
Indian Journal of Science and Technology, Vol 8(34), DOI: 10.17485/ijst/2015/v8i34/85290, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

 The failure of computer systems from software failures
may cause great losses. Therefore, an important issue
during the software development process can be
software reliability. In order to reflect user requirements
about software reliability, the experiment for the cost of
testing continue to be conducted. Software testing in the
debugging process is more efficient if it knows, in advance,
to reduce costs in terms of changes in the software
reliability and testing costs. In this process, essential items
for software development are the reliability, cost, and
consideration of release time.

Eventually, the effort for predict the cause of a defect
during the software product development is needed.
Many software reliability models have been proposed
considering the development costs. In the field, an
excellent model1,2 in terms of the error discovery process

using Non-Homogenous Poisson Process (NHPP). In
this model, if a fault occurs, immediately remove in the
debugging process and have the assumption that no new
fault has occurred.

In this field, enhanced non-homogenous Poisson
Process model was presented by Gokhale and Trivedi1.
Goel and Okumoto2 were presented an exponential
software reliability models. In this model, mean value
function used to the total number of defects have S-shaped
or exponential-shaped pattern. The generalized model
relies about these models, delayed S-shaped reliability
growth model and inflection S-shaped reliability growth
model were proposed by Yamada and Ohba3. Zhao4
proposed a software reliability problems in change point
and Shyur5 using the generalized reliability growth
models proposed. Pham and Zhang6 testing measured
coverage, the stability of model from software stability
can be evaluated.

Abstract
Software testing in the debugging process is more efficient if it knows, in advance, to reduce costs in terms of changes in
the software reliability and testing costs. In this process, essential items for software development are the reliability, cost,
and consideration of release time. In this paper, the software reliability growth cost model based on Non-Homogenous
Poisson Process (NHPP) about the property of learning effect for delayed software s-shaped reliability model was
proposed, that was considered the actual number of faults removed in the software operation period after release time.
Then discuss the relationship between release time and software testing-effort for determine the optimal release time
so that can minimize the cost of software development and get more profit. Finally, according to some empirical studies,
directly explain the effect of different parameters about the optimal software release time during testing process.

Keywords: Learning Effect, NHPP, Software Cost Model, S-Shaped Reliability Model

The Property of Learning effect based on Delayed
Software S-Shaped Reliability Model using

Finite NHPP Software Cost Model
Hee-Cheul Kim*

Department of Industrial and Management Engineering, Namseoul University, Republic of Korea;
kim1458@nsu.ac.kr

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology2

The Property of Learning effect based on Delayed Software S-Shaped Reliability Model using Finite NHPP Software Cost
Model

In this software reliability field, Huang7, generalized
logistic testing-effort function and the change-point
parameter caused by incorporating efficient techniques
to predict software reliability, were presented. Kuei-
Chen8 can be explained the learning process that software
managers to become familiar with the software and test
tools for S-type model. In addition, Kim9 was studied
about the comparative study of NHPP delayed S-shaped
and extreme value distribution software reliability model
caused by the perspective of learning effects and Shin and
Kim10 were studied on the comparative study of software
optimal release time from NHPP software reliability
model based on exponential and log shaped type from the
perspective of learning effect.

In this paper, the software reliability growth cost
model about the property of learning effect based on
delayed software s-shaped reliability model was proposed
caused by Non-Homogenous Poisson Process (NHPP).

The maximum likelihood estimation and bisection
method used to estimate the parameters. Additionally,
the model selection for the sake of efficient model used to
mean square error and coefficient of determination was
employed.

2. Assistance Works

2.1 NHPP Model
This is a classification of time category1,8 for software
reliability models have assumption which software
failures induce the behavior based on Non-Homogeneous
Poisson Process (NHPP). For parameter of the stochastic
process, λ(t) denotes the failure intensity at time t. Using
N(t) (denotes the cumulative number of faults) and m(t)
m(t) (denotes its expectation), m(t) = E[N(t)] and λ(t)
can be expressed as follows:

0() ()tm t s dsl= ò (1)

And,
() ()dm t t

dt
l= (2)

Because N(t) was known to have Poisson Probability
Density Function (PDF) with parameter m(t), can be
expressed as follows9:

()() , 0,1, ,
!

n
m tm tp N t n e n

n
-= = = ¥

, (3)

These time category models about the NHPP process

can be described by the probability of failure. This model is
consist of the failure intensity function (failure occurrence
rates per fault) λ(t) and mean value the function m(t).

