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Abstract
Objectives: In this study, large amplitude e free vibration behavior of Euler-Bernoulli beam subjected to the nonlinear 
thermal loads and resting on a Pasternak foundation is investigated. Methods: The Hamilton’s principle is used to derive 
the beam governing partial differential equation of motion. By implementing the Galerkin’s method and applying the 
clamped-clamped boundary condition, the partial differential equation is converted to an ordinary nonlinear differential 
equation. Results: Because of the large coefficient of the nonlinear term, the Modified Homotopy Perturbation Method 
(MHPM) is used to solve the obtained equation. The effect of nonlinear thermal load on the system nonlinear vibration 
behavior is studied. Applications: The results show that although increasing the nonlinear thermal load coefficients 
decreases both linear and nonlinear frequency, but it increases the frequency ratio.

1. Introduction
Most of the physical phenomena and engineering 
problems occur in nature in the forms of nonlinear dif-
ferential systems. Many structures such as high-rise 
buildings, long span bridges and aerospace vehicles can 
be modeled as a beam and by increasing the amplitude 
of oscillations, the governed equation of motion can be 
obtained as a nonlinear ODE. The common techniques 
for constructing the analytical approximate solutions to 
the nonlinear oscillator equations are the perturbation 
methods. Some well-known perturbation methods are 
the Krylov Bogoliubov Mitropolskii (KBM)1–5 method, 
the Lindstedt-Poincare (LP) method6–8 and the method of 
multiple time scales9. All of these classical perturbation 
methods are based on assuming a small parameter which 
exists in the equation. In10 has investigated the homo-
topy perturbation technique. In another paper, in11 has 
developed a coupling method of a homotopy perturba-

tion technique and a perturbation technique for strongly 
nonlinear problems. Recently, in12 has also presented a 
new interpretation of homotopy perturbation method 
for strongly nonlinear differential systems. In13 proposed 
a new perturbation technique to solve the nonlinear 
un-damped Duffing equation in which the maximum 
relative error at the first order approximation is less than 
7%. In14 presented a method called MHPM which can 
solve strongly nonlinear problems more accurately. They 
show that the maximum relative error at the first order 
and second order of MHPM is less than 2.22% and 0.03%, 
respectively. Newly, in15 studied nonlinear free vibration 
of laminated composite thin beams on nonlinear elastic 
foundation with elastically restrained against rotation 
edges by Differential Quadrature (DQ) approach. They 
developed a finite element program to verify the results 
of the DQ approach and also they studied the effects of 
different parameters on the ratio of nonlinear to linear 
natural frequency. In16 investigated the large amplitude 
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free vibration of a doubly clamped micro beam. They 
used Hamilton’s principle for deriving the partial differ-
ential equation of motion. Then, they used the method of 
multiple scales to determine a second-order perturbation 
solution for their obtained nonlinear ODE. As described 
classical perturbation techniques like as multiple scales 
method strongly rely on the assumption of the small 
parameter. However, as mentioned, the coefficient of the 
nonlinear term in the governing equation of the beam 
motion is so large therefore the classical perturbation 
techniques wouldn’t lead to a valid solution. In this paper 
the large amplitude free vibration behavior of the beam 
with the clamped-clamped ends, resting on a Pasternak 
foundation and subjected to nonlinear thermal load, is 
investigated. Moreover, the effect of Pasternak foundation 
is considered in calculating the Lagrangian. To this end, 
first the Hamilton’s principle is used to derive the partial 
differential equation of the beam response. Then imple-
menting the Galerkin’s method under the mentioned 
boundary condition, the partial differential equation is 
converted to an ordinary nonlinear differential equation. 
Since, the nonlinear coefficient is large, so the MHPM 
is carried out to solve the obtained nonlinear ODE. It 
is assumed that only the fundamental mode is excited. 
Comparison between second order approximation of the 
MHPM and available results in the literature show that 
a second order approximation of the MHPM leads to a 
highly accurate solution that is valid for a wide range of 
vibration amplitudes.

2. Equation of Motion
A schematic of Euler-Bernoulli beam with a length of L , 
cross-sectional area of A , density of r , area moment of 
inertia of I and the elasticity modulus of E , resting on 
a Pasternak foundation, is shown in Figure 1.The strain-
displacement relations for a beam undergoing large 
deflections are as17:
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Whereu is the longitudinal displacement, w is the 

lateral displacement, and x is the longitudinal coordi-
nate. Neglecting the axial inertia, the strain energy (U ) 
and the kinetic energy (T ) of the beam is given by:
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Where 1k  and 2k are linear and nonlinear foundation 

stiffness, respectively.
Employing the Hamilton’s principle, the 

governing equations including the effects of  
mid-plane stretching for Euler-Bernoulli beam is given 
by:
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By integrating Equation (4) and substituting the result 
into Equation (5), one obtains the equation of motion as:

