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Abstract
In this paper, the queue lengths and the busy period lengths of the M/G/1 queueing systems with negative arrivals are 
analyzed. Two types of negative arrivals are considered. One type is negative customers and the other type is disasters. 
When a negative customer arrives to a system, one positive customer is removed if the number of positive customers is 
more than one. In particular, we assume the RCH (Removal of a Customer at the Head) type of negative customers which 
represent a kind of work-canceling signal to the positive customer in service. On the other hand, disasters get rid of all 
customers in the system. In this paper, the Probability Generating Function (PGF) of the stationary queue length and busy 
period length of M/G/1 queue with both negative customers and disasters are derived. 

1. Introduction
In classical single server queues, all customers who arrive 
the system are intended to be getting served. Suppose, 
however, that customers can act as work-canceling sig-
nals or reset orders that clear the queue at once. This is 
the notion of negative arrivals introduced by Gelenbe6, 
which is inspired by the neural networks including an 
inhibition signal. Queueing systems with negative arriv-
als can provide a better account of the operations of many 
systems, since they consider possible failure events in a 
process such as removing scrapped material and server 
breakdown leading to loss of every work in a queue.

Negative arrivals can in general be divided into two 
types. One is a negative customer, which puts one ordi-
nary customer, also called a positive customer out when it 
arrives at the system. The other is a disaster, which causes 
all customers in the system to be removed immediately. If 
the system is empty, no customers are removed by nega-
tive customers or disasters. In particular, negative cus-
tomers fall into two types depending on which customers 

in the system are removed: ‘the Removal of Customer at 
the Head (RCH)’ and ‘the Removal of Customer at the 
End (RCE)’ (see Harrison and Pitel8).

Queues with negative arrivals have been widely inves-
tigated over past few years (see2-3,5,7,9-16,18-25 and refer-
ences therein). Negative arrivals in a Wireless Sensor 
Network (WSN) are applicable to the network with unre-
liable connections where packets can be lost by external 
causes, attacks or shocks. A WSN can be used for military 
purpose to gather intelligence in battlefield. For example, 
a WSN can be applied to detect and track enemy troop 
movements nearby. Jamming signals may be send by an 
enemy to jam wireless communications. We call this kind 
of attack as a jamming attack. The radio frequencies which 
sensor nodes in the WSN are in use are interfered with the 
jamming signals. The data packets which are being trans-
mitted through the frequency can be discarded and may 
need to be retransmitted. Moreover, sudden environmen-
tal changes such as the magnetic field disturbance due 
to solar flares and the attenuation caused by heavy snow 
or hard rain can make wireless connections unreliable. 
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Extensive reviews regarding queue with negative arrivals 
can be also found in Artalejo1 and Do4.

Most of the previous studies on queueing systems with 
negative arrivals have considered models with negative 
customers and disasters separately. The solving process of 
the queueing model under the assumption of both nega-
tive customers and disasters such as derivation of closed 
form of performance measures would become more diffi-
cult. In many practical systems, however, we may encoun-
ter the situations where either the customer is being 
served or all customers in the system are removed by 
outside interference. For this reason, we take models with 
both negative customers and disasters into consideration 
simultaneously. To derive a closed form of stationary 
queue length distribution, we combine both a supple-
mentary variable technique and a busy period analysis. 

The remainder of the paper is organized as follows: 
In section 2, the queueing model is presented with nota-
tions. In section 3, the length of busy period is analyzed. 
The steady-state distributions for the number of custom-
ers in the system with negative arrivals are provided in 
section 4. The conclusion of this research is given in the 
final section.

2.  Model Description
This paper assumes that all events can only occur at 
exact slot boundaries. Exponential random variables 
{An, n ≥ 1} denote the interarrival times of positive cus-
tomers are independent and identically distributed (iid). 
The rates of the exponential variables are assumed to be 
λ. Also, interarrival times of negative customers {Cn, n 
≥ 1} and disasters {Dn, n ≥ 1} are iid random variables 
with an exponential distribution of rate η and δ, respec-
tively. Service discipline is a First-In, First-Out (FIFO) 
and service times {Sn, n ≥ 1} are assumed to follow gen-
eral distribution. Customers are served on a First-Come, 
First-Served (FCFS) basis, and service times {Sn, n ≥ 1} 
are iid random variables with general distribution. Note 
that {An, n ≥ 1},{Cn, n ≥ 1}, {Dn, n ≥ 1}, and {Sn, n ≥ 1} 
are mutually independent. Furthermore, it is assumed 
that when a negative customer arrives to the system, the 
customer in service is removed. That is, RCH discipline 
is adopted. 