The NHPP models can be classified as finite failure
and infinite failure categories.

The finite failure NHPP model have assumption that
the expected number of faults detected given infinite
amount of testing time will be finite, Also the infinite
failures model have assumption that an infinite number
of faults would be detected in infinite testing time1.
Eventually, the failure NHPP11 used to General Order
Statistics (GOS) and infinite NHPP used to Record Value
Statistics (RVS).

Let θ denotes the expected number of faults that would
be detected given finite failure NHPP models. Then, the
mean value function of the finite failure NHPP models
can also be written as:

() ()m t F tq= (4)

In Equation (4), F(t) denotes Cumulative Distribution
Function (CDF). From the finite failure NHPP models, the
failure intensity function λ(t) is known to:

() () ()t F t f tl q q¢= = (5)

Also, in Equation (5), f(t) denotes Probability Density
Function (PDF).

This can be materialized as:
()() [()] [()] ()

1 ()
F tt m t m t h t

F t
l q q

¢
= - = -

-

 (6)

In equation (6), h(t)denotes the failure occurrence rate
per fault of the software. The quantity [θ-m(t)], denotes
the expected number of remaining faults in the software
at time, t has pattern of monotonically non-increasing
function3. For the property of the overall failure intensity,
λ(t) is caused by the property of failure occurrence rate
per fault h(t). The failure occurrence rate per fault (h(t))
has pattern constant or increasing, decreasing. In this
section, describe some of the finite failure NHPP models
using their hazard functions1.

Let {tn , n = 1,2,...}denote the sequence of times
between successive software failures and tn denotes the
time between (n-1)thand nth failure.

Let xndenotes failure time n, can be summarized as
follows:

1

n
n ii

x t
=

=å
(7)

The joint density or the likelihood function of x1 , x2
,..., xn is known as1,10:

Hee-Cheul Kim

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 3

()
11 21 , 2 , ,

(, , ,) ()m x nn
iX X n iXn

f x x x e xl-
== Õ

 (8)

For a given sequence of software failure times (x1,
x2 ,..., xn,) that are observations of the random variables
(X1 X2 ,..., xn,), the parameter estimation of the software
reliability models was performed using the Maximum
Likelihood Method (MLE)10.

2.2 Learning Factor using Cumulative and
Intensity Function

In software testing implementation process, learning
effects are testing by admin can be the same or
manipulation of these effects is an important process.

The influential factors consist of autonomous errors-
detected factor y and learning factor η for the finding
software errors.

As a result , if f(t) is the intensity function that denotes
the fraction of the errors detected at time t and F(t) is
t cumulative distribution function that denotes the
fraction of the errors detected within time (0,t], 1-F(t) is
the fraction number of the errors as yet undetected failure
at time t.

The applying model using the influence factors is
known as follows8.

() (()) (1 ())f t F t F tg h= + - (9)

In Equation (9), note that y > 0, η > 0.
The factor of testing staff/software developers

spontaneously find software errors, which they was
unaware is autonomous errors-detected factor. Also,
the learning factor means that the testing staff/software
developers deliberately set out to find software errors in
software system for finding software errors from faults
which were previously detected. Of course, both factors
can be increased the efficiency in terms of software
debugging. Specifically, in Equation (9), the hazard
function can be derived as follows.

()() (())
1 ()

f th t F t
F t

g h= = +
-

 (10)

In Equation (10), CDF (the Cumulative Probability
Density) and PDF (Probability Density Function) can be
derived as follows.

() '()
() , () '()

h t h t
F t f t F t

g g
h h
- -

= = =

 (11)

2.3 Software Development Cost Model
Software cost model is defined as follows12,13.

1 2 3 4 1 2 3 4
() [(') ()]E E E E E E C t C m t C m t t m t= + + + = + ´ + ´ + ´ + -

 (12)
In Equation (12), all items means following contents
E: The expected total cost during all the software

development cycle;
E1: The cost of software design and initial software

development rely on analyzing data, the amount of man
power, CPU time and so on. Its’ value is constant;

E2: The cost of software testing; in other words, E2 = C2

xt, where C2 denotes the cost per unit time and t denotes
time.

