch weight. Experiments on 10 well known academic 
programs were performed and the results are promis-
ing and imply that the suggested ABC algorithm is more 
suitable to generate structural test cases as compared to 
Random, GA and PSO. The paper structure is as follow: 
Section 2 describes automated software TDG process and 
related work. Section 3 gives information about Data Flow 
Testing (DFT). Section 4 describes the ABC algorithm. 
The proposed methodology is defined in Section 5 and 
discussion on results of our approach is given in Section 
6. Finally, outcomes of research work are concluded in 
Section 7.

2.  Related Work
It has always been a challenging task to generate opti-
mal test data based on any adequacy criteria. In past few 
decades, a lot of research was done on test data genera-
tion. This literature survey is mainly focused on Test Data 
Generation approach based on meta-heuristic algorithms 
in structural testing. In early 90s, Genetic Algorithm is 
mainly used for automatically generating test data using 
Branch Testing9–12. In13 used control flow graph informa-
tion for identifying the paths to be travelled and generated 
test data for such paths using GA. However, data flow 
coverage approach has not got the same attention because 
of its difficulties to find test cases around data flow depen-
dencies of a program14. GA is mostly preferred in Data 
Flow Testing techniques15–18, but GA has chances of 
obtaining local optima in the search space solution and 

the slow convergence rate. To overcome the demerits of 
GA, in19 proposed PSO. PSO has also been applied for 
test data generation. In20,21 applied PSO for Test Data 
Generation according to branch adequacy criteria and 
their research shows that PSO works efficiently compared 
to GA. But many times PSO also fall in local optima and 
premature convergence. In22 applied the ABC algorithm 
for path testing. A new technique for TDG using DFT is 
presented. In this work, an improved Fitness Function is 
developed by including weight of a branch while calculat-
ing the branch distance thereby taking into account the 
nesting level and complexity of a branch. This provides a 
more robust fitness value.

3.  Background

3.1  Data Flow Analysis
Data Flow Testing contains data flow information, 
extracted from control flow graph. Detailed information 
about these has been found. In Data Flow Testing, all the 
variables are defined either as “definition” occurrence 
(def) or “use” occurrence. A value associated with a vari-
able is called “definition” whereas when a value is referred 
to a variable known as “use” occurrence. The “usage” 
of a variable can be beyond sub-categorized as a “com-
putational use (c-use) or a predicate use (p-use)”. The 
occurrence of “c-use and p-use” depends on usage of the 
value of variables for selecting execution path. If a state-
ment is predicate statement, then it is p-use otherwise it 
is c-use. Figure 1 shows average of three subjects program 
and Figure 2 shows CFG of the program. Table 1 shows all 
def-use paths for an average of three subjects program.

3.2  Dominator Tree
In a CFG, node “a” is said to dominate node “b” if every 
path from starting node (source) to “b” contains “a”, where 
each node’s children are the nodes it immediately domi-
nates. This forms a dominator tree23. The corresponding 
dominator tree (DomT (G)) for an average of three sub-
jects program shown in Figure 3.

3.3  Artificial Bee Colony Algorithm
The ABC algorithm was developed by Dervis Karaboga 
in 2006 for solving constrained optimization problems 
such as task scheduling, knapsack, Travelling Salesman 
Problem (TSP), classification, clustering, path planning, 
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Figure 1.  Average of three subjects program. 
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Figure 2.  CFG for average of three subjects program.
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Table 1.  All def-use paths for average of three 
subjects program

Var def node use-node def-use path
m1

m2

m3

Avg

1

4

2-3

2-4

4

12-13

12-14

14-15

14-16

16-17

16-18

5-6

5-7

7-8

7-9

9-10

9-11

1-2-3

1-2-4

1-4-1

1-12-13

1-12-14

1-14-15

1-14-16

1-16-17

1-16-18

4-5-6

4-5-7

4-7-8

4-7-9

4-9-10

4-9-11

forecasting and many more. The main reason for this 
upsurge in usage of ABC algorithm is owing to the fact 
that it is simple to use and has very less number of user 
defined parameters. ABC is a meta-heuristic algorithm 
which consists of a population of individual vectors 
in a D-dimensional space it is defined in terms of food 
sources which represents an individual feasible solution 
for the problem. The position of food sources is evolved 
during the different phases of ABC algorithm which is 
divided into three main phases namely employed bees 
phase, onlooker bees phase and scout bee phase, where 
each of the different phases is signified by different types 
of bees namely employed bees, onlooker bees and scout 
bee, which operate during their respective phases of the 
overall algorithm. In Artificial Bee Colony algorithm, 
number of employed bees, onlooker bees and number 
of food sources, represented by the population vector is 
same. Each bee moves towards a particular food source 
and tries to improve the food source position in its adja-
cent neighborhood. While, there is only one scout bee in 
ABC.

