
Indian Journal of Science and Technology, Vol 8(33), DOI: 10.17485/ijst/2015/v8i33/76080, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

FPGA based High Speed Memory BIST Controller for
Embedded Applications

Mohammed Altaf Ahmed1*, D. Elizabeth Rani1 and Syed Abdul Sattar2

1GITAM Institute of Technology, GITAM University, Visakhapatnam – 531173, Andhra Pradesh, India;
altaface1@gmail.com, kvelizabeth@rediffmail.com; hod_ei@gitam.edu

2Royal Institute of Technology and Science, Chevella – 501503, Andhra Pradesh, India;
syedabdulsattar1965@gmail.com

Abstract
In the current high speed, low power VLSI Technology design, Built in Self Test (BIST) is emerging as the most essential
part of System on Chip (SoC). The industries are flooded with diverse algorithms to test memories for faults. The March
based algorithms are become popular so quickly for locating faults in memories. This research study attempt to design the
memory BIST controller for March 17N as selected algorithm. It tests various memories for faults. A simple architecture is
implemented in Verilog Hardware Description Language (HDL), which can be easily integrate with SoC and is able to locate
the fault location in the semiconductor memories. Integration of memory BIST controller in SoC design improves chip yield.
The design has achieved 497.47MHzof maximum frequency by use of only 158 slice LUTs on Virtex-7 Field Programming
Gate Array (FPGA) device. The proposed memory BIST controller is suitable for SoC integration to test various memories
at high speed with very low area overhead.

1.  Introduction
Embedded memories in Integrated circuit and System on
Chip (SoC) play a vital role. In 1981, an industry leader
was rumored to have said, “Nobody will need more than
640 KB of RAM”1. But it would never be enough and
even after more than three decades nobody can assure
that the requirement of memories in IC is limited. The
popularity and requirement of embedded memories are
drastically increases since 1970s to present and expecting
to continue in the future.

Now a days, semiconductor memories are extensively
used to store huge volume of data in almost all digital
systems. for example, latest smart cell phones, weather
forecasting wrist watches are uses large amount of data.
According to a survey conducter by a well known Semi-
conductor Industry Association (SIA). In 1999, 20 percent
area of SoC are occupied by memories while in 2005 it was
71 percent. They had expected that it will be reached to 94

percent till 2014. The International Technology Roadmap
for Semiconductors (ITRS) report is available for public2,3

to track the survey. This suvey report is graphically repre-
sented in Figure 1.

Figure 1.  Area occupied by memories in SoC.

Keywords: Low Area, Memory BIST, SoC Integration, Test Memories, Yield Improvement

FPGA based High Speed Memory BIST Controller for Embedded Applications

Indian Journal of Science and TechnologyVol 8 (33) | December 2015 | www.indjst.org 2

The density in the IC increases, it results in the com-
plex systems. The complexity in the system introduces
physical and mechanical defects and increases the test
complexity and cost of SoC. Test cost of embedded mem-
ory is increases with an exponential increase in density.
Shrinking in feature size of the components introduces
the sensitivity to fault deeply. Faults become more com-
plex and thus testing cost of memories become larger
than manufacturing cost of memories and System-on-
Chip (SoC) behaves as a memory dominant chip.

Testing/diagnosing of embedded memories in SoC
quickly becomes a real challenge and start affecting
directly to the chip yield4. In respond to this challenge,
the embedded memory self-test designs have introduced,
and many Built-in-Self-Test algorithms5 have developed
to improve the total chip yield. As compare to the conven-
tional method, uses Automatic Test Equipment (ATE) for
testing memories this method is more cost effective and
efficient. Therefore self testing algorithms are widely used
in embedded memory testing.

Thus, Effective memory diagnostics and failure analy-
sis methodologies help in enhancing the yield of SoC
products, especially with fast revolution in new product
development and advanced process technologies4. Gen-
erally memory BIST designs are fixed and cannot be
changed once committed to silicon. Therefore, it must be
ensure that the test algorithm used should provide high
level of fault coverage. This will insure catching of all pos-
sible faults before committing to silicon.

