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Abstract
In the current high speed, low power VLSI Technology design, Built in Self Test (BIST) is emerging as the most essential 
part of System on Chip (SoC). The industries are flooded with diverse algorithms to test memories for faults. The March 
based algorithms are become popular so quickly for locating faults in memories. This research study attempt to design the 
memory BIST controller for March 17N as selected algorithm.  It tests various memories for faults. A simple architecture is 
implemented in Verilog Hardware Description Language (HDL), which can be easily integrate with SoC and is able to locate 
the fault location in the semiconductor memories. Integration of memory BIST controller in SoC design improves chip yield. 
The design has achieved 497.47MHzof maximum frequency by use of only 158 slice LUTs on Virtex-7 Field Programming 
Gate Array (FPGA) device. The proposed memory BIST controller is suitable for SoC integration to test various memories 
at high speed with very low area overhead.

1.  Introduction
Embedded memories in Integrated circuit and System on 
Chip (SoC) play a vital role. In 1981, an industry leader 
was rumored to have said, “Nobody will need more than 
640 KB of RAM”1.  But it would never be enough and 
even after more than three decades nobody can assure 
that the requirement of memories in IC is limited. The 
popularity and requirement of embedded memories are 
drastically increases since 1970s to present and expecting 
to continue in the future.

Now a days, semiconductor memories are extensively 
used to store huge volume of data in almost all digital 
systems. for example, latest smart cell phones, weather 
forecasting wrist watches are uses large amount of data.
According to a survey conducter by a well known Semi-
conductor Industry Association (SIA). In 1999, 20 percent 
area of SoC are occupied by memories while in 2005 it was 
71 percent. They had expected that it will be reached to 94 

percent till 2014. The International Technology Roadmap 
for Semiconductors (ITRS) report is available for public2,3 

to track the survey. This suvey report is graphically repre-
sented in Figure 1. 

Figure 1.  Area occupied by memories in SoC.
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The density in the IC increases, it results in the com-
plex systems. The complexity in the system introduces 
physical and mechanical defects and increases the test 
complexity and cost of SoC. Test cost of embedded mem-
ory is increases with an exponential increase in density. 
Shrinking in feature size of the components introduces 
the sensitivity to fault deeply. Faults become more com-
plex and thus testing cost of memories become larger 
than manufacturing cost of memories and System-on-
Chip (SoC) behaves as a memory dominant chip.

Testing/diagnosing of embedded memories in SoC 
quickly becomes a real challenge and start affecting 
directly to the chip yield4. In respond to this challenge, 
the embedded memory self-test designs have introduced, 
and many Built-in-Self-Test algorithms5 have developed 
to improve the total chip yield. As compare to the conven-
tional method, uses Automatic Test Equipment (ATE) for 
testing memories this method is more cost effective and 
efficient. Therefore self testing algorithms are widely used 
in embedded memory testing.

Thus, Effective memory diagnostics and failure analy-
sis methodologies help in enhancing the yield of SoC 
products, especially with fast revolution in new product 
development and advanced process technologies4. Gen-
erally memory BIST designs are fixed and cannot be 
changed once committed to silicon. Therefore, it must be 
ensure that the test algorithm used should provide high 
level of fault coverage. This will insure catching of all pos-
sible faults before committing to silicon. 

This paper focuses to the algorithms used for test-
ing memories in SoC and faults coverage through them. 
March based algorithms6 have a wonderful solution 
for this scenario. As per comparison of various March 
algorithms7, on the basis of fault coverage and error 
free memory assurance, the March 17N algorithm8 has 
chosen in this research. This paper implemented March 
17N algorithm for high speed and low area performance. 
The memory BIST controller architecture has designed 
and tested on Field Programmable Gate Array (FPGA) 
device9. The results obtained by selecting the device fam-
ily Virtex 7 and Target Device xc7vx330t-3-ffg1157, as the 
strategy adopted in paper10.