E3: The cost of removing a fault, that consists of
activities like detecting the underlying fault and removing
the fault. It is related to the software reliability modeling;
in other words, E3 = C3 x m(t) ,

Note that C3 denotes the cost of removing a fault in the
testing phase, m(t) denotes the expected number of faults
detected to the time t.

E4: The cost of fixing a failure, during the operational
phase that is also related to the software reliability
modeling; ultimately,

E4 = C4 x[m(t+t') - m(t)], value of C4 denotes the cost
of fixing a fault which is observed by users in the software
operational phase after the software release and t ‘ denotes
the time during operating and maintaining the software
after releasing the software system.

In reality, the value of C4 is much larger than value of
C2 and C3 .

As a result, optimal software release time t can be get
according to the following equation:

1 2 3 4 2 3 4
' ()' '() ['(') '()] 0E E E E E C C m t C m t t m t= + + + = + ´ + ´ + - =

(13)

3. Proposed Software Reliability
Model using the Perspective of
Learning effects from Delayed
Software S-Shaped Reliability
Model

In this section, apply delayed S-shaped model. It is known,

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology4

The Property of Learning effect based on Delayed Software S-Shaped Reliability Model using Finite NHPP Software Cost
Model

as follows: a finite failure NHPP intensity function and
mean value function3,14.

2 1
1 1() () (, 0)tt F t t e bl q qb q b-¢= = > (14)

1
1() () [(1 (1)]

t
m t F t t e

b
q q b= = - + (15)

Note that F(t) θ means the expected number of fault
and β1 is shape parameter in delayed S-shaped model. Using
Equation (14) and (15), the hazard function is modified as
follows.

2
1

1

'() ()()
1 () 1 () 1

tF t f th t
F t F t t

b

b
= = =

- - +
 (16)

Finally, the cumulative probability and density
probability function using Equation (11) can be derived
as follows.

2
1

2
1 1

2
1

1
() () '()

(1)

t
t

F t f t F t
t

b
g

b b
h h b

æ ö÷ç ÷-ç ÷ç ÷ç +è ø
= = =

+

 (17)

The mean value function and intensity function about
finite failure NHPP model considering learning effects,
can be derived as follows using Equation (4), (5) and (17).

2
1

2
1 1 1

1

1
() () () []

(1)

t
t t t

m t F t F t
t

b
g

b b g b
q q q q

h h b

æ ö÷ç ÷-ç ÷ç æ ö÷ç + - -è ø ÷ç ÷= = = = ç ÷ç ÷ç +è ø (18)

2
1

2
1

() () ()
(1)

t F t f t
t

qb
l q q

h b
¢= = =

+ (19)

In this case, the likelihood function, substituting (17)
for (9) equation, is as follows.

2 2
1 1 1

1 2
1 1

(|) exp
(1) (1)

n nn
iNHPP xn

i n

x x
L D

x x
b b g b

q q
h b h b=

é ù é ùæ ö æ ö- -÷ ÷ç çê ú ê ú÷ ÷Q = · -Õ ç ç÷ ÷ê ú ê úç ç÷ ÷ç ç+ +è ø è øë û ë û

 (20)

The parameter estimation used to Maximum
Likelihood Estimation (MLE) method. The log likelihood
function, for the maximum likelihood estimation using
Equation (20), is expressed as follows.

2
1 1

11 1
1

)
ln (|) ln 2 ln ln 2 ln(1)

(1)
n nn

iNHPP x in
n

x x
L D n n n x

x
b g b

q b h b q
h b=

æ ö- - ÷ç ÷Q = + - - + -å ç ÷ç ÷ç +è ø

 (21)
Th erefore, using Equation (21), MLE 1

ˆ ˆ
MLE MLEandq b can

be estimated as follows:

2
1 1

1

ln (|) 0
(1)
n nNHPP

n

x xL x n
x

b g b

q q h b

æ ö- -¶ Q ÷ç ÷ç= - =÷ç ÷¶ + ÷çè ø

 (22)

This can be estimated as:

()

1
2
1 1

2
1 1

1 2
1 1 1 1

1 2 3

(1)ˆ

(1 2)ln (|) 2 2 0
1 (1)

. , , ,...

n

n n

i n nnNHPP
i

i n

n

x
x x

x x xL x n
x x

Note x x x x x

h b
q

b g b

q b g b
b b b h b=

+
=

- -

æ ö æ ö- - +¶ Q ÷ ÷ç ç÷ ÷= - - =å ç ç÷ ÷ç ç÷ ÷ç ç¶ + +è ø è ø

=

 (23)

4. Illustration

MLE considering influential factors In this chapter,
using software failures time data15, it is to analyze the
characteristics of learning factors. This data set in Table
1 lists and in order to analyze the trust models presented
in the first data set should be preceded by a trend test15.