This paper focuses to the algorithms used for test-
ing memories in SoC and faults coverage through them.
March based algorithms6 have a wonderful solution
for this scenario. As per comparison of various March
algorithms7, on the basis of fault coverage and error
free memory assurance, the March 17N algorithm8 has
chosen in this research. This paper implemented March
17N algorithm for high speed and low area performance.
The memory BIST controller architecture has designed
and tested on Field Programmable Gate Array (FPGA)
device9. The results obtained by selecting the device fam-
ily Virtex 7 and Target Device xc7vx330t-3-ffg1157, as the
strategy adopted in paper10.

2.  MBIST Principle
MBIST principal11 is shown in Figure 2. This block dia-
gram consists of memory BIST controller (BIST pattern
generator) and memory model. The BIST controller has

two output shows the test accomplishment signals (tst_
done) and test pass/fail signal (fail_h). After test ends,
tst_done become ‘1’. And If the test done without any
error(pass) fail_h is set ‘0’, otherwise ‘1’(fail). With this
MBIST controller principle, the memories can be tested
externally.

Figure 2.  Memory BIST Principle.

3. Algorithm
To implement the Memory Built-in- self-test controller
the algorithm is chosen to test the memories in SoC is
March 17N algorithm8 illustrated in Figure 3.

⇑ (w0); ⇑ (r0,w1,r1); ⇑ (r1,w0,r0); ⇑ (r0,w1);

⇓ (r1,w0,r0); ⇑ (r0); ⇓ (r0,w1,r1); ⇑ (r1);

Figure 3.  March 17N Memory BIST algorithm.

The notations used in Figure 3 are explain in Table 1. The
March algorithm consists of several March elements, sepa-
rated by semicolon. The up-arrow stand for ascending order
of the address sequence, down-arrow stands for descend-
ing order. Inside the parenthesis is the specification of read
writes operation and the corresponding data background.
These read-write operations are to be applied to each ad-
dress, one by one, following the address order in front of the
parenthesis.

Table 1.  Notation of March17N Algorithms

Operation Description
⇑ address 0 to address max

⇓ address max to address 0
w0 write 0
w1 write 1
r0 read a cell whose value should be 0
r1 read a cell whose value should be 1

Mohammed Altaf Ahmed, D. Elizabeth Rani and Syed Abdul Sattar

Indian Journal of Science and Technology 3Vol 8 (33) | December 2015 | www.indjst.org

All operations inside the parenthesis have to perform
before we proceed to the next address. We use the March
signature to represent the results from all operations in
the test algorithm, which are either correct (represented
by 0) or incorrect (represented by 1).

We assume here that only the read operation can
detect the failure. For some special memories, however
write-through and write-verify operations can also detect
the error.

4. Architecture
The March 17N memory bist controller architecture
consists of three different blocks, memory bist registers
block, memory bist state machine block and external
memory block shown in Figure 4. Memory bist registers
block consist of two registers internally, BIST kickoff and
bist status. Each of these blocks is designed separately
using an HDL code and then verified individually. After
the satisfactory implementation of all the blocks, these
blocks are integrated to perform the memory diagnosis
operation.

Figure 4.  Memory BIST Controller Architecture.

4.1  Register Block
Registers are normally measured by the number of bits
they can hold, for example, an “8-bit register” or a “32-
bit register”. Registers are now usually implemented as a

register file, but they have also been implemented using
individual flip-flops, high-speed core memory, thin film
memory, and other ways in various machines.

4.1.1  BIST Kickoff Register
It is a 32 bit register with address 32`h0; here it is used as
an input register under read/write mode. The register bits
are assigned shown below in the Table 2.

Table 2.  BIST Kickoff Register

Register bit Bit
position

Mode Description

BIST_MEM-
ORY_ID

[31:30] Read /
Writable

Selection of mem-
ory for performing

the operation.
[29:25] Reserved

BIST_
BROADCAST

[24] Read/
Writable

Performs opera-
tions to all the

memories.
[23:17] Reserved

BIST_RESET 16 Read /
Writable

Reset bist state
machine

[15:7] Reserved
FORCE_
BIST_ERROR

8 Read /
Writable

Force bist error
inserts errors

while performing
write operations in
memory bist state

machine.
[7:4] Reserved

BIST_HALT_
ON_ERROR

3 Read /
Writable

If it programmed
at failoccured,

memory bist state
machine will halt.

