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1.  Introduction

 The failure of computer systems from software failures 
may cause great losses. Therefore, an important issue 
during the software development process can be 
software reliability. In order to reflect user requirements 
about software reliability, the experiment for the cost of 
testing continue to be conducted. Software testing in the 
debugging process is more efficient if it knows, in advance, 
to reduce costs in terms of changes in the software 
reliability and testing costs. In this process, essential items 
for software development are the reliability, cost, and 
consideration of release time.

Eventually, the effort for predict the cause of a defect 
during the software product development is needed. 
Many software reliability models have been proposed 
considering the development costs. In the field, an 
excellent model1,2 in terms of the error discovery process 

using Non-Homogenous Poisson Process (NHPP). In 
this model, if a fault occurs, immediately remove in the 
debugging process and have the assumption that no new 
fault has occurred. 

In this field, enhanced non-homogenous Poisson 
Process model was presented by Gokhale and Trivedi1. 
Goel and Okumoto2 were presented an exponential 
software reliability models. In this model, mean value 
function used to the total number of defects have S-shaped 
or exponential-shaped pattern. The generalized model 
relies about these models, delayed S-shaped reliability 
growth model and inflection S-shaped reliability growth 
model were proposed by Yamada and Ohba3. Zhao4 
proposed a software reliability problems in change point 
and Shyur5 using the generalized reliability growth 
models proposed. Pham and Zhang6 testing measured 
coverage, the stability of model from software stability 
can be evaluated.
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In this software reliability field, Huang7, generalized 
logistic testing-effort function and the change-point 
parameter caused by incorporating efficient techniques 
to predict software reliability, were presented. Kuei-
Chen8 can be explained the learning process that software 
managers to become familiar with the software and test 
tools for S-type model. In addition, Kim9 was studied 
about the comparative study of NHPP delayed S-shaped 
and extreme value distribution software reliability model 
caused by the perspective of learning effects and Shin and 
Kim10 were studied on the comparative study of software 
optimal release time from NHPP software reliability 
model based on exponential and log shaped type from the 
perspective of learning effect. 

In this paper, the software reliability growth cost 
model about the property of learning effect based on 
delayed software s-shaped reliability model was proposed 
caused by Non-Homogenous Poisson Process (NHPP). 

The maximum likelihood estimation and bisection 
method used to estimate the parameters. Additionally, 
the model selection for the sake of efficient model used to 
mean square error and coefficient of determination was 
employed.

2.  Assistance Works

2.1 NHPP Model 
This is a classification of time category1,8 for software 
reliability models have assumption which software 
failures induce the behavior based on Non-Homogeneous 
Poisson Process (NHPP). For parameter of the stochastic 
process, λ(t) denotes the failure intensity at time t. Using 
N(t) (denotes the cumulative number of faults) and m(t) 
m(t) (denotes its expectation), m(t) = E[N(t)] and λ(t)  
can be expressed as follows:

0( ) ( )tm t s dsl= ò          (1)

And, 
( ) ( )dm t t

dt
l=          (2)

Because N(t) was known to have Poisson Probability 
Density Function (PDF) with parameter m(t), can be 
expressed as follows9:
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These time category models about the NHPP process 

can be described by the probability of failure. This model is 
consist of the failure intensity function (failure occurrence 
rates per fault) λ(t) and mean value the function m(t).

The NHPP models can be classified as finite failure 
and infinite failure categories.

The finite failure NHPP model have assumption that 
the expected number of faults detected given infinite 
amount of testing time will be finite, Also the infinite 
failures model have assumption that an infinite number 
of faults would be detected in infinite testing time1. 
Eventually, the failure NHPP11 used to General Order 
Statistics (GOS) and infinite NHPP used to Record Value 
Statistics (RVS).

Let θ denotes the expected number of faults that would 
be detected given finite failure NHPP models. Then, the 
mean value function of the finite failure NHPP models 
can also be written as:

( ) ( )m t F tq=          (4)

In Equation (4), F(t) denotes Cumulative Distribution 
Function (CDF). From the finite failure NHPP models, the 
failure intensity function λ(t) is known to:

( ) ( ) ( )t F t f tl q q¢= =         (5)

Also, in Equation (5), f(t) denotes Probability Density 
Function (PDF).

This can be materialized as: 
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      (6)

In equation (6), h(t)denotes the failure occurrence rate 
per fault of the software. The quantity [θ-m(t)], denotes 
the expected number of remaining faults in the software 
at time, t has pattern of monotonically non-increasing 
function3. For the property of the overall failure intensity, 
λ(t) is caused by the property of failure occurrence rate 
per fault h(t). The failure occurrence rate per fault (h(t)) 
has pattern constant or increasing, decreasing. In this 
section, describe some of the finite failure NHPP models 
using their hazard functions1.

Let {tn , n = 1,2,...}denote the sequence of times 
between successive software failures and tn denotes the 
time between (n-1)thand nth failure.  

