
Abstract
Background/Objectives: The Conjugate Gradient (CG) methods are the well-known iterative methods use for finding 
solutions to nonlinear system equations. There is need to address the jamming phenomenal facing the current class of 
this methods. Methods/Statistical Analysis: In order to address the shortcomings, we work on the denominator of the 
Yao et al., CG method which is known to generate descent direction for objective functions by proposing an entire  different 
CG coefficient which can easily switch in case jamming occurs by imposing some parameters thereby guarantee global 
convergence. Findings: The proposed CG formula performs better than classical methods as well as Yao et al. Under Wolfe 
line search condition, the convergence analysis of the proposed CG formula was established. Some benchmark problems 
from cute collections are used as basis of strength comparisons of the proposed formula against some other CG formulas. 
Effectiveness and efficiency of the obtained results for the proposed formula is clearly shown by adopting the  performance 
profile of Dolan and More’ which is one of most acceptable techniques of strength comparisons among  methods. 
Application: Mathematicians and Engineers who are interested in finding solutions to large scale nonlinear equations can 
apply the method leading to global optimization dealing with best possible solutions ever for given problems.
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1. Introduction
In finding solutions to large scale nonlinear  unconstrained 
optimization problems, Conjugate Gradient (CG) 
 methods are among well-known techniques that can han-
dle such class of the problems because of their attractive 
features, such as low memory requirements together with 
global convergence properties. The hessian matrix com-
putation which makes it difficult in the computation of 
step length αk > 0 and CG coefficient βk whereby at each 
iteration, there is need to evaluate the hessian matrix for 
general nonlinear objective function except for quadratic 
function where hessian matrix for all the iteration is 
 constant, had been taken care of by numerical line search 
together with objective function evaluation and  gradient 
evaluation at each iteration. With this  development there 

is no need to store hessian matrix rather concern ourselves 
with objective functions and gradient evaluations. CG 
methods application set across many field of endeavours 
such as Engineering, Management science, Operations 
research among others. For instance, if the parameters 
from a company has been used to model an uncon-
strained optimization problem, then CG algorithms can 
be applied to a find the ideal feasible solution which can 
be interpret in order to make a decision for the company. 
The work of1 focused on the approach to solve symmet-
ric,  positive-definite linear systems. However, the method 
presented by2 was considered as the first  nonlinear CG 
method.

Let the function f: Rn → R be continuously  differentiable. 
Given the following unconstrained  optimization 
 problem
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 min {f(x): x ∈ Rn} (1)

and g(x) is the gradient of the objective function f(x). 
Solution to Equation (1), given an initial guess xo ∈ Rn, 
{xk} is the sequence generated CG method:

 xk+1 = xk+ αk dk (2)

and the direction dk is defined by

  (3)

where xk , βk is the current iterate and CG coefficient 
respectively and αk>0 is the step-length obtained by a line 
search. In this paper, we compute αk using inexact line 
search given as follows:

  (4)

 |g (xk + αk dk)
T dk| ≤ σ |gk

T dk| (5)

where dk is the descent direction and 0 < δ < σ <1. Given 
the wide acceptability of CG methods, several research 
efforts have been concentrated towards this area with 
emphasis on the CG coefficient and search direction, 
to come up with more effective and efficient methods. 
The pioneer methods are Fletcher-Reeves (FR) method2, 
Conjugate Descent (CD) method3, Dai-Yuan (DY) 
metho4, Polak-Rebiere-Polyak (PRP) method5, Liu-
Storey (LS) method6 and Hestenes-Stiefel (HS) method1. 
In recent years, a variety of CG formulas were given, 
majorly, differences are in the parameter βk, the work 
by7 discussed details on some CG methods with special 
emphasis on their global convergence. Table 1 show the 
summary of the pioneer CG methods.