BIST_
RESUME

2 Read /
Writable

Resume memory
bist state machine,

if a fail occurs.
BIST_STOP 1 Read /

Writable
Stop memory bist

state machine
BIST_START 0 Read /

Writable
Kick off memory

bist
State the machine.

4.1.2  BIST Status Register
It is a 32 bit register with address 32`h1, here it is used as
an output register under read only mode. The register bits
are assign as given below in the Table 3.

FPGA based High Speed Memory BIST Controller for Embedded Applications

Indian Journal of Science and TechnologyVol 8 (33) | December 2015 | www.indjst.org 4

Table 3.  BIST Status Register

Register bit Bit
position

Mode Description

BIST_FAIL_
MEMORY_ID

[31:30] Read
-only

Selection of Memory
for Performing Mem-
ory BIST Operation.

[29:28] reserved
BIST_FAIL_
ADDR

[27:16] Read
–only

If fail occurred it
display fail address.

[15:12] Reserved
 BIST_FAIL_
ERR_POS

[11:7] Read-
only

It display the error
position at fail

address.
[6:3] Reserved

BIST_FAIL 2 Read
-only

Fail MBIST State
machine.

BIST_PASS 1 Read
-only

Pass Memory BIST
State Machine

BIST_DONE 0 Read
only

Finish the opera-
tions of MBIST State

Machine.

4.2  Memory BIST State Machine
To kick off the state machine, bist_start bitis pro-
grammed in BIST_KICKOFF Register. It will trigger
the state machine, and it starts performing March 17N
Memory BIST algorithm. It starts performing Write zero,
read zero, write one, and read one operation as described
in algorithm. The operation of the state machine is
explained by Algorithmic State Machine (ASM) chart

shown in Figure 5. Controller select memory by reading
memory id signal and starts MBIST operations. Display
all information in the status register if fail occurs else
jump to the next location and complete operation. Each
of the set of operations in the parenthesis is perform in
a state. There are eight different kind of read and write
operations required to perform as part of the Memory
bist algorithm.

Figure 6.  Memory BIST State Diagram.

The state Machine shown in Figure 6 consists of fol-
lowing states:

1.	 ST_IDLE
2.	 ST_1_W0_A
3.	 ST_2_R0W1R1_A
4.	 ST_3_R1W0R0_A
5.	 ST_4_R0W1_A
6.	 ST_5_R1W0R0_D
7.	 ST_6_R0_A
8.	 ST_7_R0W1R1_D
9.	 ST_8_R1_A
10.	ST_STATUS

The Memory BIST State machine waits in ST_IDLE
State until bist_reset deactivate, waiting for bist_start to
programmed in Bist_Kickoff_Register. As soon as bist_
start is programm, the state machine jumps to ST_1_
W0_A state and starts writing zeros from address 0 to
max address in ascending order. It will be in this state till

Figure 5.  Memory BIST Algorithmic State Machine
(ASM) Chart.

Mohammed Altaf Ahmed, D. Elizabeth Rani and Syed Abdul Sattar

Indian Journal of Science and Technology 5Vol 8 (33) | December 2015 | www.indjst.org

it performs the write operation to the overall memory.
Then it jumps to the next state ST_2_R0W1R1_A and
starts reading zeros, writing ones, and reading zeros oper-
ation at each address location. After performing read it
compares against the expected values if comparison mis-
matches, it jumps to ST_STATUS state. While jumping to
this state it also provides information like bist_comp_fail,
bist_fail_address, bist_fail_mem_id, bist_fail_err_pos
and the appropriate state information (state_info).

If bist_stop is programm anytime during the running
of Memory BIST operation. It jumps to ST_STATUS
State, asserts bist_done on the next clock cycle, checks the
bist_fail_counter and asserts bist_pass or bist_fail along
with error information in Bist_Status_Register.

In ST_STATUS, it latches the information (like
bist_comp_fail, address, err_pos and mem_id) it got
from the earlier state into the Bist_Status_Register, and
it also increments a bist_fail_counter in this state. If
bist_halt_on_error programmed the time when memory
BIST was kicked off by bist_start, it waits in this state for
bist_resume or bist_stop. If it gets a bist_stop signal. It
asserts bist_done on the next clock and jumps back to
ST_IDLE state and wait for bist_start; If it gets a bist_
resume in this state it clears all the error information in
BIST_STATUS_REGISTER and jumps back to the state
(state_info) from where it arrived and starts performing
Memory BIST operation from the next address into the
memory.