The supplementary variable technique is used to derive 
the stationary queue length Probability Generating Func-
tion (PGF), Q*(z). The following notations and probabili-
ties will be used commonly in this section:

s(x), S*(θ): Probability Density Function (PDF) and 
Laplace Stieltjes-transform (LST) of service times,

N(t) : The number of customers at time t ,
SR(t) : The remaining service time at time t ,
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3.  Busy Period Analysis
In the system under study, customers leave a system in 
three cases: 
	1.	 Service completion (S), 
	2.	 Arrival of a negative customer (C), 
	3.	 Occurrence of a disaster (D). In cases 1 and 2, only 

one customer can leave the system. In case 3, how-
ever, every customer leaves the system at once. A busy 
period of the M/G/1 queue with negative arrivals can 
be terminated by two causes. The first is a type-I busy 
period in which every customer leaves the system 
one by one by either 1 or 2 until the system becomes 
empty. The other is a type-II busy period in which a 
disaster terminates a busy period. Before dealing with 
a type-I case, the modified service time is defined as 
the actual amount of service that a positive customer 
receives before departing the system either by 1 or 2. 
Let Sm and ( )mS   denote the modified service time and 
its LST, respectively, then we get 
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The LST of the type-I busy period, denoted by T*(θ), 
can be obtained by using (1). The LST of a busy period 
length in a standard M/G/1 queue, B*(θ), is known as (see 
Takagi17)

	 ( )( ) ( )B S Bq q l l q* * *= + - 	 (2)

If we replace S*(θ) in (2) with ( )mS   of (1), then we can 
express the LST of a type-I busy period as follows: 

	  ( ) ( )mT S T         .

A type-II busy period is then an interarrival time of a 
disaster. Finally, we can represent the LST of a busy period 
length of our model(Bm)as the minimum distribution of 
T (type-I) and D (type-II) as follows:

   

   
 

    
 

 

( )  |   |

1
             1

1

           .

T D
mB P T D E e T D P T D E e T D

T T
T T

T T

T

 

    
   

   
 

  

 
 

 



             
                

  



	  (3)

Remark 1: We can get an expected length of the busy 
period of our model by differentiating (3) as follows:
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Since the expected duration of the idle period is λ1, P0 
can be obtained by the renewal reward theorem as follows:

     
1

0 1 1     .
1 1

P
T T

 
     



   
 

   
	 (4)

Remark 2: Since P0 in (4) is positive, it is true that δ> 
0. This condition is necessary for the system to be stable. 
Also, if δ> 0 then the system under study is stable. This is 
a sufficient condition. Hence, the system is stable if and 
only if δ> 0.

4.  Queue Length Analysis
In Now, the supplementary variable technique is used to 
derive the stationary PGF of the queue length at an arbi-
trary time. The steady state system equations are
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First, we can get the following differential equations 
using (5) through (7): 
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The next step is to obtain the steady state relations by 
taking a limit to (8) as follows:
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After then, we take LST of (10), and get 
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After multiplying (11) by zk and summing over k = 
1,2,…, we get (9) after simplification of the result.
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where  0 z        .
To obtain P(z,0), we substitute θ = θ0 in (12). Thus, 
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Substituting (13) into (12) then yields 
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Finally, we obtain P*(z) by substituting θ = 0 into (14). 
Note that S*(0) = 1. We finally get
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Noted that P0 in (15) is the only unknown that cannot 
be determined by P*(1) = 1 – P0. However, by analyzing a 
regeneration cycle, we can obtain P0 in (4). The stationary 
PGF of the queue length at an arbitrary epoch, Q*(z), can 
be given by

     
   

*
0 0 0*

0 * *
0 0 0

1 1 1 ( )
( ) ,

( ) 1 ( )

zP z z P S
Q z P

S z S

  

   

   
 

  
	

where

	
  0 *   .

1
P

T


  


 
	

 5.  Conclusion
In this paper, we analyzed queueing systems with nega-
tive arrivals. Negative arrivals include negative customers 
which act as inhibition signals in neural networks and 
disasters. Disasters represent to damaging events that 
remove all the workload or data packets in a system by 
using a virus or resetting order. We obtained the PGF of 
the length of a busy period by regeneration cycle analysis. 
Also, using the supplementary variable technique, we 
derived the PGF of the queue length distribution. 

Our research addresses the queueing models with both 
negative customers and disasters simultaneously, that is 
differentiated from other previous works. Our model and 
results can be useful to estimate failure costs occurred by 
sudden shocks to a machine or scraps in various indus-
trial sites. 

In future work, we may consider the discrete time 
queue with negative arrivals. Also, more general type 
of negative arrival can be addressed besides negative 
customers and disasters. An additional type of negative 
arrival is the case of random size removal. When nega-
tive arrivals happen, random numbers of customers are 
deleted from the queueing systems. Thus, it is feasible for 
future work is to analyze the discrete-time queue with the 
random size removal of negative arrival.
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