The entire population consists of SN food sources, that 
are to be evolved upon by three subroutines or three types 
of bees as stated earlier i.e. employee bees, scout bees and 
onlooker bees. These bees/subroutines work on the basis 
of the Fitness Function to evaluate the effectiveness of a 
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Figure 3.  Dominator tree of an average of three subjects 
program.

food source which represents a prospective solution. The 
Fitness Function used is stated as:

	 � (1)

Employee bees form the first subroutine and each bee 
relates to a particular food source selected by it, the bee 
then exploits the solution to find a better candidate solu-
tion, according to the Equation given below. Afterwards, 
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exploitation of the new food source is reported with 
onlooker bees.

	 � (2)

The functioning of onlooker bees is rather differ-
ent from the functionality of employed bees. Onlooker 
bees exploit the solution by roulette wheel mechanism, 
i.e. each onlooker bee selects a candidate solution based 
on probability, with respect to its quality to process the 
solution further. Onlooker bees perform this operation of 
probabilistic selection on the basis of the Equation given 
below. 

	 � (3)

Sometimes, we use a different type of bee called 
scout bee to explore the search space. Scout bees come 
into effect when we are unable to improve a candidate 
solution after a number of iterations which have been 
arbitrarily defined earlier. Three scout bees are sent itera-
tively to search for a new candidate solution in the search 
space until we are able to satisfy a termination condition, 
i.e. the maximum number of generations is achieved. 
The number of employee bees and onlooker bees equals 
the number of candidate solutions in a particular search 
space.

4.  Proposed Approach

4.1  ABC based Test Data Generation
The framework of automatic TDG mainly consists of two 
phases i.e. test environment construction and ABC algo-
rithm phase. The first phase of this framework is the test 
environment construction. In this phase we perform the 
following:

Static analysis on PUT.•	
Construct fitness function. •	
Instrument the PUT.•	
Extract the def-use paths and dom paths.•	

In the ABC phase initialize the initial position of food 
sources randomly, no. of bees, colony size, ub and lb. 
The proposed ABC based Test Data Generation frame-
work accepts the CFG of the program and data flow path. 
This information is computed by our self-developed tool 
reported in24. It is also used to remove infeasible paths. The 
proposed algorithm is shown by flow chart in Figure 4.

Figure 4.  Proposed ABC based Test Data Generation 
framework.

The steps of the proposed approach are given as:
Step 1: �Assign the initial position of food sources ran-

domly, no. of bees, colony size, ub and lb.
Step 2: �Compute the nectar amount (coverage info) of 

every food source.
Step 3: �Start the Employed Bee Phase, compute Fitness 

Function and update position of food source.
Step 4: �Compute the probability function to check the 

effectiveness of food source.
Step 5: �Start the Onlooker Bee Phase, compute Fitness 

Function and update position of food source.
Step 6: �When a food source is abandoned, and then gen-

erates new position of food source using Scout Bee 
Phase.

Step 7: �If convergence achieved or max generations 
reached, then stop and find best positions of food 
source. Otherwise repeat step 3 to 4.

4.2  Fitness Function
Fitness Function is significant in finding the optimal solu-
tion in TDG problem as fitness information is used to 
direct the search process. The performance of the particle 
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in a PSO is judged on the basis of the fitness function. 
Every particle’s fitness value is compared to every other 
particle’s fitness value in order to calculate the optimal 
solution. DFT coverage criteria are picked to derive the 
fitness function. Def-use paths are the combination of use 
node and definition node. Def-use paths does not have 
concrete path between the nodes in control flow graph 
and thus represents a node-node fitness function. The 
Fitness Function proposed in improved by including 
branch weight to examine test data for DFT coverage cri-
teria. The improved Fitness Function takes into account 
the difficulty of branch predicates, thereby assigning bet-
ter fitness value to test data.

For a dcu-path (d, m), where d is the def. node and m 
is the c-use node, the fitness value f (d, m, ti) of test case ti 
(i=1...p) is given by Equation below:

	 � (4)

Where,

dom (d):”dominance path of the def. node”.•	
dom (m): “dominance path of the c-use node”.•	
cdom (d, t•	 i) and cdom (m, ti): “the covered nodes of 
dom (d) and dom (m), respectively”.
wbd•	 i (d, ti) and wbdi (m, ti): “branch weight for the 
definition node and the c-use node respectively using 
eq.9”.