In this paper, the Laplace trend test analysis is used for
reliability growth property. As a result of this test in this
Figure 1, as indicated in the Laplace factor is between 2 and
-2, data set shows the reliability growth property. Thus,
using this data, it is possible to estimate the reliability10,16.
According to modifying the value of different parameters,
the effect of various parameters on the optimal software
release time directly can be estimated.

Figure 1. Laplace trend test.

According to the parameters13, the following
conditions12 were applied:

From assumption (A), considering E1 = 15, C2 =0.1,
C3 =0.5, C4 =1.5, t'=100, =0.07 and=0.03, it is possible to
obtain the following results:

Hee-Cheul Kim

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 5

Table 1. Software Failure time data
Failure

Number
Failure Interval

(second)
Failure Time

(second)
1 0.479 0.479

2 0.266 0.745

3 0.277 1.022

4 0.554 1.576

5 1.034 2.610

6 0.949 3.559

7 0.693 4.252

8 0.597 4.849

9 0.117 4.966

10 0.170 5.136

11 0.117 5.253

12 1.274 6.527

13 0.469 6.996

14 1.174 8.170

15 0.693 8.863

16 1.908 10.771

17 0.135 10.906

18 0.277 11.183

19 0.596 11.779

20 0.757 12.536

21 0.437 12.973

22 2.230 15.203

23 0.437 15.64

24 0.340 15.98

25 0.405 16.385

26 0.575 16.96

27 0.277 17.237

28 0.363 17.600

29 0.522 18.122

30 0.613 18.735

Table 2. MLE considering influential factors

. . ˆ
MLEq 1̂MLEb

0.03 0.07 31.6205 1.0361
0.05 0.05 32.2317 1.0260
0.07 0.03 32.5188 1.0158

As shown in Figure 2, the growth curve of the proposed
model firstly decreases and then increases.

This situation means that the number of residual
faults in software system is less and less in the process
of fault removing. The reason is that probability of the

remaining faults observed by users after software release
is lower and lower. In the early phase of testing, there are
still many faults in software which are easily detected and
removed, and the cost of removing a fault in this phase is
far lower than that of removing a fault in the operation
phase. Therefore, the total cost of software decreases
during the debugging process of faults. But in the latter
phase the number of faults remaining in software is
already less. Therefore, in this testing phase the time of
detecting a fault is very long and the cost of removing a
fault becomes higher than that in the operation phase,
thus, the cost curve increases constantly with time. From
the trend of the cost curve, the optimal software release
time can be estimated and this situation is also the most
realistic property. Most cases are consistent with this in
the process of actual software development12.

Figure 2. The curve under the condition of (A).

From assumption (B) under other parameters are
the same conditions, Applying the changed value of
influential factors from =0.07 and =0.03 to =0.05 and
=0.05, get obtain the curve in Figure 3.

Figure 3. The curve under the condition of (B).

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology6

The Property of Learning effect based on Delayed Software S-Shaped Reliability Model using Finite NHPP Software Cost
Model

Comparing the different curve in Figure 2 and Figure
3, it can be interpreted that the optimal software release
time has been postponed. This affairs happens because
the value of influential factors, case of the increase in
the autonomous errors-detected factor and reduce the
learning factor. Thus, the learning factor should be
increased in the operation phase. Under this situation,
the testing time should be extended to make sure learning
factor on a certain lever after the software release. It can
be interpreted that if high learning factor can be efficient
work in terms of cost.

From assumption (C), other parameters are the same
conditions, case of value of influential factors with =0.03
and =0.07, get obtain the curve in Figure 4.

Figure 4. The curve under the condition of (C).