where ||.|| denotes the Euclidean norm. The  methods 
in Table 1 behave exactly the same for quadratic  function 
problems when line search is exact and therefore 
Equation (2) and Equation (3) can be regarded as the 
 linear CG method, otherwise, Equation (2) and Equation 
(3) is called nonlinear CG method. Usually the search 
directions satisfy the conjugacy condition dT

i H dj= 0, 
i≠j where H is the +ve-definite matrix for linear CG. In 
the case nonlinear CG methods, the conjugacy condition 
is not satisfied since the hessian ∇2 f(x) vary at different 
points.
Methods such as FR, CD and DY are known for their 
strong global convergence properties but in the com-
putations, these methods perform poorly. For example, 
FR method possesses strong convergence properties 
but computational wise, it performs below PRP and HS 
as analysed by8 where he showed the numerical weak-
ness of the FR method. However, methods such as PRP 
and HS perform better numerically and are known to 
be among the most efficient methods because of their 
restart capabilities if it encounters bad direction. A 
counter example was given by9 which show that PRP and 
HS methods may not always converge for general objec-
tive functions. Since both categories of the methods, 
that is, one that has strong global convergence but in 
practical, perform worse and the other which has good 
numerical performance but their global convergence is 
not always guarantee. Research efforts has been ongo-
ing for decades to improve on the existing methods. In 
line with this, our aim is to propose a CG coefficient that 
not only converge globally but also have better numeri-
cal performance in practice. In recent times, research 
carried out by7,10–17 focused on some modified CG meth-
ods. Inspired by the works of18–20 to propose modified 
CG method called Modified Dai-Yuan (MDY) whose 
aim was to improve the numerical performance of DY 
method while retaining its good property of global 
convergence. By extension, he did same to FR method 
and called Modified Fletcher-Reeves (MFR), where the 
parameters βk were given by

  (6)

and

 , (7)

where yk = gk+1 −gk and µ >1. In21 applied the idea of the 
by22 to the HS method by proposing a CG method: 

Table 1. The pioneer CG coefficients ( βk)

No. βk Method References

1 Fletcher-Reeves (FR) 
method

2

2 Conjugate Descent (CD) 
method

3

3 Dai-Yuan (DY) method 4

4 Polak-Rebiere-Polyak 
(PRP) method

5

5 Liu-Storey (LS) method 6

6 Hestenes-Stiefel (HS) 
method

1
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  (8)

under strong Wolfe line search with parameter σ .  
For general objective functions, the YWH method was 
known to be globally convergent and can produce  sufficient 
descent directions.

In contrast to some existing modified methods and in 
particular the method from21, based on the work by21, we 
propose a new modified CG method given as

  (9)

where

  (10)

The work of23–27 focused on other related areas such as 
gradient orientation, mathematics test with Rasch model, 
applying learning analytics in mathematics, simulation 
of real time nonlinear process and integro-differential 
 equations.

The remaining parts of the paper are in the order. In 
Section 2, we present the algorithm and show that our 
corresponding formula can always guarantee descent 
condition. In Section 3, convergence analysis for the pro-
posed method is presented. Section 4 entails the proposed 
method’s numerical results and also the representation 
of proposed method against some CG methods using 
Dolan and More’s performance profile28 and lastly the 
 conclusion.

2.  Algorithm and Descent 
Property 

In this Section, we describe the CG algorithm and show 
that the propose formula (Equation (9)) possesses the 
descent properties.

2.1 Algorithm
Initialization. Given constants 1. 

1, select xo ∈ R
n, set k = 0, do = −go.

Test for convergence. If 2.  then stop. 
Otherwise go to 3.
Compute 3. αk based on inexact line search Equation (4) 
and Equation (5).

Variable update, 4. xk+1 = xk+ αk dk. Compute f(xk+1) and 
gk+1.
Computation of parameter 5. βk based on Equation (9) 
and Equation (10).
Generate 6. dk using Equation (3). Set k = k + 1 and go 
to 2.

Lemma 1. Let the sequences {xk} and {dk} be generated 
by the Algorithm 2.1 for βk

IR1. Then, gk
T dk<0 holds true.

Proof. We proceed by induction to arrive at the con-
clusion. It is obvious to have 

. Assume that  0 holds true for k 
− 1, to obtain

gk
T dk< 0 particularly for our method (βk

IR1).
From the search direction, we have

 
    (11)

Case (i) If βk
IR1 = 0. It follows clearly from Equation (2), 

gk
T dk≤ −||gk||

2 < 0. Case (ii) If . Recall from 
Wolfe line search,

 dT k−1 (gk−gk−1) = dT k−1 g k−dT k−1 g k−1 ≥ σdT k−1 g 
k−1−dT k−1 g k−1 = (σ−1) dT k−1 g k−1 >0. (12)

It follows from Equation (10)

 
 (13)

Note that βk
IR1 ≠ 0 and gk

Tgk−1 > 0, we have 0 < cosθk <1 
and let θk be the angle between gk and gk−1

For µ ≥ 1 then gk
T dk<0 holds for all k ≥ 1.

