
Indian Journal of Science and Technology, Vol 8(34), DOI: 10.17485/ijst/2015/v8i34/86665, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

A Safe Election Protocol based on an Unreliable
Failure Detector in Distributed Systems

SungHoon Park*

School of Electrical and Computer Engineering, Chungbuk National University, Korea; spark@chungbuk.ac.kr

Abstract
The fault-tolerant election protocol, which implies the safety strengthened election protocol, is needed in a practical
distributed computing environment. Consider a mission critical distributed system such as an electronic commerce system
that runs multiple servers in which one of them roles a master (leader) and others are slaves. To have data consistency
among the servers in the system, this system should not violate safety property, which means that all processes connected
the system never disagree on a leader. In those systems the safety property is more important property than the liveness
property. In this paper, we presents a safety strengthened leader election protocol with an unreliable failure detector and
analyses it in terms of safety and liveness properties in asynchronous distributed systems.

1. Introduction
The election problem is described as follows. At any time,
there is at most one process that considers itself a leader
and all other processes consider it as to be their only
leader. If there is no leader, a leader is eventually elected.
The so-called FLP impossibility result, which states that
it is impossible to solve any non-trivial agreement in an
asynchronous system even with a single crash failure, also
applies to the election problem1. That means that there
is no solution for the election problem satisfying both of
safety and liveness properties in completely asynchronous
distributed systems. It must be pointed out, however, that
the impossibility result really means “not always possible,”
as opposed to “never possible.” As a matter of fact, any
algorithm that tries to solve the election problem cannot
always make progress without violating safety; there exist
cases in which the algorithm violating safety, although it
is very unlikely.

Distributed systems consist of groups of processes that
cooperate in order to complete specific tasks. A leader is a

coordinator that supports a set of processes to cooperate a
given task. This concept is used in several domains such as
distributed systems, parallelism and cooperative support
for cooperative work. To elect a leader (or coordinator)
in a distributed system, an agreement problem must be
solved among a set of participating processes. This prob-
lem, called the election problem, requires the participants
to agree on only one leader in the system7. The problem
has been widely studied in the research community2–6.
One reason for this wide interest is that many distributed
protocols need an election protocol.

A safety-oriented election protocol, which implies
the safety strengthened election protocol, is needed in
a practical distributed computing environment. Con-
sider a mission critical distributed system such as an
electronic commerce system that runs multiple servers
in which one of them roles a master (leader) and oth-
ers are slaves. To have data consistency among the serv-
ers in the system, this system should not violate safety
property, which means that all processes connected the
system never disagree on a leader. In those systems the

Keywords: Asynchronous Distributed Systems, Distributed Computing, Failure Detectors, Leader Election

A Safe Election Protocol based on an Unreliable Failure Detector in Distributed Systems

Indian Journal of Science and TechnologyVol 8 (34) | December 2015 | www.indjst.org 2

safety property is more important property than the liv-
eness property.

As a classic paper, there is Garcia-Molina’s Invitation
algorithm to solve election problem in asynchronous dis-
tributed systems. The algorithm strengthens the progress
property rather than safety and it allows more than two
leaders in the systems. Our idea is based upon the Gar-
cia-Molina’s Invitation algorithm for solving the election
problem in asynchronous distributed systems2. He rede-
signs the Bully algorithm for synchronous distributed
systems into the Invitation algorithm for asynchronous
distributed systems by using a specification that is weak
enough to be solvable, allowing the algorithm to progress
even in completely asynchronous distributed systems. His
specification uses a strong progress requirement, allow-
ing executions in which even a single process suspicion
of the current leader’s crash and its attempted leader elec-
tion from the members may lead a progress to elect a new
leader from all processes.

We propose an election algorithm that requires pro-
cesses to elect a new leader only when they agree with the
current leader’s crash. This requirement is strong because,
if no set of processes agrees on the current leader’s crash,
no progress is made. The requirement is, however, much
more strong than the one proposed by Garcia-Molina’s
Invitation algorithm in that it implicitly states that the
leader election of any process be allowed only on the
basis of only its own knowledge. In this paper, we pres-
ent a safety strengthened leader election protocol with
an unreliable failure detector and analyses it in terms of
safety and liveness properties in asynchronous distrib-
uted systems. Our algorithm, based on a standard three
phases commit protocol, is fully distributed. It does not
extend the asynchronous model of concurrent computa-
tion to include global failure detectors. Progress of the
algorithm can be guaranteed only in case of minimal vio-
lating a safety property.

