
Indian Journal of Science and Technology, Vol 9(43), DOI: 10.17485/ijst/2016/v9i43/91712, November 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Modern applications require a lot of computational
power which reduces the performance of the system. The
solution lies in finding alternative processors or algorithms
with low cost. An ineffective solution is a supercomputer
which is very expensive and hence, not affordable by
many institutions. Thus parallel programming has come
to the fore as a very successful way of increasing the
computation speed. Performance analysis is the process of
gathering information about the execution characteristics
of a program1,2. It lays the foundation for PATs, which are
responsible for analysing the performance data, thereby
enabling us to improve the efficiency of our programs.

In this paper, we have analysed six tools in detail. We
have opted for these tools because they are targeted for
Windows, Linux and Unix Operating System, which are the

most commonly used platforms. In addition to that, their
recent versions and source codes are available for download.
In this paper, we have analysed these tools in a comparative
manner by taking into account their current version, license
type, home site, source code availability, binary packages,
targeted platforms, languages supported and important
features as the parameters as shown in Table 1.

The paper is organized as follows – Section 2 elaborates
on the importance of PATs, Section 3 focusses on the
parallel programming languages – OpenMP and MPI
and their important features, Section 4 gives a detailed
explanation of all the six PATs that has been analyzed
along with a comparative analysis table, and Section 5
concludes the paper.

2. �Performance Analysis Tools

Abstract
Objective: Due to the recent development of multiple parallel programming tools with varying features, it is difficult to
choose the best tool according to the needs of the user. Methods: This problem is addressed by making a comparative
analysis study of different features like license type, source code availability, targeted platforms and languages supportedby
these diverse tools. There are different parallel programming languages that support the present multi-core architecture
like Message Passing Interface (MPI) and Open Multi-Processing (OpenMP). These are widely used to provide different
performance characteristics of parallelism in different test cases. The new architecture and the complexity strengthens
the need to monitor and analyze the performance of the various OpenMP kernels and constructs on multi-core processors.
Findings: There are many papers that have been published in the past but non of them focuses on a comparative study
among the performance analysis tools (PATs) that we mostly opt for. This paper intends to analyze the parallel computing
ability of OpenMP and MPI, besides helping the user to understand which tool suites his task the best. Improvement: This
study shows that MPI offers the best performance characteristics in the field of shared memory programming whereas
OpenMP is a better choice because of the global style of the resulting program. It also provides a roadmap to select the best
tool when designing a parallel programming system.

Keywords: MPI, Multi-Core System, Multi-Threaded System,OpenMP, PAT, Parallelization,

A Survey of Performance Analysis
Tools for OpenMP and MPI

J. Sairabanu1*, M. Rajasekhara Babu1, Arunava Kar1 and Aritra Basu2

1School of Computer Science and Engineering (SCOPE), VIT University, Vellore - 632014, Tamil Nadu,
India;jsairabanu@vit.ac.in, mrajasekharababu@vit.ac.in, arunava.kar2014@vit.ac.in

2School of Electronics Engineering (SENSE), VIT University, Vellore - 632014, Tamil Nadu, India;
aritra.basu2014@vit.ac.in

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology2

A Survey of Performance Analysis Tools for OpenMP and MPI

Table 1. Comparative analysis of PATs for parallel programs in OpenMP and MPI platforms
TOOLS VAMPIR TAU GLOW CODE PABLO PIN INTEL VTUNE

AMPLIFIER
CURRENT
VERSION

VAMPIR 8.5 TAU 2.5 9.2 PCF 4.1 2.12 2013

LICENSE TYPE Commercial
(Evaluation
copy only)

Open source Open source Free for educa-
tion, research, and
non-profit purposes.