						           (6)
24 2 2 2

3
4 2 2 20

d 0
2

r
 ∂ ∂ ∂ ∂ ∂ + − + + + =   ∂ ∂ ∂ ∂ ∂  
∫

L

Th L NL
w w EA w w wEI F x k w k w A
x x L x x t

Where ThF the nonlinear thermal force is due to the 
nonlinear thermal stress. The conductivity of any material 
is reciprocal of its resistance and is denoted as 1α = D 
where Dis the resistivity of the material. The relation 
between the temperature rising value, T∆ , and the resis-
tance is considered as:

0 0 T= + α∆D D D 				       (7)
Where 0D  is the resistance at room temperature. Thus, 

the temperature and the resistivity of material are depen-
dent. The nonlinear thermal force is defined as 18:

2 2a a= ∆ + ∆hThF EA T A T 		       (8)
where:

2 2
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In the above equation, 1h , 2h , 3h  are Murnaghan’s 
constants and ν  is Poisson’s ratio.

The dimensionless quantities are defined as:
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Wherew  is the linear natural frequency of the beam 
with clamped-clamped boundary condition. Substitution 
of Equation (10) into Equation (6) and using the chain 
rule for differentiation yields:
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Where /r I A=  is the radius of gyration of the 
beam cross-section.

The solution of Equation (11) can be assumed as 
ˆ ˆˆ ˆ ˆ( , ) ( ) ( )w x t x q tf=  where ˆ( )xf is the mode shape 

of the beam. For the clamped-clamped beam ˆ( )xf is as 
follows19
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Using the Galerkin’s method and multiplying both 

sides of Equation (11) by ˆ( )xf  and integrating over the 
interval of [0,1] results in:
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After some mathematical manipulations one obtains:
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Where 2
0w  and e  are:
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Equation (14) is the differential equation of motion 
governing the nonlinear vibration of the beam. It is 
assumed that the initial conditions are: 

(17)( ) ( )00 0 0maxwq a , q
L

= = =�

Where maxw denotes the beam maximum deflection.

There are different methods to solve Equation (14). 
However, most of these methods don’t result in a valid 

solution for the strongly nonlinear cases ( )1e > . The 

nonlinear term coefficient,e is dependent on the beam 
parameters as well as the boundary conditions. For the 
beam with the characteristics given in Table 1, e  is very 
large when compared with unity. For instance, for the 
clamped-clamped beam, 4130e = . Therefore, the tra-
ditional perturbation methods which are based on the 
small parameter,e , didn’t lead to a valid expansion for 
the solution. In this paper the MHPM is used to obtain 
the beam response for 0 ≤ < ∞e .

Table 1. The characteristics of the beam

3.9 ( )b mm

6.4 ( )h mm

485 ( )L mm

7860 ( )3kg mρ

190 ( )E GPa

1.2e-5 ( )1K−α

-140E (GPa)h
0.3 ν

L

b
h

Figure 1. A clamped-clamped beam resting on a Pasternak 
foundation.

3. The system response with the 
MHPM 
Perturbation methods have many limitations for solving 
and analyzing the behavior of strongly nonlinear sys-
tems. As described above to use perturbation techniques, 
the coefficient of the nonlinear term should be smaller 
than unity. In recent years, some methods are proposed 
to overcome this limitation. For example in20, proposed 
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the modified Lindstedt-Poincare method. In this paper 
more accurate method called the Modified Homotopy 
Perturbation Method (MHPM) is applied to solve the 
mentioned strongly nonlinear equation. Based on the 
MHPM, the first order approximate solution is:

(18)( ) ( )
3

20
0 2cos cos3 cos ( )

32
aq a oet t t t e= Ω + Ω − Ω +
Ω

Where, Ω  is the first order nonlinear frequency and 
its value is as:

(19)2 2
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Consequently, the present first order approximate 
solution gives exactly the same result as the standard 
Lindstedt-Poincare method21. 

Also the second order approximate solution becomes 
as:
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Where, Ω  is the second order nonlinear frequency as:
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According to Equations (20) and (21), the period of 
free oscillations reads:

2T p=
Ω

                				       (22) 

By qualitative analysis of conservative systems and 
integrating the level curve in phase plane for a given total 
energy level, Nayfeh obtained the exact value for the sys-
tem period. After some manipulations he reached the 
system period as:
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It is worth noting that the period of the first order 
approximate solution of the Variational Iteration Method 
(VIM) is22:
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The maximum relative error of the system period (

( )%RE ) becomes as follows:

( )% lim 100ex
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In present study, the beam characteristics are consid-
ered as given in Table 1. 