2.  MBIST Principle
MBIST principal11 is shown in Figure 2. This block dia-
gram consists of memory BIST controller (BIST pattern 
generator) and memory model. The BIST controller has 

two output shows the test accomplishment signals (tst_
done) and test pass/fail signal (fail_h). After test ends, 
tst_done become ‘1’. And If the test done without any 
error(pass) fail_h is set ‘0’, otherwise ‘1’(fail). With this 
MBIST controller principle, the memories can be tested 
externally.

Figure 2.  Memory BIST Principle.

3. Algorithm
To implement the Memory Built-in- self-test controller 
the algorithm is chosen to test the memories in SoC is 
March 17N algorithm8 illustrated in Figure 3. 

⇑ (w0); ⇑ ( r0,w1,r1); ⇑ (r1,w0,r0); ⇑ (r0,w1); 

⇓ (r1,w0,r0); ⇑ (r0); ⇓ (r0,w1,r1); ⇑ (r1); 

Figure 3.  March 17N Memory BIST algorithm.

The notations used in Figure 3 are explain in Table 1. The 
March algorithm consists of several March elements, sepa-
rated by semicolon. The up-arrow stand for ascending order 
of the address sequence, down-arrow stands for descend-
ing order. Inside the parenthesis is the specification of read 
writes operation and the corresponding data background. 
These read-write operations are to be applied to each ad-
dress, one by one, following the address order in front of the 
parenthesis.

Table 1.  Notation of March17N Algorithms

Operation Description
⇑ address 0 to address max

⇓ address max to address 0
w0 write 0
w1 write 1
r0 read a cell whose value should be 0
r1 read a cell whose value should be 1
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All operations inside the parenthesis have to perform 
before we proceed to the next address. We use the March 
signature to represent the results from all operations in 
the test algorithm, which are either correct (represented 
by 0) or incorrect (represented by 1).

We assume here that only the read operation can 
detect the failure. For some special memories, however 
write-through and write-verify operations can also detect 
the error.

4. Architecture
The March 17N memory bist controller architecture 
consists of three different blocks, memory bist registers 
block, memory bist state machine block and external 
memory block shown in Figure 4. Memory bist registers 
block consist of two registers internally, BIST kickoff and 
bist status. Each of these blocks is designed separately 
using an HDL code and then verified individually. After 
the satisfactory implementation of all the blocks, these 
blocks are integrated to perform the memory diagnosis 
operation.

Figure 4.  Memory BIST Controller Architecture.

4.1  Register Block
Registers are normally measured by the number of bits 
they can hold, for example, an “8-bit register” or a “32-
bit register”. Registers are now usually implemented as a 

register file, but they have also been implemented using 
individual flip-flops, high-speed core memory, thin film 
memory, and other ways in various machines.

4.1.1  BIST Kickoff Register
It is a 32 bit register with address 32`h0; here it is used as 
an input register under read/write mode. The register bits 
are assigned shown below in the Table 2.

Table 2.  BIST Kickoff Register

Register bit  Bit 
position

Mode Description

BIST_MEM-
ORY_ID

[31:30] Read / 
Writable

Selection of mem-
ory for performing 

the operation.
[29:25] Reserved

BIST_
BROADCAST

[24] Read/
Writable

Performs opera-
tions to all the 

memories. 
[23:17] Reserved

BIST_RESET 16 Read / 
Writable

Reset bist state 
machine

[15:7] Reserved
FORCE_
BIST_ERROR

8 Read / 
Writable

Force bist error 
inserts errors 

while performing 
write operations in 
memory bist state 

machine.
[7:4] Reserved

BIST_HALT_
ON_ERROR

3 Read / 
Writable

If it programmed 
at failoccured, 

memory bist state 
machine will halt.

BIST_
RESUME

2 Read / 
Writable

Resume memory 
bist state machine, 

if a fail occurs.
BIST_STOP 1 Read / 

Writable
Stop memory bist 

state machine
BIST_START 0 Read / 

Writable
Kick off memory 

bist
State the machine.