Proprietary, free,
but cannot be
redistributed

Proprietary

HOME SITE www.vampir.
eu

http://www.
cs.uoregon.edu/
research/tau/
home.php

https://www.
glowcode.com

http://renci.org/
research/pablo/

https://software.
intel.com/en-us/
articles/pintool/

https://software.
intel.com/en-us/
intel-vtune-am-
plifier-xe

SOURCE CODE
AVAILA BILITY

No Yes No Yes Yes No

BINARY
PACKAGES

RED HAT
RPM-No
DEBIAN-No

RED HAT RPM-
No DEBIAN-No

- RED HAT RPM-No
DEBIAN-No

- -

TARGETED
PLATFORMS

Linux, Tera-
flops, Fujit

Unix All versions of
Windows

Unix, Linux, Sun
Solaris

Linux, OSX, Win-
dows, Android

Linux, Windows

FEATURES •Powerful
zooming and
scrolling in
all displays.
•Adaptive
statistics for
user selected
time ranges.
•Filtering of
processes,
functions,
messages and
collective
operations.
•Hierarchical
grouping
of threads,
processes,
and nodes.
•Support of
source code
locations.

•Provides graph-
ical analysis of all
the performance
analysis results,
both in aggregate
and single node,
context or thread
forms.
•The user can
quickly identify
and point out the
plausible sources
of performance
bottlenecks.
•Gathers perfor-
mance infor-
mation through
the concept of
instrumentation
of functions,
methods, basic
blocks, and state-
ments.

•Helps program-
mers to find
performance
bottlenecks and
detect memory
leaks.
•Ensures code
coverage, isolate
boxing errors,
identify exces-
sive memory
usage, and find
hyperactive and
loitering objects.
•Unrivaled
speed allowspro-
grammers to iso-
late and correct
errors early and
often, continu-
ously building a
solid foundation
of clean code.

•It includes Autopi-
lot, an infrastructure
for real-time adap-
tive control.
•It includes Virtue,
a collaborative
virtual environment
for direct software
manipulation
•It includes Pablo,
a scalable perfor-
mance analysis
toolkit.
•Any data that can
be translated to
the self-describing
data format can be
analysed.

•PIN provides an
extensive
API for instru-
mentation at dif-
ferent abstraction
levels.
•It also supports
callbacks for many
events such as
library loads, sys-
tem calls, signals/
exceptions and
thread creation
events.
•A large array of
optimization tech-
niques are used to
obtain the lowest
possible running
time and overhead
memory use.

•Profiles dynam-
ically generated
code.
•Shows thread
relationships
to identify
synchronization
issues.
•Finds long
synchronization
waits that occur
when cores are
underutilized.
•Removes the
clutter of data
gathered during
uninteresting
times.
•Finds specific
tuning opportu-
nities like cache
misses and
branch mispre-
dictions.
•Data Access
Analysis iden-
tifies memory
hotspots and
relates them to
code hotspots.

LANGUAGES
SUPPORTED

C, C++,
FORTRAN,
Java

Python C, C++, C#, any
.NET frame-
work compliant
language

C, FORTRAN Platform indepen-
dent

C, C++, FOR-
TRAN, NET,
Java

https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Proprietary_software
file:///C:\Users\user\AppData\Local\Microsoft\Windows\INetCache\IE\YY3CWUQL\www.vampir.eu
file:///C:\Users\user\AppData\Local\Microsoft\Windows\INetCache\IE\YY3CWUQL\www.vampir.eu
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
https://www.glowcode.com
https://www.glowcode.com
http://renci.org/research/pablo/
http://renci.org/research/pablo/
https://software.intel.com/en-us/articles/pintool/
https://software.intel.com/en-us/articles/pintool/
https://software.intel.com/en-us/articles/pintool/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://en.wikipedia.org/wiki/Branch_misprediction
https://en.wikipedia.org/wiki/Branch_misprediction

J. Sairabanu, M. Rajasekhara Babu, Arunava Kar and Aritra Basu

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology 3

(PATs)

Performance is defined as the process of collection of
information regarding the way a program gets executed in the
processor of any system. This task is carried out by the PATs.
A PAT consists of three interfacing software layers. These are
known as the instrumentation layer, measurement layer, and
the analysis layer3,4. The instrumentation layer tells us about
the different events that will be executed by the processor.
The measurement layer deals with the performance of the
event that is being monitored. It helps the user to visualize
how the tool performs this measurement. The analysis layer
works with the data that has been calculated by the previous
layer and displays it in a form that be visualized by the user in
a comprehensible form using the performance tools.