4. Results and Discussion
According to Equations (21) to (25), the maximum rela-
tive error for the first and the second order approximation 
via the MHPM and the first order approximation through 
the VIM are 2.22% , 0.03% and 4.1% , respectively. As 
it is seen, the second order approximation of the MHPM 
is more accurate than the others. Also the VIM is too 
cumbersome for high order approximations and its accu-
racy is very low in compared with the MHPM. Table 2(a) 
shows the comparison of the no dimensional nonlinear 
natural frequency obtained through the present study, 
other methods and those reported in the literature for 
various values of vibrational amplitudes. Table 2(b) shows 
the comparison for the large values of vibrational ampli-
tudes23–27. According to Table 2(a), there is an excellent 
agreement between the results obtained from the second 
order approximation of the MHPM and the exact solu-
tion. Moreover, to find the value of nonlinear frequency, 
the MHPM is more accurate and simpler solution than 
those available in the literature. From Table 2(b), it can 
be observed that there is a good agreement between the 
results obtained from the MHPM and the exact solution 
for the large values of vibrational amplitudes. In Figure 2 
to Figure 4 indicate the responses of a clamped-clamped 
beam for various values of vibrational amplitudes. These 
figures reveal that the second order MHPM follows the 
RK45 for wide range of t  with a good accuracy. Figure 
5 shows the responses of the beam for various values of 
increased temperature. As it can be seen from this figure, 
by raising the room temperature, the nonlinear frequency 
decreases because of strong preload in the beam. Figure 6 
and Figure 7 illustrates the effect of the increased temper-
ature, ∆T , on nonlinear fundamental natural frequency 
and the frequency ratio, respectively. As Figure 6 reveals, 
increasing the room temperature decreases the nonlin-
ear natural frequency of the beam. Moreover, an increase 
in the vibration amplitude increases the fundamental 
natural frequency. This leads to the fact that by increas-
ing the excitation amplitude, the nonlinearity dominates 
and the effect of increased temperature on the nonlinear 
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frequency becomes more significant. As it can be seen 
from Figure 7, with increasing the room temperature, the 
frequency ratio decreases. Although an increase in room 
temperature decreases both nonlinear natural frequency 
and frequency ratio, but as these figures show, its effects 
on decreasing the linear natural frequency is more than 
nonlinear one.

Table 2. Comparing the nondimensional nonlinear 
frequency obtained via:
(a) Different methods and those reported in the literature for 
the small values of 2

0ae
2
0ae Solving Method

2.25 1 0.25
1.6257 1.3178 1.0892 Exact solution
1.6519 1.3277 1.0903 VIM
1.6394 1.3229 1.0897 First order MHPM
1.6256 1.3178 1.0892 Second order MHPM
1.6394 1.3229 1.0897 Azrar23

1.6393 1.3228 1.0897 HPM 24

1.6394 1.3229 1.0897 Qaisi25

1.6394 1.3229 1.0897 Ritz Method26

(b) Different methods for the large values of 2
0ae

Nondimensional Nonlinear Frequency
2
0aeSecond order of 

present study
First order of 
present study

VIM Exact 
solution

1.3178 1.3229 1.3277 1.3178 1
2.8661 2.9155 2.9579 2.8667 10
8.5311 8.7178 8.8739 8.5336 100
26.8025 27.4044 27.9060 26.8107 1000

Figure 2. The responses obtained by the MHPM and RK45 
method for the clamped-clamped beam.

Figure 3. The responses obtained by the MHPM and RK45 
method for the clamped-clamped beam.

Figure 4. The responses obtained by the MHPM and RK45 
method for the clamped-clamped beam.

Figure 5. The responses of the beam by the MHPM for 
various values of increased temperature.

5. Conclusion
In this paper, large amplitude free vibration behavior of 
Euler-Bernoulli beam, corresponding to the first spa-
tial mode and subjected to the nonlinear thermal loads 
is investigated. The boundary conditions are assumed 
doubly clamped and the beam was rested on a Pasternak 
foundation. Considering the effects of mid plane stretch-
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ing and implementing the Hamilton’s principle and the 
Galerkin’s method, the beam governing equation of 
motion is derived. Because of the large coefficient of the 
nonlinear term, the Modified Homotopy Perturbation 
Method (MHPM) is used to solve the obtained equation. 
Comparison among the frequencies obtained by the first 
and the second order MHPM, the VIM, the exact solu-

tion and those reported in the literature demonstrates 
the high accuracy of the second order MHPM. Moreover, 
the comparison between the time responses of the men-
tioned system obtained by the MHPM and the numerical 
technique shows the high accuracy of the second order 
MHPM. The effect of nonlinear thermal load on the sys-
tem nonlinear vibration behavior is studied. The results 
show that although increasing the nonlinear thermal 
load coefficients decreases both linear and nonlinear 
frequency, but its effect on decreasing the linear natural 
frequency is more dominant. Also, the time responses 
show that by raising the room temperature, the nonlin-
ear frequency decreases because of strong preload in the 
beam.
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