4.1.2  BIST Status Register
It is a 32 bit register with address 32`h1, here it is used as 
an output register under read only mode. The register bits 
are assign as given below in the Table 3.
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Table 3.  BIST Status Register

Register bit Bit 
position

Mode Description

BIST_FAIL_
MEMORY_ID

[31:30] Read 
-only

Selection of Memory 
for Performing Mem-
ory BIST Operation.

[29:28] reserved
BIST_FAIL_
ADDR

[27:16] Read 
–only

If fail occurred it 
display fail address.

[15:12] Reserved
 BIST_FAIL_
ERR_POS

[11:7] Read-
only

It display the error 
position at fail 

address.
[6:3] Reserved

BIST_FAIL 2 Read 
-only

Fail MBIST State 
machine.

BIST_PASS 1 Read 
-only

Pass  Memory BIST 
State Machine

BIST_DONE 0 Read 
only

Finish the opera-
tions of MBIST State 

Machine.

4.2  Memory BIST State Machine
To kick off the state machine, bist_start bitis pro-
grammed in BIST_KICKOFF Register. It will trigger 
the state machine, and it starts performing March 17N 
Memory BIST algorithm. It starts performing Write zero, 
read zero, write one, and read one operation as described 
in algorithm. The operation of the state machine is 
explained by Algorithmic State Machine (ASM) chart 

shown in Figure 5. Controller select memory by reading 
memory id signal and starts MBIST operations. Display 
all information in the status register if fail occurs else 
jump to the next location and complete operation. Each 
of the set of operations in the parenthesis is perform in 
a state. There are eight different kind of read and write 
operations required to perform as part of the Memory 
bist algorithm.

Figure 6.  Memory BIST State Diagram.

The state Machine shown in Figure 6 consists of fol-
lowing states:

1.	 ST_IDLE
2.	 ST_1_W0_A
3.	 ST_2_R0W1R1_A
4.	 ST_3_R1W0R0_A
5.	 ST_4_R0W1_A
6.	 ST_5_R1W0R0_D
7.	 ST_6_R0_A
8.	 ST_7_R0W1R1_D
9.	 ST_8_R1_A
10.	ST_STATUS

The Memory BIST State machine waits in ST_IDLE 
State until bist_reset deactivate, waiting for bist_start to 
programmed in Bist_Kickoff_Register. As soon as bist_
start is programm, the state machine jumps to ST_1_
W0_A state and starts writing zeros from address 0 to 
max address in ascending order. It will be in this state till 

Figure 5.  Memory BIST Algorithmic State Machine 
(ASM) Chart.
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it performs the write operation to the overall memory.
Then it jumps to the next state ST_2_R0W1R1_A and 
starts reading zeros, writing ones, and reading zeros oper-
ation at each address location. After performing read it 
compares against the expected values if comparison mis-
matches, it jumps to ST_STATUS state. While jumping to 
this state it also provides information like bist_comp_fail, 
bist_fail_address, bist_fail_mem_id, bist_fail_err_pos 
and the appropriate state information (state_info). 

If bist_stop is programm anytime during the running 
of Memory BIST operation. It jumps to ST_STATUS 
State, asserts bist_done on the next clock cycle, checks the 
bist_fail_counter and asserts bist_pass or bist_fail along 
with error information in Bist_Status_Register.

In ST_STATUS, it latches the information (like 
bist_comp_fail, address, err_pos and mem_id) it got 
from the earlier state into the Bist_Status_Register, and 
it also increments a bist_fail_counter in this state. If 
bist_halt_on_error programmed the time when memory 
BIST was kicked off by bist_start, it waits in this state for 
bist_resume or bist_stop. If it gets a bist_stop signal. It 
asserts bist_done on the next clock and jumps back to 
ST_IDLE state and wait for bist_start; If it gets a bist_
resume in this state it clears all the error information in 
BIST_STATUS_REGISTER and jumps back to the state 
(state_info) from where it arrived and starts performing 
Memory BIST operation from the next address into the 
memory.