Let xndenotes failure time n, can be summarized as 
follows:

1

n
n ii

x t
=

=å      
(7)

The joint density or the likelihood function of x1 , x2 
,..., xn is known as1,10:
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For a given sequence of software failure times (x1, 
x2 ,..., xn,) that are observations of the random variables 
(X1 X2 ,..., xn,), the parameter estimation of the software 
reliability models was performed using the Maximum 
Likelihood Method (MLE)10.

2.2  Learning Factor  using Cumulative and 
Intensity Function

In software testing implementation process, learning 
effects are testing by admin can be the same or 
manipulation of these effects is an important process.

The influential factors consist of autonomous errors-
detected factor y and learning factor η for the finding 
software errors.

As a result , if f(t) is the intensity function that denotes 
the fraction of  the errors detected at time t and F(t) is 
t cumulative distribution function that denotes the 
fraction of the errors detected within time (0,t], 1-F(t) is 
the fraction number of the errors as yet undetected failure 
at time t.

The applying model using the influence factors is 
known as follows8.

( ) ( ( )) (1 ( ))f t F t F tg h= + -          (9)

In Equation (9), note that y > 0, η > 0.
The factor of testing staff/software developers 

spontaneously find software errors, which they was 
unaware is autonomous errors-detected factor. Also, 
the learning factor means that the testing staff/software 
developers deliberately set out to find software errors in 
software system for finding software errors from faults 
which were previously detected. Of course, both factors 
can be increased the efficiency in terms of software 
debugging. Specifically, in Equation (9), the hazard 
function can be derived as follows.

( )( ) ( ( ))
1 ( )

f th t F t
F t

g h= = +
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      (10)

In Equation (10), CDF (the Cumulative Probability 
Density) and PDF (Probability Density Function) can be 
derived as follows.
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  (11)

2.3 Software Development Cost Model  
Software cost model is defined as follows12,13.

1 2 3 4 1 2 3 4
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      (12)
In Equation (12), all items means following contents
E: The expected total cost during all the software 

development cycle;
E1: The cost of software design and initial software 

development rely on analyzing data, the amount of man 
power, CPU time and so on. Its’ value is constant;

E2: The cost of software testing; in other words, E2 = C2 

xt, where C2 denotes the cost per unit time and t denotes 
time.

E3: The cost of removing a fault, that consists of 
activities like detecting the underlying fault and removing 
the fault.  It is related to the software reliability modeling; 
in other words, E3 = C3 x m(t) ,

Note that C3 denotes the cost of removing a fault in the 
testing phase, m(t) denotes the expected number of faults 
detected to the time t.

E4: The cost of fixing a failure, during the operational 
phase that is also related to the software reliability 
modeling; ultimately,

E4 = C4 x[m(t+t') - m(t) ], value of C4 denotes the cost 
of fixing a fault which is observed by users in the software 
operational phase after the software release and t ‘ denotes 
the time during operating and maintaining the software 
after releasing the software system.

In reality, the value of C4 is much larger than value of 
C2 and C3 . 

As a result, optimal software release time t can be get 
according to the following equation:

1 2 3 4 2 3 4
' ( )' '( ) [ '( ') '( )] 0E E E E E C C m t C m t t m t= + + + = + ´ + ´ + - =  

      
(13)

3.   Proposed Software Reliability 
Model using the Perspective of 
Learning effects from Delayed 
Software S-Shaped Reliability 
Model

In this section, apply delayed S-shaped model. It is known, 
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as follows: a finite failure NHPP intensity function and 
mean value function3,14. 

2 1
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1
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b
q q b= = - +       (15) 

Note that F(t) θ means the expected number of fault 
and β1 is shape parameter in delayed S-shaped model. Using 
Equation (14) and (15), the hazard function is modified as 
follows.
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Finally, the cumulative probability and density 
probability function using Equation (11) can be derived 
as follows.
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The mean value function and intensity function about 
finite failure NHPP model considering learning effects, 
can be derived as follows using Equation (4), (5) and (17).
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In this case, the likelihood function, substituting (17) 
for (9) equation, is as follows.
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The parameter estimation used to Maximum 
Likelihood Estimation (MLE) method. The log likelihood 
function, for the maximum likelihood estimation using 
Equation (20), is expressed as follows.
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Th erefore, using Equation (21), MLE 1

ˆ ˆ
MLE MLEandq b  can 

be estimated as follows: 
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This can be estimated as:
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4.  Illustration 

MLE considering influential factors  In this chapter, 
using software failures time data15, it is to analyze the 
characteristics of learning factors. This data set in Table 
1 lists and in order to analyze the trust models presented 
in the first data set should be preceded by a trend test15.