The rest of the paper is organized as follows. In sec-
tion 2, we describe our system model and definitions.
In section 3, this paper relates the election specification
to other ways to solve the election problem. In section
4, this paper provides a safety-oriented algorithm that
solves the leader election problem. In Section 5, we
ensure the correctness of the algorithm by proving that
it satisfies the two properties of the specification given in
section 4. Finally, section 6 summarizes the main con-
tributions of this paper and discusses related and future
works.

2.  Model and Definitions
Our model of asynchronous computation with failure
detection is the one described in9,10. In the following, we
only recall some informal definitions and results that are
needed in this paper.

2.1 Processes
We consider a distributed system composed of a finite set
of processes W = {p1,p2,..,pn} where processes are identi-
fied by unique id’s. Communication is by message pass-
ing, asynchronous and reliable. Processes fail by crashing;
Byzantine failures are not considered.

Every pair of processes is connected by a communi-
cation channel. That is, every process can send messages
to and can receive messages from any other. We assume
processes are able to probe a communication channel
for incoming messages. Communication channels are
considered to be reliable, FIFO, and to have an infinite
buffer capacity. A reliable channel ensures that a mes-
sage, sent by a process pi to a process pj, is eventually
received by pj if pi and pj are correct (i.e., do not crash).
Asynchrony means that there is no bound on commu-
nication delays or process relative speeds. A process
that has been infinitely slow for some time and has been
unresponsive to other processes may become responsive
again at any time. Therefore, processes can only sus-
pect other processes to have crashed, using local failure
detectors.

The failure model allows processes to crash, silently
halting their execution. Because of the unpredictable
delays experienced by the system, it is impossible to use
time-outs to accurately detect a process crash. We assume
that a process communicates with its local failure detector
through a special receive-only channel on which the local
failure detector may place a new list of id’s of processes
not suspected to have crashed. We call this list the local
connectivity view of the process. Each process considers
the last local connectivity view received from its local fail-
ure detector as the current one.

2.2 Election Specifications
The election problem is described as follows: At any time,
as most one process considers itself the leader, and at any
time, if there is no leader, a leader is eventually elected.
More formally, the election problem is specified by the
following two properties:

SungHoon Park

Indian Journal of Science and Technology 3Vol 8 (34) | December 2015 | www.indjst.org

•	 Safety: All processes in the local connectivity view of
the process never disagree on a leader.

•	 Liveness: All processes should eventually progress to
be in a state in which all processes connected to the
system agree to the only one leader.

3. Circumventing the
Impossibility Result

In this section, we relate the election specification to other
ways to solve the election problem. In an asynchronous
model augmented by global failure detectors, processes
have access to modules that (by definition) eventually
reflect the state of the system. Therefore, progress and
safety can be guaranteed unconditionally.

In a timed asynchronous model, processes must react
to an input, producing the corresponding output or
changing state, within a known time bound. Under this
model, progress and safety can be guaranteed if no fail-
ures and recoveries occur for a known time needed to
communicate in a timely manner.

In a completely asynchronous model, progress cannot
always be guaranteed without violating safety and failure
detectors in practice eventually reflect the system state,
but they must be considered arbitrary. Correct processes
react in practice within finite time, but this time cannot
be quantified. Therefore, in order to guarantee a solution,
we need a weaker specification of the problem.

Our approach falls into the last category that originated
with Garcia-Molina’s work2. Our election algorithm, how-
ever, differs from Garcia-Molina’s in several ways.

Processes in Garcia-Molina’s model do not need to
wait to get consensus about the current leader’s crash. If
one process suspects that the leader failed, it may attempt
to elect the new leader. Garcia-Molina’s specification
says that, if one process attempts to be a new leader, it
eventually should be elected as a leader. Our specifica-
tion requires all processes in a set to agree on the current
leader crash before changing their new leader.

Garcia-Molina’s specification allows a solution in
which the attempted change of a leader divides all pro-
cesses into several sub-groups. Our specification does not
allow such a sub-group because it states that if all pro-
cesses in a system agree on a new leader, they must even-
tually accept such a leader.

In our model stability is also required for progress, but,
at variance of the above case, it is not necessarily related to
the state of the system. In other words, eventual progress

is required when there is agreement among a set of the
local failure detectors, even if failures and recoveries con-
tinue to occur in the system8,9.

4. Election Algorithm
We provide a stable algorithm that solves the leader elec-
tion problem given in section 2. The algorithm is based on
the three asynchronous phases.

A prepare phase, in which a process propose a new
leader that the other processes agree with.

A ready phase, in which all process that agree on the
new leader acknowledge the reservation of the potential
leader.