Lemma 2. The relation  holds for 
any k ≥ 1.

Proof. From Eq. 9,

.
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If βk = βk
YWH, it follows from Eq. 3,

.

Since βk
YWH ≠ 0, then gk

T gk−1 >0, we have 0< cosθk <1, 
where θk is the angle between gk and gk-1. 

From Eq. 3 and Eq. 8, we have

 (14) 

Therefore, from Eq. 14 we have

 
 (15)

Thus, the proof is completed.

3. Global Convergence
In discussing the global convergence of the proposed, 
some basic assumptions on the objective functions are 
necessary.
Assumption (3.1):
i. A given objective function f(x) is bounded below on 

the level set Ω = {x ∈ Rn : f(x) ≤ f(x0)} and x0 is the 
 initial point.

ii. In some neighbourhood P of Ω, the objective function 
f(x) is continuously differentiable and its g(x) = ∇ f(x) 
satisfies Lipschitz condition, namely, ∃ a constant L >0 :

 ||g(x) − g(y)|| ≤ L||x − y||, ∀ x,y ∈ P. (16)

From the above assumptions on the objective func-
tion f(x), ∃ a constant γ ≥ 0 :

 ||∇ f(x)|| ≤ γ, ∀ x ∈ Ω. (17)

To prove the global convergence of the proposed 
methods, the result of the following lemma, usually called 
Zoutendijk condition is required. For proof, refer to29,30.

Lemma 3. Supposed Assumption (3.1) holds and  consider 
any CG method of the formxk+1 = xk+ αkdk and the direc-
tion  where αk 

satisfies Equation (4) and Equation (5). Then,

 . (18)

From Lemma 3, we have the following theorem which 
presents the global convergence of the proposed method:

Theorem 4. Let Assumption (3.1) holds and the sequence 
{xk} and {dk} be generated by Algorithm 2.1 with βk

IR1, αk is 
obtained by Equation (4) and Equation (5). Then

 lim inf || || 0kk
g

→∞
= . (19) 

Proof. Proceed using contradiction to arrive at the 
 conclusion. Suppose that lim inf || || 0kk

g
→∞

≠ , it implies 
that ∃ m >0 such that

 ||gk|| ≥ m,∀ k ≥ 0. (20) 

From Eq. 3, we have

 (βkIR1 dk−1)2 = (dk−1 + gk)2, (21)

it follows from Eq. 21 and Lemma 3.

Dividing both side of Eq. 22 by (gk
T dk)

2 to get

. (23)

Noting that , by recurrence formula 
Eq. 23, we get

.

Hence

 , (24)

furthermore,

 . (25)

This contradicts Zoutendijk condition in Eq. 18. 

4. Numerical Results
The presentation of the simulation results on the test 
problems for our proposed method where βk = βk

IR1 

against some existing methods in the literature are done 
in this part. We consider some test problems from31,32 to 
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validate the numerical strength of our method versus 
some  methods in existence, using inexact line search 
Conditions (4) and (5) for all methods in this paper for 
easy comparison where δ = 0.0001 and σ = 0.01.

The parameters such as number of iterations (it), 
number of function evaluations (nf) and CPU time (t) 
were considered to evaluate the computational capabil-
ity of the proposed method βk

IR1 as compared with FR, 
DY and YWH. For each test problem, the stopping cri-
terion is taken as  ∈, where ∈ . We 

implemented the method using MATLAB R2014 in 
double precision arithmetic on CP computer with CPU 
1.30 GHz and 4.00GB RAM. Tables 2, 3 and 4 show the 
simulation results of the proposed method against some 
methods (FR, DY and YWH). The symbol (–) implies 
failure in numerical computation while (∗) means that 
number of iterations or function evaluations exceeded 
the maximum limit set. For iteration, we set 5000 as the 
maximum while 20000 is the maximum for number of 
function evaluations.