2.1 Features of a Good PAT
•	 The tool should not crash frequently.
•	 It should not crash when the user performs a

wrong action. Instead, diagnostic messages must be
displayed to enable the user to rectify his error.

•	 Efficient error handling features and a debugger must
be provided.

•	 There must be a documentation support for ease of
use and a user-friendly interface.

•	 Adequate features should be provided to execute the
desired task more effectively rather than making the
user perform low level tasks.

•	 The tool should be able to handle large numbers of
processes and long-running programs.

•	 Most parallel programmers work on different
platforms simultaneously. So, the tool should be
able to analyse and display the data regarding the
performance charactertics using different ways based
on the platform the user is working on.

•	 The tool should support hybrid environment, which
is defined as a combination of shared and distributed
memory.

•	 The tool should support one of the latest parallel
programming trends of passing messages in the
shared memory within a node as well as between
nodes in a distributed memory.

The debugging, analysis and tuning of parallel programs
is more challenging than serial programs because the
performance of a parallel program is determined by the
complex interactions between the hardware and software

components of the system. Thus, efforts must be taken
to reduce the inefficiencies derived from dependencies,
resource contentions, uneven work distributions and loss
of synchronization among processors. This is where PATs
play a very important role.

3. �Parallel Programming
Languages

A parallel programming language consists of constructs
which permit multiple instructions in different blocks of
codes to be executed during the same clock cycle. This
feature makes such a language unique from the sequential
counterparts, which have its constraints allowing only a
single instruction to be executed in a single clock cycle.
Although parallel languages are essentially sequential at their
base, their constructs have much looser constraints, which
allow multiple tasks to be performed at a particular instant
of time. OpenMP is the most widely used shared memory
Application Programming Interface (API), while MPI is the
most commonly used message-passing system API.

3.1 OpenMP
OpenMP serves as a standard for shared-memory parallel
programming. It is an API with a flexible and user-
friendly interface for developers of parallel applications
in FORTRAN, C, and C++5.The latest version is OpenMP
4.5 launched on 15 November 2015. The OpenMP
standard has been jointly set up and developed by
a group with members from major companies like
Hewlett Packard, IBM, Sun Microsystems, Intel, Silicon
Graphics, etc. OpenMP was originally developed based
on parallel loops and was primarily aimed at handling
dense numerical applications6. OpenMP has been
attracting worldwide interest because of the use of a
shared memory model, simplicity of its interface, and a
simple and portable parallel programming model. The
OpenMP API comprises of library routines, compiler
directives and environment variables7. Library routines
supervise threads, processors and environment variables.
It also manages thread synchronization. Compiler
directives controls the operations of the compiler, which
processes the sections of the code that are designed for
parallel execution. Environment variables executes of the
OpenMP program.

3.2 Features of OpenMP

https://en.wikipedia.org/wiki/OpenMP

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology4

A Survey of Performance Analysis Tools for OpenMP and MPI

•	 OpenMP comes with mechanisms for the mapping of
unstructured data.

•	 OpenMP can perform asynchronous execution
of data and manage runtime routines for device
memory management which deals with the processes
of allocation and freeing of memory8.

•	 It also has an in-built algorithm to parallelize loops
with dependences.

•	 It provides support to divide loops into tasks. This
leads to better thread management as all threads are
no longer required to execute a single loop.

•	 Hint mechanisms are provided which ensures a
user-friendly interface when it comes to assigning
the relative priority of tasks as well as the preferred
synchronization implementations.

•	 Single Instruction Multiple Data (SIMD) extensions
are provided to specify the additional data-sharing
attributes.

3.3 Message Passing Interface (MPI)
MPI serves as a benchmark for the developers of message
passing libraries. The primary objective of MPI is providing
a base for writing message passing programs that are
user-friendly and can be easily implemented9. Its major
focus is on the message-passing parallel programming
model whereby the data is passed from the memory space
of one process to that of another process. This can involve
passing of data messages within the shared memory of a
node as well as between nodes in a distributed memory.
The MPI interface is not only practical, but also efficient
and flexible.

3.4 Features of MPI
•	 MPI can be invoked and called by C, C++ and

FORTRAN programs, which are the most commonly
used high level programming languages.