Similarly, for a dpu-path (d, (m1, m2)), where d is the 
definition node and (m1, m2) is the p-use edge, the fitness 
value f (d, (m1, m2), ti) of test case ti (i = 1... p) is given by 
Equation below: 

	 � (5)

Where,

dom (d): “dominance path of the definition node”.•	
Dom (m•	 1) and dom (m2): “the dominance paths of the 
p-use edge nodes respectively”.
Cdom (d, t•	 i), cdom (m1, ti) and cdom (m2, ti), “the 
covered nodes of dom (d), dom (m1) and dom (m2) 
respectively”.
wbd•	 i (d, ti), wbdi (m1, ti) and wbdi (m2, ti) “branch 
weight for the definition node and the p-use node 
respectively using Equation 9”.

The target is covered if the fitness value of ti is 1.
Branch distance and branch weight are also used if 

only partial aim is acquired. Branch distance and branch 
weight are calculated using Equation 10 and 15. Weight 

branch distance wbd (x, ti), where x is the intended node 
and ti (i = 1...p) is an individual of the present population 
(test case) is evaluated as follows:

	 � (6)

4.3  Branch Distance Computation
Branch distance of a node is calculated by Equation 7.

	 � (7)

Where, approach level is the nearest point of the execution 
to the intended point. If the target node is not executed, 
branch distance is computed at the node, where control 
flow deviated on the basis of the values of the variables 
and constants included in predicates used at the node. If 
the predicate holds true branch distance is set to 0, other-
wise k, where k refers to the penalty factor for deviating 
from its expected path to the real executed path. The 
value of the branch distance is normalized between range 
0 and 1 using normalized function v. To compute branch 
distance for single and multiple predicates having logical 
and arithmetic expressions as per in25.

4.4  Branch Weight Computation
Branch weight plays major role in calculating Fitness 
Function in the proposed study. In order to drive the 
efficient Fitness Function of a particle, it is required that 
a branch is assigned weight based on the reachable diffi-
culty of the branch in execution. Branch weight is directly 
proportional to nesting weight and predicate weight.

It is difficult to reach the branch having deep nesting 
level. For branch i(bhi) (1< = i< = z) nesting weight of the 
branch can be calculated as:

	 � (8)

Where, wnest is the weight of i-th nested branch, nesti is the 
ith nesting level and nestmax is the max nesting level.

Nesting weight can be normalized by using Equation 
12.

	 � (9)

The predicate conditions are also accountable for sat-
isfying the difficulty level. There could be many predicate 
conditions in a program, which will have different diffi-
culties in satisfying it. The predicate condition ‘==’ will 
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be more difficult to satisfy as compared to ‘>’, ’<’ or ‘! = ’. 
Table 2 depicts the reference weights for different predi-
cate conditions.

In any program, many conditions could be present in 
one branch predicate. Let’s consider the branch predicate 
of bhi (1< = i< = z) contain n conditions. For each condi-
tion conj (1< = j< = n), its referral weight wref (conj) can 
be calculated as per Table 4. When predicate branch bhi 
is the combination of multiple conditions n joined with 
AND operator, its predicate weight is square root of the 
sum of w2

ref (conj) and if bhi is the combination of mul-
tiple conditions n joined with OR operator, its predicate 
weight is set to minimum of the values in the weight set 
wref (conj).

	 �(10)

Predicate weight can be normalized by using Equation 
11.

	 � (11)

For each predicate of bhi (1< = i< = z), the associated 
corresponding weight wi can be calculated as the joint 
sum of w’nest(bhi) and w’pd (bhi).

	 � (12)

Where β is the adjustment coefficient and it is set to 0.5 
for the experiment. 

5.  Result and Discussion

5.1  Experimental Setup
To validate the proposed ABC based TDG approach, 
experiments are performed on some widely used 10 aca-
demic programs and details of these programs are shown 
in Table 3. The parameters tuning of ABC, PSO and GA 
are shown in Table 4.

Table 2.  Reference weight of predicate condition 

S. No. Condition Type Weight
1 = = 0.9
2 <,<=,>,>= 0.6
3 Boolean 0.5
4 != 0.2

Table 3.  Benchmark programs

Prog. 
No.