If bist_halt_on_error is not programm when memory 
BIST was kicked off, while doing memory BIST opera-
tion. Whenever it gets any failure, it jumps to ST_STATUS 
state, latches all the error information into the Bist_Sta-
tus_Register, increments the bist_fail_counter and jumps 
back to the state from where it arrived (state_info), irre-
spective of whether it gets bist_resume or not.

After coming back to the earlier state. The state 
machine continues performing Memory BIST Operation 
to the rest of the memory and jumps to the next state, 
if it gets any error in the consecutive states; it jumps to 
ST_STATUS state and performs the same operation 
described earlier. When the state machine has done all the 
operations in the last Memory BIST state (ST_8_R1_A), it 
jumps to ST_STATUS State and asserts bist_done to indi-
cate completion of Memory BIST Operation. Here in the 
state if bist_fail_counter is non-zero it asserts bist_fail and 
appropriate last error information in Bist_Status_Register 
along with bist_done, to signify Memory BIST Operation 
failed. If bist_fail_counter is zero then, it asserts bist_pass 

and bist_done in Bist_Status_Register to signify Success-
ful Completion of Memory BIST.

The Memory BIST Operation is perform onto the 
memory whose id is programmed in bist_mem_id in 
Bist_Kickoff_Register. While programming bist_start, 
if bist_broadcast is programm, the state machine will 
trigger memory BIST for each memory one after the 
other in a sequential fashion. When bist broadcast is 
programm, then after completion of memory BIST for 
each memory (bist_done), the status gets updated in 
Bist_Status_Register.

In Non-broadcast mode, irrespective of bist_halt_on_
error, bist_fail_counter signifies the number of errors 
encountered in that appropriate memory while perform-
ing Memory BIST. But in broadcast mode. The only indi-
cation we get is the appropriate memory id’s, Memory 
BIST Passed/failed, we won’t get any information on no 
of failures (bist_fail_counter) occurred during memory 
BIST for each memory.

Memory BIST Kick off can only be possible for any 
of the single memory within the group of memory, or in 
broadcast mode, all the memories are selected for Mem-
ory BIST one after the other. There is no option of select-
ing any intermediate sequence or any in between number 
of memories for Memory BIST in the current Implemen-
tation of Memory BIST.

Similarly, when bist_force_error is program while kick-
ing off Memory BIST, it forces the state machine to insert 
errors while writing data into the memory. The consecu-
tive read operation will land into an error. This bit is used 
for negative testing of Memory BIST State machine. All 
the signals of MBIST controller those are shown in Figure 
7 are explain in the Table 4.

Figure 7.  March 17N memory BIST signal diagram for 
fault diagnosis.
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Table 4.  Memory BIST controller

Signal Direction Width
(bits)

Description

bist_clk In 1 This is the Memory Bist clock input. All the internal state machines and hardware 
will get clocked with this clock.

bist_reset In 1 Asynchronous reset; will reset the memory Bist state machine, and internal 
hardware.

bist_start In 1 It will trigger the memory bist state machine. It will be reset by the state machine 
when bist_done is asserted.

bist_stop In 1 It is required to stop memory BIST state machine synchronously and display the 
status Pass/Fail.
When it activate SM assert bist_done on the next clock.

bist_halt_on_
error

In 1 When this bit is programmed, Memory BIST state machine will halt itself in case 
of BIST failure and latch the error information (bist error addr and bist_error_pos) 
onto the appropriate output pins. 

bist_resume In 1 This Input is required to resume BIST state machine, in case when halt_on_error is 
programmed.

bist_mem-
ory_id

In 2 The input bit [1:0] selects the memory from a group of 4 memories for performing 
memory BIST operation.

bist_broadcast In 1 This input selects all the memories one by one for performing Memory BIST 
Operation. 

bist_mem_
rd_data

In 32 (param 
eterized)

Memory Read data bus. The widths can be variable across the memories, this input 
has to be parameterized depending upon the width of the memories.

bist_force_
error

In 1 Insert error during Memory BIST Write Operation.