•	 MPI is more like a specification rather than a
particular implementation10. An error free MPI
program should run on all MPI implementations.

•	 Sending and receiving messages are the two
fundamental jobs of MPI. A tag integer is introduced
alongside every message when it is sent. A
communicator is also present to deal with the technical
aspects of context and group. This communicator
serves an important role in most point-to-point and
collective operations. The rank of a process in the

group is identified by the communicator and always
referred to by the destination or source as specified
in any send or receive operation. Each process is
ranked in its group according to a linear numbering.
MPI programs use the concept of contexts to separate
messages in various portions of the code.

4. �PATs for Parallel Programs in
OpenMP and MPI Platforms

4.1 Vampir
Vampir is a commercial OpenMP and MPI analysis tool
which was developed by Pallas GmbH11. Vampirtrace,
also developed by Pallas, is a MPI profiling library that
produces trace files which are analyzed using Vampir12. The
Vampirtrace library comprises of an API which allows for
the insertion of user-defined events into the trace files. A
filtering mechanism is used during runtime to focus only
on the higher priority events thereby limiting the amount of
trace data to be processed13. Instrumentation is performed by
adding the Vampirtrace calls to the source code and linking
the application with the Vampirtrace library14. Vampirtrace
automatically corrects clock offset for systems that do
not have a global time reference. Vampir can graphically
display the program state changes through a user defined
interface. It also provides a statistical analysis of all the
parallel operations and hardware performance counters. It is
designed to be an user-friendly tool, using which developers
can display the behaviour of the program at any level of
abstraction. Powerful zooming and scrolling facilities are also
provided to identify the exact location and reason behind
the performance bottlenecks. The interface also provides a
number of customization options through context-sensitive
menus. The filtering capabilities help to limit the unwanted
information by focusing only on the matters of interest.
Several graphical displays are provided by Vampir for real
time analysis and visualization. The timeline and parallelism
display is very useful if the user wants to know about the
application related activities that are being performed at
any instant of time. Many other displays are also included
for statistical analysis of the performance characteristics
during execution of the program and a dynamic calling tree
display. The current version of Vampir can support up to 512
processes. However, it is very impractical to display so many
processes simultaneously, which does not make the interface
very user-friendly15. So, a new version of Vampir is in the
process of development to resolve these issues by providing a

J. Sairabanu, M. Rajasekhara Babu, Arunava Kar and Aritra Basu

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology 5

hierarchical scalability display.

4.2 Tuning and Analysis Utilities (TAU)
TAU is a profiling toolkit designed for performance
analysis of parallel programs. It supports the most
popular high level languages like Java, C and Python16.
TAU is capable of accumulating performance related
information through the instrumentation of functions
and statements in addition to the sampling based on
events17. TAU supports all the latest C++ language
features including namespaces and templates. This makes
it a formidable competitor to other parallel processing
tools in the market. The API also provides the user
with the discretion of selection and analysis of profiling
groups for organization and control of instrumentation.
The instrumentation can be added into the source code
by making use of an automatic instrumental tool which
is quite similar to the Program Database Toolkit (PDT).
This can be done manually by the use instrumentation
APIor dynamically with the help of the Dyninst API
during runtime in the Java Virtual Machine (JVM)18.

“paraprof ”, the profile visualization tool of TAU,
provides graphical analysis of all the performance
analysis results, both in single node and aggregated node
context as well as the thread forms, thereby enabling the
user to identify and point out the possible sources of
performance bottlenecks in the application with the help
of the graphical interface. TAU v2.22has the advanced
feature of a topological view to map the routine to the
underlying topology. In addition to that, TAU can also
help in the generation of traces that can be displayed
using the trace visualization tools ofVampir and Paraver19.