A commit phase, in which the new leader is finally
elected, and all process accept it their only leader.

4.1 Solution Sketch
The main idea for the algorithm is as follows. A process
p that is informed by its local failure detector of a leader’s
crash and that has the smallest id among processes in its
new local connectivity view sends a message to all pro-
cesses in its view proposing to change the current leader
with the new leader.

Each process received the message records this pro-
posal until the potential leader in its local view is the same
as the proposed new leader in its local view. At which
point, it responds by sending back an accept or retry mes-
sage to the process that proposed the leader update. The
accept message is sent if the process agrees on the pro-
posed leader in its local current view.

Upon sending the accept message, the process reserves
the prospective leader, so that no other proposal is
accepted for that system. Upon receiving a retry message,
the proposing process returns the normal state of the
algorithm, sending a new abort message to all processes
in its view.

When the proposing process has collected accept
messages from all processes in its view, it starts the com-
mit phase by sending commit messages, ordering other
processes in its view to commit the leader update. Upon
receiving a commit message, the processes accept the
reserved prospective leader as their new leader.

4.2 Code Description
The code is shown in Figure 1. The first received com-
mand in Figure 1 shows how a process p, when informed

A Safe Election Protocol based on an Unreliable Failure Detector in Distributed Systems

Indian Journal of Science and TechnologyVol 8 (34) | December 2015 | www.indjst.org 4

of a change in its local connectivity view, set its view to
be current and checks if the current leader has crashed.
If the leader has crashed, it set the variable leader status
to be false. When leader status is false, the start election
procedure in Figure 1 is called and the process p checks
that it is the minimum id among the processes in vp. If p
is the minimum id, it increases the round and proposes
itself as a new prospective leader and initializes its ackar-
ray to zero.

The next received commands in Figure 1 check for
incoming messages from other processes. These may be
proposals for a new leader (propose), rejections to pro-
pose a new leader (rejection), acceptances of a proposed
new leader (accept), orders to commit a new leader
(commit) or orders to abort a proposed new leader
(abort).

Upon receiving a proposal message from process q,
process p stores the new leader’s id proposed by q at posi-
tion q of the array newleader and stores the proposed
round at position q of the array roundIn, then sets posi-
tion q of the array prop to true to record the receipt of the
proposal from q and sets the curview to false to refresh
the current view of the system.

Upon receiving a proposal message from process q,
process p stores the new leader’s id proposed by q at posi-
tion q of the array newleader and stores the proposed
round at position q of the array roundIn, then sets posi-
tion q of the array Prop to true to record the receipt of the
proposal from q and sets the curview to false to refresh
the current view of the system.

If process p later agrees on the proposed new leader, it
sends a response to process q (see last guarded command
in Figure 1). The response is either an acceptance of the
new leader at position newleader[q] if the minimum id
among the process in vp is greater or equal than the id of
proposed newleader[q] and the proposed round greater
than the current round; or it is an rejection to the pro-
posed new leader if the minimum id among the process
in vp is less than the id of proposed newleader[q] or the
proposed round less or equal than the current round. A
rejection to the proposed new leader consists of sending
back to q the proposed round. An acceptance consists
of acknowledging the proposed new leader at position
newleader[q]. We now examine the guarded commands
of the remaining message types. A process p that receives
a rejection to the its proposal sends all processes in vp a
message to abort the proposed round and reinitializes the
ack array to zero.

A process p that receives an order to commit a new
leader at position q from process q, simply sets the cur-
rent leader to the proposed new leader and sets the cur-
rent round to the proposed round.

5.  Correctness
We can ensure the correctness of the algorithm by prov-
ing that it satisfies the two properties of the specification
given in section 4.

5.1 Safety
Theorem 1. The algorithm described in section 4 satisfies
the safety condition of the specification (Property 1, Sec-
tion 2): At any point in time, all processes connected the
system never disagree on a leader.

Proof. Either all processes remain in the start state or
some process p receives the proposed leader as its leader. In
the start state, the safety property holds since all processes
are in the state in which a leader has not been elected. If
some process p receives its leader by committing a pro-
posed leader at a given position q, it must have received a
commit message from some process q; therefore, q must
have received accept messages regarding its proposal of
a new leader from all processes in vp including p. It fol-
lows from the last guarded command in Figure 1 that, if
process p has accepted the proposal of process q, it will
not accept any other proposal for new leader, making it
possible to commit at most single proposed leader. There-
fore, process p either commits the process at position q as
a new leader or ends up with position q by aborting the
proposed new leader. Therefore safety property holds.