bist_pass Out 1 This output displays the successful operation of Memory BIST Operation.
bist_fail Out 1 This output signifies memory BIST failure. If halt on error is programmed Bist state 

machine will halt on failure and will stop if bist_stop is programmed and continue if 
bist_resume is programmed.

bist_fail_addr Out 12 (param 
eterized)

This fail address bus hold valid only when bist_fail is asserted. This fail address bus 
signifies the address of the memory where a comparison failure has occurred.

bist_error_pos Out 5 The value present on this four bit error_pos bus is valid only when bist_fail is 
asserted by the bist state machine. This 4 bit signifies the error bit position within 
the byte read.

bist_fail_
mem_id

Out 2 The value present on this four bit mem_id bus is valid only when bist_fail is asserted 
by the bist state machine. This 2 bit signifies the failed memory among a group of 4 
memories.

bist_done Out 1 This bit signifies the completion of Memory BIST Operation. Memory BIST pass/fail 
will be declared only when bist_done is high. 

bist_mem_wr Out 1 This is memory write enable signal. All the writes to the memory are only valid 
when this signal is high.

bist_mem_
wr_addr

Out 12 (param 
eterized)

This is memory write address.

bist_mem_wr Out 1 This is memory write enable signal. All the writes to the memory are only valid 
when this signal is high.

bist_mem_rd Out 1 This is memory read enable signal. Data on the read data bus is valid one clock cycle 
later after bist_mem_rd is asserted.

bist_mem_
rd_addr

Out 12 (param
eterized)

This is memory read address.TD Data red from this address.
Data read from this address.
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4.3  Memory Block Diagram
To test the design memory block is designed by writing an 
HDL code in Verilog, the schematic shown in Figure 8 is 
the considerable block of memory connected externally. 
In which wr_en is a write enable signal to the memory 
to starts the writing process in the memory, wr_addr is a 
signal vector of 10 bits that can locate up to 2^10 memory 
locations:

Once the memory module is designed it is simulated 
using simulation tool [MODELSIM] to generate the 
waveform that shows in results. After thorough simula-
tion, the memory module is synthesized using synthesis 
tool [Xilinx ISE] which generates the synthesis report.

Figure 8.  Memory Block.

5.  Experimental Results
MBSIT verification mainly targets the functional correct-
ness of the mbist controller. The simulation is based on 
March 17N algorithm.

5.1  MBIST Controller Working Mode 
Simulation
MBSIT controller simulation is carried out by mentor 
graphics tool ModelSimsimulator. Figure 9 is the simula-
tion waveform of module mbist_top. The kick_off register 
is used as an input register under read/write mode. bist_
start signal is used to kick off memory BIST controller. 

bist_resume is used to resume MBIST Controller,if fail 
occurs. And bist_stop is used to stop memory BIST 
operation. The bist_status register is used to store the 
result of the test, where bist_pass indicate MBIST test 
pass, bist_fail indicate MBIST test fail. bist_done indicate 
completion of the test. In this simulation writing /read-
ing in various location of memory is shown in Figure 6. 
Four memory blocks with same data depth are tested by 
MBIST controller and test is serial. After the bist_done is 
set ‘1’ test ends with fail/pass status, in the status register.

Figure 9.  The Simulation waveform of module mbist_top.

5.2  Mbist Testing Period Analysis

Equation (1) gives the test period of March 17N 
Cycle=17 x word		  (i)

5.3  MBIST Circuit Performance Analysis
Performance analysis based on the synthesis result. 
MBIST consumes up to 268940 kilobytes. This may add 
into total chip area2 and then percentage of added area 
will be calculated. This leads up increase 1 or 2 percent 
area to the total chip area.

Synthesis of the design is carried out on Xilinx syn-
thesis tool Xilinx 13.2 ISE12. The device family is selected 
for synthesis is Virtex 7 and Target Device is xc7vx330t-
3-ffg1157. Results obtained by synthesis are tabulated 
in Table 5.  It is shown in the table that design achieved 
497.475 MHz of maximum frequency by utilizing only 158 
Slice LUTs on 2.010ns minimum time period and Maxi-
mum combinational path delay is 1.175ns.  Advanced 
synthesis report generated, which shows the digital logic 
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blocks generated in implementation of memory BIST 
Controller. The synthesis tool also generate net list. The 
logic blocks are shown in Figure 10 below indicates top 
level of design that internally consists of state machine 
and memory model. 