4.3 Pablo
The research group based on Pablo has designed a variety of
software tools for the performance analysis of distributed
systems. The software distributions are primarily intended
for academic and government research sites and other non-
profit organizations20. Pablo is primarily aimed at Unix,
Linux and Sun Solaris platforms. The software available
includes: Autopilot, an infrastructure supported tool for
real-time adaptive control; Virtue, a virtual environment
intended for direct software manipulation and alteration;
and Pablo, a scalable performance analysis toolkit which
acts as a GUI for source code performance correlation21.
Its latest version PCF 4.1 is available for free download.
Pablo can be used in a data analysis environment for

the construction, configuration and execution of a data
analysis graph. Because the environment is capable of
processing any data specified in the self-describing data
format, the Pablo software instrumentation need not be
the source of the data. This is a major advantage as data
analysis using Pablo is no longer limited to application
program behaviour. Any data that can be translated to the
self-describing data format can be analysed. Thus, one
could use the Pablo performance analysis environment to
explore the trace data drawn from a simulated computer
architecture or to study the performance of operating
system resource management policies on massively
parallel systems.

4.4 GlowCode
GlowCode is a real-time performance analyzer and
memory profiler primarily aimed at Windows application
program developers using C, C++, or any other .NET
framework-supported language. It helps the programmers
in optimizing the performance of their application by
providing tools to identify performance bottlenecks,
isolate boxing errors, detect memory leaks and resource
flaws, segregate portions of code with excessive memory
usage due to the presence of hyperactive objects, trace the
real-time execution of a program and tune and profile
the code. All these features are very important when it
comes to improving the efficiency of a program because
they tend to reduce the performance of a processor.
GlowCode’s unrivalled speed enables programmers to
rectify errors early, thereby proving an easy and quick
solution to the construction of an error-free code. With
a proactive development environment, GlowCode helps
to keep any algorithm clear of bottlenecks. GlowCode
9 can profile code built using C, C++, or C# in Visual
Studio 2013, as well as all 32-bit or 64-bit code written
in any .NET Framework-supported language. GlowCode
is the only tool that has been experimentally found to
be able to handle large unmanaged processes directly at
some test systems. It is a very user-friendly product since
it can remove all of the endless hours of guesswork by
identifying where the performance bottlenecks are. Most
of the world renowned companies like Siemens, IBM,
Hewlett Packard, Google, etc. test all of their code using
GlowCode.

4.5 PIN
PIN is an instrumentation framework used for creation

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology6

A Survey of Performance Analysis Tools for OpenMP and MPI

of dynamic performance analysis tools22. There are three
types of routines that form the base of this framework –
instrumentation routines, analysis routines and call back
routines. Instrumentation routines allow for the insertion
of analysis routines whenever a code that is yet to be
debugged is about to be executed23. Call back routines are
only called when a certain event has occurred or specific
conditions have been encountered24. PIN makes use of an
API at different abstraction levels ranging from a single
instruction to a complete binary module. It also supports
call backs for events such as system calls, library loads and
thread creation events. The working mechanism of PIN
is based on taking control of the program as soon as it is
loaded into the memory25. This is performed by the Just-
In-Time (JIT) compiler, which recompiles small sections
of the binary code. Advanced instructions to carry out real
time analysis are then added to the recompiled code by the
PIN tool. Finally, different optimization techniques are
used to obtain the minimum possible overhead memory
use, thereby leading to the most efficient running time.

4.6 Intel VTune Amplifier
Intel VTune Amplifier is a commercial performance
analysis tool for Linux and Microsoft Windows operating
systems. It comes with both GUI and command line
interfaces and can be availed either as a standalone
software or as a component of the Intel Parallel Studio
package. It requires an CPU manufactured by Intel
for its proper functioning. and can be used in various
kinds of code profiling such as stack sampling, hardware
event sampling and thread profiling26. The profiler
provides the user with essential information such as
the time spent in each sub routine, which enables one
to identify the performance bottlenecks. The tool can
be also used for the analysis of the performance of the
respective threads27. It includes several features like
software sampling, JIT profiling support, locks and waits
analysis, threading timeline, source view, Hardware
Event Sampling (HES) and Performance Tuning Utility
(PTU). Software sampling gives the locations of where
stack is called. Locks and waits analysis searches for
synchronization delays arising due to underutilization
of cores and removes the cluster of data formed during
application startup leading to performance issues. JIT
profiling support analyzes dynamically generated code.
Threading timeline identifies the relationships between
various threads in order to eliminate load balancing issues.