Table 2. Numerical results of IR1, FR, DY and YWH

Fun./Dim
IR1 

it/nf/cpu(s)
FR 

it/nf/cpu(s)
DY 

it/nf/cpu(s)
YWH 

it/nf/cpu(s)
Rosenbrock/2 16/70/0.203 34/114/0.640 23/88/0.187 16/70/0.234

Rosenbrock/100 818/3830/5.741 1084/5641/8.190 1015/5465/8.658 818/3835/5.788
Denschnc/50 21/195/0.250 48/543/0.624 – 19/201/0.234

Denschnc/100 19/186/0.265 48/543/0.608 – 16/174/0.203
Denschnc/800 16/159/0.359 43/510/1.014 – 16/174/0.359

Denschnc/10000 16/159/2.262 39/480/7.410 – 13/147/2.309
Denschnc/100000 13/146/23.463 23/326/51.636 – 10/120/19.204

Denschna/50 12/59/0.094 12/57/0.140 10/50/0.094 11/55/0.078
Denschna/500 11/57/0.109 11/55/0.156 10/50/0.109 11/55/0.109

Denschna/5000 11/57/0.437 11/55/0.359 9/48/0.281 11/55/0.624
Denschna/100000 11/57/6.614 9/51/5.647 8/46/4.898 9/51/5.678

Denschnb/500 7/31/0.047 8/35/0.078 8/35/0.078 8/35/0.078
Denschnb/1000 7/31/0.078 8/35/0.078 8/35/0.094 8/35/0.078
Denschnb/5000 7/31/0.125 8/35/0.156 8/35/0.156 8/35/0.140

Denschnb/15000 6/29/0.265 8/35/0.328 8/35/0.312 8/35/0.296
Denschnb/100000 6/29/2.012 7/33/2.153 7/33/1.888 8/35/2.278

Denschnf/50 10/42/0.125 23/83/0.172 22/79/0.187 10/42/0.109
Denschnf/1000 10/42/0.140 22/81/0.250 22/79/0.265 10/42/0.125
Denschnf/5000 9/40/0.312 22/81/0.530 22/79/0.484 9/40/0.250

Denschnf/18000 8/38/0.640 22/81/1.560 22/79/1.451 8/38/0.686
Denschnf/100000 8/38/5.257 21/79/9.937 21/77/9.251 8/38/4.852

sine/17000 5/15/0.265 21/57/0.983 21/57/0.889 10/29/0.515
sine/100000 1/4/0.281 1/4/0.359 1/4/0.281 1/4/0.296

G Quartic/500 5/15/0.047 5/15/0.078 5/15/0.047 5/15/0.047
G Quartic/1000 5/15/0.047 5/15/0.078 5/15/0.047 5/15/0.047
G Quartic/5000 4/13/0.047 4/13/0.094 4/13/0.047 4/13/0.078

G Quartic/10000 3/11/0.094 3/11/0.109 3/11/0.094 3/11/0.094
G Quartic/100000 2/9/0.796 2/9/0.874 2/9/0.718 2/9/0.780

Emaratos/5000 55/251/0.920 29/191/0.671 29/191/0.686 64/292/1.076
Emaratos/10000 55/251/1.435 29/191/1.061 29/191/0.998 64/292/1.622
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Emaratos/100000 55/251/15.663 29/191/11.216 28/189/10.483 64/292/18.595
E Himmelblau/50 7/24/0.062 10/31/0.078 10/31/0.094 8/26/0.062

E Himmelblau/100 7/24/0.062 9/29/0.078 9/29/0.062 8/26/0.062
E Himmelblau/5000 5/20/0.109 8/27/0.172 8/27/0.140 8/26/0.140

E Himmelblau/10000 5/20/0.202 8/27/0.234 8/27/0.218 7/24/0.156
E Himmelblau/24000 5/20/0.312 8/27/0.515 8/27/0.468 7/24/0.406

Table 3. Numerical results of IR1, FR, DY and YWH

Fun./Dim
IR1 

it/nf/cpu(s)
FR 

it/nf/cpu(s)
DY 

it/nf/cpu(s)
YWH 

it/nf/cpu(s)
E beale/2 11/36/0.094 24/71/0.172 23/68/0.156 16/50/0.109

E beale/10 11/36/0.078 24/71/0.172 23/68/0.156 15/48/0.109
E beale/50 11/36/0.094 23/69/0.203 23/68/0.156 15/48/0.109

E beale/10000 10/34/0.738 23/69/1.420 22/66/1.326 14/46/0.920
E Whitehoslt/50 6/21/0.047 21/52/0.140 21/52/0.109 11/32/0.094

E Whitehoslt/100 6/21/0.031 18/46/0.109 21/52/0.109 10/30/0.078
E Whitehoslt/500 6/21/0.062 17/44/0.172 17/44/0.140 10/30/0.062