If bist_halt_on_error is not programm when memory
BIST was kicked off, while doing memory BIST opera-
tion. Whenever it gets any failure, it jumps to ST_STATUS
state, latches all the error information into the Bist_Sta-
tus_Register, increments the bist_fail_counter and jumps
back to the state from where it arrived (state_info), irre-
spective of whether it gets bist_resume or not.

After coming back to the earlier state. The state
machine continues performing Memory BIST Operation
to the rest of the memory and jumps to the next state,
if it gets any error in the consecutive states; it jumps to
ST_STATUS state and performs the same operation
described earlier. When the state machine has done all the
operations in the last Memory BIST state (ST_8_R1_A), it
jumps to ST_STATUS State and asserts bist_done to indi-
cate completion of Memory BIST Operation. Here in the
state if bist_fail_counter is non-zero it asserts bist_fail and
appropriate last error information in Bist_Status_Register
along with bist_done, to signify Memory BIST Operation
failed. If bist_fail_counter is zero then, it asserts bist_pass

and bist_done in Bist_Status_Register to signify Success-
ful Completion of Memory BIST.

The Memory BIST Operation is perform onto the
memory whose id is programmed in bist_mem_id in
Bist_Kickoff_Register. While programming bist_start,
if bist_broadcast is programm, the state machine will
trigger memory BIST for each memory one after the
other in a sequential fashion. When bist broadcast is
programm, then after completion of memory BIST for
each memory (bist_done), the status gets updated in
Bist_Status_Register.

In Non-broadcast mode, irrespective of bist_halt_on_
error, bist_fail_counter signifies the number of errors
encountered in that appropriate memory while perform-
ing Memory BIST. But in broadcast mode. The only indi-
cation we get is the appropriate memory id’s, Memory
BIST Passed/failed, we won’t get any information on no
of failures (bist_fail_counter) occurred during memory
BIST for each memory.

Memory BIST Kick off can only be possible for any
of the single memory within the group of memory, or in
broadcast mode, all the memories are selected for Mem-
ory BIST one after the other. There is no option of select-
ing any intermediate sequence or any in between number
of memories for Memory BIST in the current Implemen-
tation of Memory BIST.

Similarly, when bist_force_error is program while kick-
ing off Memory BIST, it forces the state machine to insert
errors while writing data into the memory. The consecu-
tive read operation will land into an error. This bit is used
for negative testing of Memory BIST State machine. All
the signals of MBIST controller those are shown in Figure
7 are explain in the Table 4.

Figure 7.  March 17N memory BIST signal diagram for
fault diagnosis.

FPGA based High Speed Memory BIST Controller for Embedded Applications

Indian Journal of Science and TechnologyVol 8 (33) | December 2015 | www.indjst.org 6

Table 4.  Memory BIST controller

Signal Direction Width
(bits)

Description

bist_clk In 1 This is the Memory Bist clock input. All the internal state machines and hardware
will get clocked with this clock.

bist_reset In 1 Asynchronous reset; will reset the memory Bist state machine, and internal
hardware.

bist_start In 1 It will trigger the memory bist state machine. It will be reset by the state machine
when bist_done is asserted.

bist_stop In 1 It is required to stop memory BIST state machine synchronously and display the
status Pass/Fail.
When it activate SM assert bist_done on the next clock.

bist_halt_on_
error

In 1 When this bit is programmed, Memory BIST state machine will halt itself in case
of BIST failure and latch the error information (bist error addr and bist_error_pos)
onto the appropriate output pins.

bist_resume In 1 This Input is required to resume BIST state machine, in case when halt_on_error is
programmed.

bist_mem-
ory_id

In 2 The input bit [1:0] selects the memory from a group of 4 memories for performing
memory BIST operation.

bist_broadcast In 1 This input selects all the memories one by one for performing Memory BIST
Operation.

bist_mem_
rd_data

In 32 (param
eterized)

Memory Read data bus. The widths can be variable across the memories, this input
has to be parameterized depending upon the width of the memories.

bist_force_
error

In 1 Insert error during Memory BIST Write Operation.