Source view helps in viewing the sampling results line by
line on the source code. Using the on-chip performance
monitoring unit of an Intel processor, HES searches for
cache misses and branch mispredictions which can lead
to stalls. PTU helps VTune Amplifier XE users to identify
memory hotspots by giving them access to experimental
tuning technology. Whether one is amateur who is just
into performance tuning or a professional dealing with
advanced optimization issues, Intel VTune Amplifier
provides all it users with a rich set of performance
insight into the parallel computing performance of GPU
along with scalability, bandwidth, caching and much
more. Analysis is much quicker and easier using VTune
Amplifier because it understands common threading
models and presents information at a higher level which
is easier to interpret.

5. Conclusion

Parallel programming has presented itself as a challenge
for programmers. Although a number of high-level
programming tools are available to facilitate this process,
it is at no point a simple task. The more efficient parallel
algorithm, the more complex is the task. The goal of this
study is to help the user to choose the best available PAT
in the market to suit his needs. It can be inferred from
the analysis that programming in MPI offers the best
performance in the field of shared memory programming.
On the other hand, programming with OpenMP provides
a more comfortable solution because of the global style
of the resulting program as it supports sequential control
among the parallel loops with which all programmers are
usually comfortable. However, to ensure greater efficiency,
the programmers must also be experts in the field of
performance analysis in order to analyze the potential
performance problems and their severity. In addition,
they also need to have a good knowledge about complex
user interfaces. Through the comparison and analysis of
the PATs, we aim to show how one can choose the best
tool when designing a parallel programming system.

6. References
1.	 Chanthini P, Shyamala K. A survey on parallelization of

neural network using MPI and Open MP. Indian Journal of
Science and Technology. 2016 May; 9(19). DOI: 10.17485/
ijst/2016/v9i19/93835.

https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Software_performance_analysis
https://en.wikipedia.org/wiki/Software_performance_analysis
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Command_line
https://en.wikipedia.org/wiki/Intel_Parallel_Studio
https://en.wikipedia.org/wiki/Stack-based_memory_allocation

J. Sairabanu, M. Rajasekhara Babu, Arunava Kar and Aritra Basu

Vol 9 (43) | November 2016 | www.indjst.org Indian Journal of Science and Technology 7

2.	 Kalyani R. Application of multi-core parallel programming
to a combination of ant colony optimization and genetic al-
gorithm. Indian Journal of Science and Technology. 2015
Jan; 8(S2). DOI: 10.17485/ijst/2015/v8iS2/59091.

3.	 Browne S, Dongarra J, London K. Review of performance
analysis tools for MPI parallel programs. NHSE Review.
1998 Jan; 3(1):241–8.

4.	 Moore S, Cronk D, London K, Dongarra J. Review of per-
formance analysis tools for MPI parallel programs. Recent
Advances in Parallel Virtual Machine and Message Passing
Interface Springer Berlin Heidelberg; 2001 Sep 23. p. 241–8.

5.	 Mohsen MS, Abdullah R, Teo YM. A survey on perfor-
mance tools for OpenMP. Proceedings of the World Acad-
emy of Science, Engineering and Technology. 2009 Jan 20;
3(1):102–13.

6.	 Dagum L, Enon R. OpenMP: an industry standard API
for shared-memory programming. Computational Science
and Engineering. 1998 Jan; 5(1):46–55.

7.	 Rabenseifner R, Hager G, Jost G. Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes.
17th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing, Weimar; 2009 Feb
18. p. 427–36.

8.	 Sato M. OpenMP: Parallel programming API for shared
memory multiprocessors and on-chip multiprocessors.
Proceedings of the 15th International Symposium on Sys-
tem Synthesis; 2002 Oct 2. p. 109–111.

9.	 Gropp W, Lusk E, Doss N, Skjellum A. A high-perfor-
mance, portable implementation of the MPI message pass-
ing interface standard. Parallel Computing. 1996 Sep 30;
22(6):789–828.

10.	 Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ,
Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine
A, Castain RH. Open MPI: Goals, concept, and design of
a next generation MPI implementation. Recent Advances
in Parallel Virtual Machine and Message Passing Interface,
Springer Berlin Heide; 2004 Sep 19. p. 97–104.