Table 5.  Experimental Results

Design Area 
Slice 
LUTs

Time  Max 
Fre-
quency

Maximum 
Combina-
tional path 
delay

MBIST
Controller

158 2.010ns 497.475
MHz

1.175ns

Figure 10.  Synthesis Logic Block for MBIST Controller.

6.  Conclusion and Future work
This paper implemented MBIST controller for SoC inte-
gration using Verilog HDL. The design includes MBIST 
principle, choice of algorithm, MBIST controller inte-
gration. By MBIST Controller reuse, the area of the chip 
saved. Working mode simulation, test time analysis is 
done. Simulation has done on Mentor graphics tool 
ModelSim simulator and synthesis is done on Xilinx tool 

Xilinx 13.2 ISE synthesizer. The design have achieved 
fast MBIST controller core for easy integration into SoC 
product.

As per the above discussed points the design can use 
to improve the chip yield. In the future, we can enhance 
the March algorithm for detecting the static and dynamic 
faults with very low area overhead. And we can add the 
fault repair strategy white integrating with SoC.  

7.  References
	 1.	 Acosta R, Nascentric EET. Verification Challenges of 

embedded memory devices; 2006 Aug 14. p. 1.
	 2.	 Bosio  A, Dilillo L, Girard P, Pravossoudovitch S,  Virazel A. 

Springer book- Advanced Test Methods for SRAMs.  Effec-
tive Solutions for Dynamic Fault Detection in Nanoscaled 
Technologies; 2010. p. 1–19.

	 3.	 Sematech H. Semiconductor Industry Association. Inter-
national Technology Roadmap for Semiconductors (ITRS); 
Taiwan; 2009 Dec. p. 70–6.

	 4.	 Zorian Y. Embedded infrastructure IP for SOC yield 
improvement. Virage Logic Fremont; USA. IEEE Interna-
tional Test Conference (ITC); 2002. p 709–12.

	 5.	 Stroud C. A Designer’s Guide to Built-In Self-Test. Kluwer 
Academic Publishers. 2002; 1:429–38.

	 6.	 Li JF, Cheng KL, Wu CW. March-based RAM diagnosis 
algorithms for stuck-at and coupling faults. IEEE Test Con-
ference Proceedings International;  USA Baltimore: MD; 
2001. p. 758–67. 

	 7.	 Acharya GP,  Rani MA. Survey of Test Strategies for Sys-
tem-On Chip and It’s Embedded Memories. IEEE Recent 
Advances in Intelligent Computational Systems (RAICS); 
2013 Dec 19-21. p. 199–204.

	 8.	 Wang CW, Cheng KL, Lee JN, Chou YF, Huang CT, Wu 
CW. Fault Pattern Oriented Defect Diagnosis for Memo-
ries. ITC International Test Conference IEEE; USA; 2003. 
p. 29–38.

	 9.	 Elavarasi R, SenthilKumar PK. An FPGA Based Regenera-
tive Braking System of Electric Vehicle Driven by BLDC 
Motor. 2014 Nov; 7(7):173.

	10.	 Aljumah A, Ahmed MA. Design of High speed Data Trans-
fer Direct Memory Access Controller for System on Chip 
based Embedded Products. Journal of Applied Sciences. 
2015 Jan; 15(3):576–81.

	11.	 Cheng WT, Hill CJ, Kebichi O. MBIST Architect Process 
Guide. Mentor Graphics;  Software Version; 2010 May. p. 
1–19.

	12.	 Xilin X. FPGAs: A Technical Overview for the First- Time 
User. Application Note: XAPP 097;  (Version 1.3). Available 
from: http://www.xilinx.com 