In terms of comparing the different curve in Figure
2 and Figure 4, it can be be interpreted that the optimal
software release time has been postponed. This affairs
happens because the value of influential factors, case of
the increase from the autonomous errors-detected factor
and leads to reduced impact for the learning factor.
Thus, the learning factor should be increased during the
operation phase. Under this affair, the testing time should
be extended to make sure learning factor on a certain
lever after the software release.

It can be interpreted that low autonomous errors-
detected factor cannot be efficient work in terms of cost.

5. Conclusion

Software reliability growth model can be estimated the
optimal software release time and the cost considering the
testing efforts. More accurate model is needed to decrease
the testing cost and increase the profit of releasing

software. The use of software cost model can help predict
the optimal software release time accurately. In terms of
comparison, the proposed model takes into account the
total number of faults discovered by users during the
software operation period or software maintenance after
its release. It can be interpreted that the cost of actual fault
debugging is lower than the cost of removing all remaining
faults in the operation phase can be effective. Thus,
estimation of the optimal software release time is more
realistic. In further studies, need to check the validity and
effectiveness of our proposed software reliability growth
model and the software cost model under the modeling
framework by using much actual failure data. Generally,
when learning factor is the highest and autonomous
errors-detected factor is the lowest, model was effective
depressing. Therefore, in this paper, the proposed model
can be used as an alternative model in this field. These
studies can be used as prior information to the software
manager.

6. Acknowledgement

Funding for this paper was provided by Namseoul
University.

7. References
1. Gokhale SS, Trivedi KS. A time/structure based software

reliability model. Annals of Software Engineering. 1998;
8:85–12.

2. Goel AL, Okumoto K. Time dependent error - detection
rate model for software reliability and other performance
measure. IEEE Trans Reliability. 1979; 28(3):206–11.

3. Yamada S, Ohba H. S-shaped software reliability modeling
for software error detection. IEEE Trans Reliability. 1983;
32:475–84.

4. Zhao M. Change-point problems in software and hardware
reliability. Communication Stat Theory Methods. 1993;
22(3):757–68.

5. Shyur H-J. A stochastic software reliability model with im-
perfect debugging and change-point. J Syst Software. 2003;
66(2):135–41.

6. Pham H, Zhang X. NHPP software reliability and cost mod-
els with testing coverage. Eur J Oper Res. 2003; 145:445–54.

7. Huang C-Y. Performance analysis of software reliability
growth models with testing-effort and change-point. J Syst
Software. 2005; 76:181–94.

8. Kuei-Chen C, Yeu-Shiang H, Tzai-Zang L. A study of soft-
ware reliability growth from the perspective of learning
effects. Reliability Engineering and System Safety. 2008;
93:1410–21.

Hee-Cheul Kim

Vol 8 (34) | December 2015 | www.indjst.org Indian Journal of Science and Technology 7

9. Kim H-C. The comparative study of NHPP delayed
S-shaped and extreme value distribution software reliabili-
ty model using the perspective of learning effects. Interna-
tional Journal of Advancements in Computing Technology
(IJACT). 2013; 5(9):1210–8.

10. Shin H-D, Kim H-C. The comparative study of software op-
timal release time based on NHPP software reliability mod-
el using exponential and log shaped type for the perspective
of learning effects. International Journal of Advancements
in Computing Technology. 2013; 5(12):120–9.

11. Kuo L, Yang TY. Bayesian computation of software reliabil-
ity. Journal of the American Statistical Association. 1996;
91:763–73.

12. Zhang Y, Wu K. Software cost model considering reliability
and time of software in use. Journal of Convergence Infor-
mation Technology . 2012; 7(13):135–42.

13. Satya Prasad R, Rao KRH, Kantha RRL. Software reliability
measuring using modified maximum likelihood estimation
and SPC. International Journal of Computer Applications
(0975–8887). 2011; 21(7):1–5.

14. Alaa S. Parameter estimation of software reliability growth
models by particle swarm optimization. AIML Journal.
2007; 7(1):55–61.

15. Hayakawa Y, Telfar G. Mixed poisson-type processes with
application in software reliability. Mathematical and Com-
puter Modelling. 2000; 31:151–6.

16. Kanoun K, Laprie JC, Lyu MR. Handbook of software reli-
ability engineering. Chapter Trend Analysis. McGraw-Hill,

 New York: NY. 1996. p. 401–37.