E Whitehoslt/100000 6/21/2.418 9/28/3.151 9/28/3.182 8/26/3.120
E Triadiagonal2/100000 3/10/1.092 3/10/1.108 3/10/1.186 3/10/1.170

E Penalty/2 6/21/0.062 6/21/0.047 7/23/0.047 6/21/0.047
Brown/500 5/15/0.062 5/15/0.125 5/15/0.078 5/15/0.140

Brown/5000 4/13/0.343 5/15/0.437 5/15/0.328 4/13/0.234
Brown/100000 3/11/4.493 3/11/4.805 3/11/4.462 3/11/5.039

Triadiagonalwhl/500 1599/7955/19.765 ∗ ∗ 1598/7943/20.499
Triadiagonalwhl/1000 3177/15863/59.733 ∗ ∗ 3177/15883/50.888

Triadiagonalwhl/100000 36/187/39.234 ∗ 62/383/85.457 34/174/36.582
G Fletcher/4 16/68/0.094 24/91/0.187 23/89/0.156 16/68/0.094

G Fletcher/40 25/92/0.172 29/103/0.187 27/100/0.203 25/92/0.172
G Fletcher/500 23/89/0.202 23/92/0.234 22/90/0.203 23/89/0.172

G Fletcher/10000 17/80/0.733 21/97/0.905 21/97/0.952 17/81/0.733
G Fletcher/100000 15/78/8.050 16/84/9.079 16/84/9.017 16/83/8.252

G triadiagonal/100000 1/3/3.666 1/3/3.900 1/3/3.682 1/3/3.666
Raydan2/100 2/5/0.031 2/5/0.031 2/5/0.016 2/6/0.047
Raydan2/500 2/5/0.031 2/5/0.031 2/5/0.047 2/6/0.016

Raydan2/5000 2/5/0.031 2/5/0.031 2/5/0.016 2/6/0.047
Raydan2/6000 2/5/0.047 2/5/0.031 2/5/0.031 2/6/0.047

Raydan1/2 4/13/0.047 4/13/0.047 4/13/0.031 4/13/0.031
G PSC1/50 7/37/0.047 7/35/0.078 7/35/0.078 7/38/0.062

G PSC1/800 7/31/0.094 9/51/0.140 9/51/0.172 8/41/0.109
G PSC1/5000 7/29/0.234 9/42/0.374 9/40/0.312 9/44/0.359

G PSC1/50000 5/19/1.544 9/39/3.635 9/39/3.198 9/40/3.198
E PSC1/5000 6/21/0.125 8/25/0.250 8/25/0.203 6/21/0.156

E QP1/20 6/23/0.047 5/20/0.062 5/20/0.062 7/26/0.047
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E QP1/150 6/23/0.031 7/28/0.062 7/28/0.062 8/31/0.078
Tridia/20 19/39/0.094 19/39/0.125 19/39/0.125 19/39/0.125

Tridia/800 465/931/2.683 356/713/2.137 465/931/3.089 465/931/2.714
Tridia/3000 1347/2695/12.293 747/1495/8.002 1347/2695/12.714 1347/2695/9.968

Table 4. Numerical results of IR1, FR, DY and YWH

Fun./Dim
IR1 

it/nf/cpu(s)
FR 

it/nf/cpu(s)
DY 

it/nf/cpu(s)
YWH 

it/nf/cpu(s)
Tridia/5000 2044/4089/22.433 861/1723/9.157 2044/4089/20.951 2044/4089/18.190

Tridia/10000 3634/7269/59.358 1641/3283/24.945 3634/7269/56.831 3634/7269/56.550
Arwhead/50 3/14/0.062 3/14/0.062 3/14/0.031 3/14/0.047

Arwhead/500 3/15/0.031 3/15/0.031 3/15/0.062 3/15/0.062
Arwhead/7500 3/18/0.078 3/18/0.078 3/18/0.078 3/18/0.125

Arwhead/100000 2/16/0.827 2/16/0.967 2/16/0.842 2/16/0.905
Nondia/15500 4939/9879/162.272 981/1963/30.561 4939/9879/154.706 4939/9879/155.939

Nondia/100000 219/439/37.019 121/243/20.998 219/439/39.156 219/439/36.535
DQDRTIC/100 5/11/0.047 5/11/0.094 5/11/0.047 5/11/0.016
DQDRTIC/450 5/11/0.047 5/11/0.078 5/11/0.062 5/11/0.047