11.	 Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M,
Mickler H, Müller MS, Nagel WE. The vampir performance
analysis tool-set. Tools for High Performance Computing,
Springer Berlin Heidelberg; 2008. p. 139–55.

12.	 Brunst H, Winkler M, Nagel WE, Hoppe HC. Performance
optimization for large scale computing: The scalable VAM-
PIR approach. Computational Science-ICCS, Springer Ber-
lin Heidelberg; 2001 May 28. p. 751–60.

13.	 Müller MS, Knüpfer A, Jurenz M, Lieber M, Brunst H, Mix
H, Nagel WE. Developing scalable applications with vam-
pir, VampirServer and VampirTrace. PARCO; 2007 Sep 15.
p. 637–44.

14.	 Brunst H, Kranzlmüller D, Nagel WE. Tools for scalable
parallel program analysis-vampir NG and Dewiz. Distrib-
uted and Parallel Systems Springer US; 2005. p. 93–102.

15.	 Brunst H, Hackenberg D, Juckeland G, Rohling H. Com-

prehensive performance tracking with vampir 7. Tools for
High Performance Computing Springer Berlin Heidelberg;
2010. p. 17–29.

16.	 Mohr B, Brown D, Malony A. TAU: A portable parallel pro-
gram analysis environment for pC++. Parallel Processing:
CONPAR 94—VAPP VI, Springer Berlin Heidelberg; 1994.
p. 29–40.

17.	 Mohr B, Brown D, Malony A. TAU: A portable parallel pro-
gram analysis environment for pC++. Parallel Processing:
CONPAR 94—VAPP VI, SpringerBerlin Heidelberg. 1994.
p. 29–40.

18.	 Mohr B, Malony AD, Shende S, Wolf F. Zentralinstitutfür
Angewandte Mathematik; The Journal of Supercomputing.
2002; 23(1):105–28.

19.	 Shende SS, Malony AD. The TAU parallel performance sys-
tem. International Journal of High Performance Comput-
ing Applications. 2006 May 1; 20(2):287–311.

20.	 Reed DA, Aydt RA, Madhyastha TM, Noe RJ, Shields KA,
Schwartz BW. An overview of the Pablo performance anal-
ysis environment, Technical Report, Department of Com-
puter Science, University of Illinois, Urbana-Champaign;
1992 Nov 7. p. 1–45.

21.	 De Rose LA, Reed DA. Svpablo: A multi-language archi-
tecture-independent performance analysis system. 1999 In-
ternational Conference on Parallel Processing, Aizu Waka-
matsu City; 1999. p. 311–18.

22.	 Bach M, Charney M, Cohn R, Demikhovsky E, Devor T,
Hazelwood K, Jaleel A, Luk CK, Lyons G, Patil H, Tal A.
Analyzing parallel programs with pin. Computer. 2010
Mar; 43(3):34–41.

23.	 Reddi VJ, Settle A, Connors DA, Cohn RS. PIN: A binary
instrumentation tool for computer architecture research
and education. Proceedings of the 2004 Workshop on Com-
puter Architecture Education: held in conjunction with the
31st International Symposium on Computer Architecture
USA; 2004 Jun 19. p. 1–22.

24.	 Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G,
Wallace S, Reddi VJ, Hazelwood K. Pin: Building custom-
ized program analysis tools with dynamic instrumentation.
Acmsigplan Notices. 2005 Jun 12; 40(6):190–200.

25.	 Patil H, Pereira C, Stallcup M, Lueck G, Cownie J. PinPlay:
A framework for deterministic replay and reproducible
analysis of parallel programs. Proceedings of the 8th annual
IEEE/ACM International Symposium on Code Generation
and Optimization, NY; 2010 Apr 24. p. 2–11.

26.	 Tousimojarad A, Vanderbauwhede W. Comparison of three
popular parallel programming models on the Intel Xeon
Phi. Euro-Par 2014: Parallel Processing Workshops Spring-
er International Publishing; 2014 Aug 25. p. 314–25.

27.	 Marowka A. On performance analysis of a multithreaded
application parallelized by different programming mod-
els using intel vtune. Parallel Computing Technologies,
Springer Berlin Heidelberg; 2011 Sep 19. p. 317–31.