5.2 Liveness
Theorem 2. The algorithm described in Section 4 satis-
fies the liveness condition of the specification (Property 2,
section 4): All processes should eventually progress to be
in a state in which all processes connected to the system
agree to the only one leader.

Proof. By contradiction, a non-progress means that the
new leader is not elected forever even though there is no
leader; therefore, no commit messages must be sent. Since
the number of processes is finite, there must be at least one
process whose id is the minimum value in vp and that pro-
cess eventually sends a propose message. Call this process
p. By the code in Figure 1, we see that, having no com-
mit message, each time p sends a propose message and it

SungHoon Park

Indian Journal of Science and Technology 5Vol 8 (34) | December 2015 | www.indjst.org

should be rejected by other process. It follows that, in order
to abort infinitely many propose messages, other process q
must reject the proposed messages infinitely often.

propose messages are rejected either when the mini-
mum id of vp is greater than the id of the proposed leader
or because of a propose message already has been received
(see Figure 1).

The first case is ruled out because it implies that some
process always considers that there is a process that is
alive and whose id is less that the id of proposed new
leader. But by strong completeness of a failure detector it
is contradiction.

The second case is also ruled out, because it implies
that other process q sends infinitely many proposals of
the other leader. But by eventual strong accuracy of a fail-
ure detector, the process q knows that there is a process
whose id is less that its id. Therefore it is contradiction.

6.  Concluding Remarks
We have presented a stable election protocol with a reli-
able failure detector in completely asynchronous systems.
We have assumed our local failure detectors to be inaccu-
rate and incomplete. With this approach, the leader elec-
tion specification states explicitly that progress without

violation of safety cannot always be guaranteed. In prac-
tice, our requirement for progress is weaker than that
stated in the original specification of having a set of pro-
cesses sharing the same leader.

In fact, if the rate of perceived a leader failures in the
system is lower than the time it takes the protocol to
make progress and accept a new leader, then it is possible
for the algorithm to make progress every time there is a
leader failure in the system. This depends on the actual
rate of a leader failure and on the capacity of the failure
detectors to track such failures. In10, Chandra and Toueg
note that failure detectors defined in terms of global sys-
tem properties cannot be implemented. This result gives
strength to the approach of relaxing the specification and
of having a stable election protocol. In real world systems,
where process crashes actually lead a connected cluster of
processes to share the same connectivity view of the net-
work, convergence on a new leader can be easily reached
in practice.

7.  References
 1. Garcia-Molian H. Elections in a distributed comput-

ing system. IEEE Transactions on Computers. 1982 Jan;
31(1):49–59.

Figure 1. The algorithm.

A Safe Election Protocol based on an Unreliable Failure Detector in Distributed Systems

Indian Journal of Science and TechnologyVol 8 (34) | December 2015 | www.indjst.org 6

 2. Gomez-Calzado C, Larrea M. An evaluation of efficient
leader election algorithms for crash-recovery systems. Pro-
ceedings of 21st Euromicro International Conference on
Parallel, Distributed and Network-Based Processing; 2013
Feb. p. 180–8.

 3. Gholipour M, Kordafshari MS, Jahanshahi M, Rahmani
AM. A new approach for election algorithm in distributed
systems. Proceedings of International Conference on Com-
munication Theory, Reliability, and Quality of Service; 2009
Jul. p. 70–4.

 4. Sayeed HM, Abu-Amara M, Abu-Avara H. Optimal asyn-
chronous agreement and leader election algorithm for
complete networks with byzantine faulty links. Distributed
Computing. 2005; 9(3):147–56.

 5. Cahng H-C, Lo C-C. A consensus-based leader election
algorithm for wireless ad hoc networks. Proceedings of

Computer, Consumer and Control, International Sympo-
sium; 2012 Jun. p. 232–5.

 6. Singh G. Leader election in the presence of link failures.
IEEE Transactions on Parallel and Distributed Systems.
2009 Mar; 7(3):231–6.

 7. Fischer M, Lynch N, Paterson M. Impossibility of distrib-
uted consensus with one faulty process. Journal of the
ACM. 1985; 32(2):374–82.

 8. Chandra T, Toueg S. Unreliable failure detectors for reliable
distributed systems. Journal of ACM. 1996; 43(2):225–67.

 9. Park S-H, Lee S-H. Non-blocking atomic commitment in
asynchronous distributed systems with faulty processes.
Proceedings of ICA3PP; 2012. p. 405–13.

 10. Chandra T, Hadzilacos V, Toueg S. The weakest failure
detector for solving consensus. Journal of ACM. 1996;
43(4):685–722.

	OLE_LINK1