In this paper, the Laplace trend test analysis is used for 
reliability growth property. As a result of this test in this 
Figure 1, as indicated in the Laplace factor is between 2 and 
-2, data set shows the reliability growth property. Thus, 
using this data, it is possible to estimate the reliability10,16. 
According to modifying the value of different parameters, 
the effect of various parameters on the optimal software 
release time directly can be estimated. 

Figure 1.    Laplace trend test. 

According to the parameters13, the following 
conditions12 were applied:

From assumption (A), considering E1 = 15, C2 =0.1, 
C3 =0.5, C4 =1.5, t'=100, =0.07 and=0.03, it is possible to 
obtain the following results:
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Table 1.    Software Failure time data
Failure 

Number
Failure Interval 

(second)
Failure Time 

(second)
1 0.479 0.479

2 0.266 0.745

3 0.277 1.022

4 0.554 1.576

5 1.034 2.610

6 0.949 3.559

7 0.693 4.252

8 0.597 4.849

9 0.117 4.966

10 0.170 5.136

11 0.117 5.253

12 1.274 6.527

13 0.469 6.996

14 1.174 8.170

15 0.693 8.863

16 1.908 10.771

17 0.135 10.906

18 0.277 11.183

19 0.596 11.779

20 0.757 12.536

21 0.437 12.973

22 2.230 15.203

23 0.437 15.64

24 0.340 15.98

25 0.405 16.385

26 0.575 16.96

27 0.277 17.237

28 0.363 17.600

29 0.522 18.122

30 0.613 18.735

Table 2.    MLE  considering influential factors

. . ˆ
MLEq 1̂MLEb

0.03 0.07 31.6205 1.0361
0.05 0.05 32.2317 1.0260
0.07 0.03 32.5188 1.0158

As shown in Figure 2, the growth curve of the proposed 
model firstly decreases and then increases.

This situation means that the number of residual 
faults in software system is less and less in the process 
of fault removing. The reason is that probability of the 

remaining faults observed by users after software release 
is lower and lower. In the early phase of testing, there are 
still many faults in software which are easily detected and 
removed, and the cost of removing a fault in this phase is 
far lower than that of removing a fault in the operation 
phase. Therefore, the total cost of software decreases 
during the debugging process of faults. But in the latter 
phase the number of faults remaining in software is 
already less. Therefore, in this testing phase the time of 
detecting a fault is very long and the cost of removing a 
fault becomes higher than that in the operation phase, 
thus, the cost curve increases constantly with time. From 
the trend of the cost curve, the optimal software release 
time can be estimated and this situation is also the most 
realistic property. Most cases are consistent with this in 
the process of actual software development12.

Figure 2.    The curve under the condition of (A).

From assumption (B) under other parameters are 
the same conditions, Applying the changed value of 
influential factors from =0.07 and =0.03 to =0.05 and 
=0.05, get obtain the curve in Figure 3.

Figure 3.    The curve under the condition of (B).
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Comparing the different curve in Figure 2 and Figure 
3, it can be interpreted that the optimal software release 
time has been postponed. This affairs happens because 
the value of influential factors, case of the increase in 
the autonomous errors-detected factor and reduce the 
learning factor. Thus, the learning factor should be 
increased in the operation phase. Under this situation, 
the testing time should be extended to make sure learning 
factor on a certain lever after the software release. It can 
be interpreted that if high learning factor can be efficient 
work in terms of cost.

From assumption (C), other parameters are the same 
conditions, case of value of influential factors with =0.03 
and =0.07, get obtain the curve in Figure 4.

Figure 4.    The curve under the condition of (C).

In terms of comparing the different curve in Figure 
2 and Figure 4, it can be be interpreted that the optimal 
software release time has been postponed. This affairs 
happens because the value of influential factors, case of  
the increase from the autonomous errors-detected factor 
and  leads to reduced impact for the learning factor. 
Thus, the learning factor should be increased during the 
operation phase. Under this affair, the testing time should 
be extended to make sure learning factor on a certain 
lever after the software release.

It can be interpreted that low autonomous errors-
detected factor cannot be efficient work in terms of cost.

5.  Conclusion

Software reliability growth model can be estimated the 
optimal software release time and the cost considering the 
testing efforts. More accurate model is needed to decrease 
the testing cost and increase the profit of releasing 

software. The use of software cost model can help predict 
the optimal software release time accurately. In terms of 
comparison, the proposed model takes into account the 
total number of faults discovered by users during the 
software operation period or software maintenance after 
its release. It can be interpreted  that the cost of actual fault 
debugging is lower than the cost of removing all remaining 
faults in the operation phase can be effective. Thus, 
estimation of the optimal software release time is more 
realistic. In further studies, need to check the validity and 
effectiveness of our proposed software reliability growth 
model and the software cost model under the modeling 
framework by using much actual failure data. Generally, 
when learning factor is the highest and autonomous 
errors-detected factor is the lowest, model was effective 
depressing. Therefore, in this paper, the proposed model 
can be used as an alternative model in this field. These 
studies can be used as prior information to the software 
manager.
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