Program #Vars LOC
#def-use 

Paths
1 Quadratic Equation 5 37 20

2 Triangle Classifier Problem 4 41 11

3 Next Date 5 107 66

4 Calendar Problem 10 121 80

5 Line in a Rectangle 8 67 52

6 Avg. Marks of 3 Subjects 4 42 15

7 Income Tax Problem 8 45 34

8 Prime Number 2 27 12

9 MidVal 4 32 19

10 Factorial of a number 2 21 8

Table 4.  Algorithmic parameter settings

Algorithm Parameters Value

Common 
Parameters

Population Size 10, 15, 20, 25
Maximum number of 

generations 103

Number of experiments 
for each program 100

Fitness Function As given by Equation 7 
and Equation 8

ABC

Colony Size 20
No. of Bee (Onlooker, 

employed Bee) 5

Limit 10

PSO

Inertia weight Varies from 0.4 to 0.9
 c1 and c2 c1=c2=2.0

Vmax Varies according to the 
program

GA Population selection 
method

Roulette Wheel

Crossover probability 0.8
Mutation probability 0.15

5.2  Performance Evaluation Parameter
To compare the efficiency and the accuracy of proposed 
ABC with PSO, GA and random search, the following 
performance evaluation parameters are defined:

Average number of generations: It is the average of •	
evolutionary generations for achieving the 100% 
data flow paths coverage. The stopping condition for 
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each program is either 100% def-use coverage or 103 

iterations.
Average percentage coverage achieved: It is the aver-•	
age of data flow paths coverage of all test input in each 
experiments.

5.3  Results
This sub section describes the results of proposed ABC 
based Test Data Generation based on performance 
evaluation parameters as explained above. To assess the 
performance of proposed approach ten benchmark pro-
grams are considered. The proposed approach is applied 
using C language on a core i3 processor with 2 GB RAM 
using window operating system. For every program 
each algorithm runs 1000 times individually to check 
the effectiveness of proposed approach. The proposed 
ABC-based approach is compared with GA proposed 
by Varshney and Mehrotra, PSO and random search. 
The overall experimental results for the ABC, PSO, GA 
and Random with respect to 10 benchmark programs on 
population size 10 are shown in Table 5 and Table 6. The 
experimental results depict that proposed ABC approach 
takes less number of generations and achieves higher 
average coverage as compare to PSO-based, GA-based 

Figure 5.  Graphs for average generation vs. population 
size.

Table 5.  Experimental results on average no. of 
generation

S. No. Program ABC PSO GA Random

1 Quadratic 
Equation 138 157 271 659

2 Triangle Classifier 
Problem 184 217 341 862

3 Next Date 226 275 409 843

4  Calendar 
Problem 183 205 263 498

5 Line in a 
Rectangle 107 102 257 743

6 Avg. Marks of 3 
Subjects 34 51 108 668

7 Income Tax 
Problem 39 45 62 75

8 Prime Number 6 9 12 15

9 MidVal 4 4 5 17

10 Factorial of a 
number 4 5 7 9

Table 6.  Experimental results on average coverage

S. No. Program ABC PSO GA Random

1 Quadratic Equation 99 98 95 88

2 Triangle Classifier 
Problem 97 97 96 84

3 Next Date 99 98 94 82

4  Calendar Problem 100 98 95 86

5 Line in a Rectangle 98 99 96 92

6 Avg. Marks of 3 
Subjects 100 100 100 98

7 Income Tax Problem 100 100 99 97

8 Prime Number 100 100 100 100

9 MidVal 100 100 100 100

10 Factorial of a 
number 100 100 100 100

and random Test Data Generation approach. On the basis 
of experimental results we can conclude that proposed 
ABC based Test Data Generation approach outperforms 
when compared to PSO-based, GA-based and random 
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Figure 6.  Graphs for average coverage on benchmarks 
program.

Test Data Generation approach. The graphical compari-
son of the proposed algorithm and other algorithm being 
compared using average number of generations and cov-
erage percentage achieve parameters is shown in Figure 5 
and Figure 6 respectively. From these figures, it is clearly 
stated that proposed algorithm take less number of gen-
eration to coverage the maximum def-path.

6.  Conclusion
In this study, ABC based algorithm is applied for test data 
generation. It is an NP-hard problem and conventional 
methods are not given accurate results for such type of 
problems. It is also noted that these methods have no 
capability to change itself according to problem domain. 
Hence, to generate the optimize suite of test data and 
also to overcome limitations of conventional methods, 
an ABC based algorithm is adopted to deal this problem. 
ABC algorithm is characterized by the bee behavior and 
this algorithm has strong exploration and exploitation 
capabilities among same class of algorithms. In this work, 
ten benchmark problems of different dimensions are 
used to examine the performance of the proposed ABC 

algorithm. The performance of the proposed algorithm 
is measured on two performance matrices and also com-
pared other well know algorithms exist in literature such 
as random search, GA and PSO for data-flow coverage. It 
is seen that proposed algorithm coverage most of def-path 
for all benchmark programs. It is also concluded that pro-
posed algorithm outperforms than other algorithm being 
compared. In future, we intend to execute the proposed 
algorithm on more real and industrial programs.
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