
Abstract
In underwater scenario, observer manoeuvre is required to find out target motion parameters in bearings only passive target 
tracking. Sometimes, due to tactical constraints, observer is not able to carry out manoeuvre. In this paper, it is shown that 
target motion parameters can be obtained in such situation, if the knowledge of any one of the target motion parameters is 
available. There are other practical problems like spurious bearings are generated by sonar, etc. In addition, auto tracking fails 
often and some bearings will be missed. Pseudo Linear Kalman Filter is made flexible to address these practical problems.
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1. Introduction

A familiar approach for underwater passive target track-
ing is by using bearings only measurement. Generally, the 
sonar bearings are corrupt or noisy. These are transmit-
ted by the radiating target and monitored by the observer. 
There is a preliminary assumption that the course of the 
target motion is invariable. The obtained measurements are 
processed by the observer and target motion parameters 
are found out. Here, making the whole process is essen-
tially non-linear because the measurements are non-linear. 
The measurements related to bearing are obtained from a 
single sensor. The identification of the location and veloc-
ity is difficult until observer executes a proper manoeuvre 
as shown in Figure 1. However, to acquire target param-
eters, the techniques1-5 are available in the above situation.

If any one of the target kinematics is known in 
addition to the bearing measurements, the remaining 
target motion parameters can be estimated easily. These 
are called constraint solutions. Depending upon the type 
of information available, the solution obtained is called 
range, course or speed constraint solution. This range, 

course or speed inputs can be obtained approximately, from 
different sources. For example, the speed of the target can 
be calculated approximately using the sound pattern of the 
received bearing measurement. The bearing measurements 
can be plotted and the course of the target can be found out 
approximately. In this paper, the Pseudo Linear Kalman 
Filter (PLKF) is suitably modified to find out constraint 
solutions. The other practical problem underwater is that the 
auto tracking may not be continuously possible making the 
availability of the measurements discontinuous. Sometimes, 
highly noisy spurious bearing measurements will also be 
generated by sonar. To overcome such situations, in this 
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Figure 1. Observer in S-manoeuvre on LOS.
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paper, the algorithm is made flexible such that it takes care 
of missed or highly noisy bearings. The missed bearings will 
be replaced by the bearings estimated by an algorithm that 
works in parallel with the main algorithm. The calculation 
of measurement error variance is on-line and if this variance 
exceeds the threshold (or expected) variance, then these 
are treated as spurious bearings and will be replaced by the 
estimated ones. As the process requires external input to 
find out target motion parameters, closed loop estimators 
are cannot be used here1-6. Pseudo Linear Estimator (PLE) 
using continuous bearings7 is adapted so that the algorithm 
can accept range/course/speed of the target as external input. 
As this estimator is similar to KF, it is also called as PLKF. 
In case of PLE in batch processing mode1 against recursive 
mode, it is derived from the first principles after modelling 
observer and target dynamics. In order to suit real time 
applications, it is later converted into recursive mode. 

The impact of all the bearing measurements in covari-
ance matrix is preserved in the form of recursive SUMS 
(notation to denote a function of bearing estimate). The 
updating of the bearing measurement to the SUMS is to 
be carried out by performing calculation related to cur-
rent measurement7,8. Here, 20 SUMS are required and the 
time taken for 20 iterations is to be stored and updated. 
Therefore, solution is upgraded whenever the measure-
ment is received. While upgrading the interim time, the 
solution will be extrapolated at every second. This estimate 
is utilised to figure out target. Monte-Carlo simulation is 
performed and tested against a few strategic scenarios. 
One of the tactical scenario is presented for illustration in 
this paper. It is watched that the outcomes are acceptable.