DQDRTIC/50000 5/11/0.562 5/11/0.250 5/11/0.515 5/11/0.515
Cube/2 20/87/0.125 24/102/0.172 23/90/0.156 20/86/0.140

Cube/700 132/524/1.466 145/661/2.293 84/470/1.388 126/591/2.137
Cube/7000 43/190/3.073 44/226/3.88 43/228/3.510 62/291/4.430

QUARTC/50 2/8/0.016 2/8/0.031 2/8/0.031 2/8/0.031
QUARTC/50000 2/8/0.421 2/8/0.437 2/8/0.374 2/8/0.484

BDEXP/80 1/3/0.016 1/3/0.047 1/3/0.016 1/3/0.001
BDEXP/8000 1/3/0.078 1/3/0.062 1/3/0.078 1/3/0.047

BDEXP/13500 1/3/0.078 1/3/0.125 1/3/0.094 1/3/0.125
cosine/2 2/7/0.031 2/7/0.031 2/7/0.031 2/7/0.016

cosine/4000 4/17/0.078 4/17/0.109 4/17/0.078 4/17/0.094
cosine/70000 3/15/1.123 3/15/1.217 3/15/1.201 3/15/1.217
Diagonal7/30 2/6/0.031 2/6/0.031 2/6/0.016 2/6/0.031

Diagonal7/300 2/6/0.031 2/6/0.047 2/6/0.016 2/6/0.047
Diagonal7/80000 2/6/0.265 2/6/0.312 2/6/0.343 2/6/0.296

Diagonal8/25 2/6/0.001 2/6/0.031 2/6/0.016 2/6/0.016
Diagonal8/250 2/6/0.016 2/6/0.031 2/6/0.031 2/6/0.031

Diagonal8/100000 2/6/0.546 2/6/0.530 2/6/0.484 2/6/0.515
TET/4 7/107/0.094 6/84/0.109 9/157/0.140 5/64/0.062
TET/8 7/105/0.109 6/84/0.094 9/157/0.156 5/64/0.062

TET/4000 9/94/0.452 5/71/0.374 8/146/0.640 4/54/0.250
Power/2 4/37/0.047 4/37/0.062 4/37/0.031 4/37/0.078

Power/25 33/630/0.406 31/615/0.421 48/949/0.733 34/655/0.437
Himmelbg/10 1/5/0.031 1/5/0.062 1/5/0.016 1/5/0.031

Himmelbg/100 1/5/0.016 1/5/0.016 1/5/0.016 1/5/0.001
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than YWH method at first and slightly above towards 
end, which shows that the two methods were able to solve 
all the test problems successfully. In Figure 3, the IR1 
method obtained optimal solutions for the test problems 
within shortest time as compared to the execution time 
for FR and DY and slightly above the YWH method.

5. Conclusion
In this paper, a new type of a modified CG method was 
proposed for solving unconstrained problems. The pro-
posed method generated descent directions using Wolfe 
line search condition. Under line search Condition (4) 
and (5), we established the global convergence of the 
proposed method. The parameter βk

IR1 with µ >1, specifi-
cally we take µ = 1.2 for experiment conducted in this 
paper. The simulation results of the proposed method 
shown to be efficient when compared against some 
CG methods (FR, DY and YWH). We employed one of 
the best methods of comparison (Performance Profiles 
by Dalon and More’) to show the effectiveness of our 
 proposed methods.
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Figure 1. Performance profile based on iteration for IR1 
versus FR, DY and YWH

Figure 3. Performance profile based on CPU time. IR1 
versus FR, DY and YWH.

Figure 2. Performance profile based on function evaluation.
IR1 versus FR, DY and YWH.

The performance profiles of Dolan and More’25 was 
used to compare the numerical strength of the proposed 
method against some known CG methods such as FR, DY 
and YWH methods based on it, fn and t. We plot frac-
tion ps(t) of the test problems for which the method is 
within a factor t of the best time for each method. The 
left hand side of the figures give the % of how fast is a 
particular method in solving the test problems. The right 
hand side of the figures give the % of test problems that 
are successfully solved by each method. The solver with 
large probability ps(t) is regarded as the best solver for the 
test problems. 

From Figures 1-3, we see that among these methods, 
the proposed method (IR1) performs better than FR and 
DY methods in its entirety for the test problems. Also 
note, from Figure 1 and 2, IR1 method performs faster 
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