2. Mathematical Modelling
It is desired to estimate the target state vector6-8,

Where (x.

t , y
.

t) and (xt ,yt) are target velocity and posi-
tion components, using noise corrupted passive bearing 
measurements. The state equation is given by

where φ(k+1/k) is a deterministic transition matrix.
The measured bearing is given by

Where (x0 , y0) denote observer position. γ(k) is zero 
mean white Gaussian sequence Equation 4 is rewritten as 

Substituting Equation (3) in the Equation (4) straight 
forward formulation yields

Again by simple algebraic formulation of the Equation 
(6) we get measurement equation

where the pseudo measurement z(k) is given by

and measurement matrix for bearing measurement is 
given by

and ς(k) = ς(k) rs(k) where rs(k) is slant range. To find 
out initial estimate, Xt(0,k), z(k) is modified as
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Consider the modified measurements in matrix form 
as
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where

Using Equation (12) we can write that

Let us use the familiar Least Square Estimator equa-
tion to find out the initial estimate of target state

and
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and so on
Along these lines

Similarly

The assumption is that observer makes proper 
manoeuvre, and the system is observable. 

3. Constraint Solutions
The state vector given by

Where, B
-
 and R

-
 represent bearing rate and range rates 

respectively, Br represents the estimated error, R repre-
sents the relative range of the target with respect to the 
observer.

The state vector is obtained by shifting the coordinate 
system in such a way that +y axis is in line the newest 
bearing entered. Similar, target state vector was utilized in 
MPKF5. When the range (Rc) between observer and target 
is known from external sources, the entire state vector can 
be found out using Equation (9) by replacing R with Rc in 
the rotated coordinate system. Then a translation of this 
state vector into original rectangular coordinate system 
provides the position and velocity components of the 
target. It is observed that two valid target state vectors 
may also exist for the same speed - input. The speed - 
input can be easily converted into range - input. If two 

solutions exist, the more valid will be decided by range 
of the day. Similarly, the course - input is converted into 
range - input and then range constraint algorithm is used 
to find out the remaining target motion parameters.

4. Spurious and Missed Bearings
The variance of the noise in the input measurements is 
calculated using theory of regression. If the variance of the 
incoming bearing measurement exceeds the threshold, 
this measurement is treated as spurious and is replaced by 
the estimated bearing, which is available from Equation 
(1). Sometimes bearing measurements may not be avail-
able continuously for small intervals of time due to the 
failures in auto tracking. The estimated bearing and bear-
ing rates available from Equation (9) will be used for this 
short interval. It is found that such a procedure does not 
render the solution less accurate.

5. Simulation and Results
The algorithm is implemented and simulator is developed 
in a PC environment. All raw bearings are corrupted by 
additive zero mean Gaussian noise with r.m.s level of 1 
degree (as shown in Table 1) and then pre-processed to 
find out the variance of the noise in the measurements 
over a period of twenty seconds. The measurements are 
generated at every second and the estimates are updated 
every 20 seconds of interval. Spurious measurements 
are simulated at third minute for a period lasting one 
minute by increasing the noise level to 1.5° rms. Missed 
bearings are simulated at fifth minute for a period of one 
minute. It is assumed that the observer knows the range 
at eighth minute. The actual range at second minute 
is 15,200 meters and the input range is 15,300 meters. 
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Table 1. Target Scenario
Sl. No. Item Description Ship

Scenario 1
1. Initial Range 18,000 meters
2. Initial Bearing 200°
3. Target Speed 18 knots
4. Target Course 45°
5. Ownship Speed 20 knots
6. Error in Bearing 

(R.M.s)
5°

7. Ownship Course 90°
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The parameters estimated using this range are shown in 
figures for a period of two minutes. 

The accuracy of the estimates depends on the degree of 
accuracy in the inputs fed to the algorithm. The tolerances 
of error permitted are ten percent in range and velocity 
estimates while it is five degrees in course estimate. It is 
observed that the estimates with desired accuracies are 
achieved from 8.5 minute onwards. Similarly the speed 
and course constraint solutions are shown in figures 
assuming that these are known respectively at seventh 
minute and eighth minute. The results presented are the 
averaged values of the several Monte Carlo runs of the 
same scenario. In this extended summary, for the purpose 
of illustration, the course estimate in range constraint 
solution is shown in the Figure 2.

6. Conclusion
The estimation of target motion parameters using bear-
ings only measurements along with range/course/speed 
inputs when observer is not able to carry out manoeu-
vre is presented in this paper. The problems of frequent 

failure of auto tracking and spurious measurements are 
discussed and appropriate measures are taken to sort out 
these problems without loss of much accuracy.
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Figure 2. The estimated course in range constraint.