bist_pass Out 1 This output displays the successful operation of Memory BIST Operation.
bist_fail Out 1 This output signifies memory BIST failure. If halt on error is programmed Bist state

machine will halt on failure and will stop if bist_stop is programmed and continue if
bist_resume is programmed.

bist_fail_addr Out 12 (param
eterized)

This fail address bus hold valid only when bist_fail is asserted. This fail address bus
signifies the address of the memory where a comparison failure has occurred.

bist_error_pos Out 5 The value present on this four bit error_pos bus is valid only when bist_fail is
asserted by the bist state machine. This 4 bit signifies the error bit position within
the byte read.

bist_fail_
mem_id

Out 2 The value present on this four bit mem_id bus is valid only when bist_fail is asserted
by the bist state machine. This 2 bit signifies the failed memory among a group of 4
memories.

bist_done Out 1 This bit signifies the completion of Memory BIST Operation. Memory BIST pass/fail
will be declared only when bist_done is high.

bist_mem_wr Out 1 This is memory write enable signal. All the writes to the memory are only valid
when this signal is high.

bist_mem_
wr_addr

Out 12 (param
eterized)

This is memory write address.

bist_mem_wr Out 1 This is memory write enable signal. All the writes to the memory are only valid
when this signal is high.

bist_mem_rd Out 1 This is memory read enable signal. Data on the read data bus is valid one clock cycle
later after bist_mem_rd is asserted.

bist_mem_
rd_addr

Out 12 (param
eterized)

This is memory read address.TD Data red from this address.
Data read from this address.

Mohammed Altaf Ahmed, D. Elizabeth Rani and Syed Abdul Sattar

Indian Journal of Science and Technology 7Vol 8 (33) | December 2015 | www.indjst.org

4.3  Memory Block Diagram
To test the design memory block is designed by writing an
HDL code in Verilog, the schematic shown in Figure 8 is
the considerable block of memory connected externally.
In which wr_en is a write enable signal to the memory
to starts the writing process in the memory, wr_addr is a
signal vector of 10 bits that can locate up to 2^10 memory
locations:

Once the memory module is designed it is simulated
using simulation tool [MODELSIM] to generate the
waveform that shows in results. After thorough simula-
tion, the memory module is synthesized using synthesis
tool [Xilinx ISE] which generates the synthesis report.

Figure 8.  Memory Block.

5.  Experimental Results
MBSIT verification mainly targets the functional correct-
ness of the mbist controller. The simulation is based on
March 17N algorithm.

5.1  MBIST Controller Working Mode
Simulation
MBSIT controller simulation is carried out by mentor
graphics tool ModelSimsimulator. Figure 9 is the simula-
tion waveform of module mbist_top. The kick_off register
is used as an input register under read/write mode. bist_
start signal is used to kick off memory BIST controller.

bist_resume is used to resume MBIST Controller,if fail
occurs. And bist_stop is used to stop memory BIST
operation. The bist_status register is used to store the
result of the test, where bist_pass indicate MBIST test
pass, bist_fail indicate MBIST test fail. bist_done indicate
completion of the test. In this simulation writing /read-
ing in various location of memory is shown in Figure 6.
Four memory blocks with same data depth are tested by
MBIST controller and test is serial. After the bist_done is
set ‘1’ test ends with fail/pass status, in the status register.

Figure 9.  The Simulation waveform of module mbist_top.

5.2  Mbist Testing Period Analysis

Equation (1) gives the test period of March 17N
Cycle=17 x word		 (i)

5.3  MBIST Circuit Performance Analysis
Performance analysis based on the synthesis result.
MBIST consumes up to 268940 kilobytes. This may add
into total chip area2 and then percentage of added area
will be calculated. This leads up increase 1 or 2 percent
area to the total chip area.

Synthesis of the design is carried out on Xilinx syn-
thesis tool Xilinx 13.2 ISE12. The device family is selected
for synthesis is Virtex 7 and Target Device is xc7vx330t-
3-ffg1157. Results obtained by synthesis are tabulated
in Table 5. It is shown in the table that design achieved
497.475 MHz of maximum frequency by utilizing only 158
Slice LUTs on 2.010ns minimum time period and Maxi-
mum combinational path delay is 1.175ns. Advanced
synthesis report generated, which shows the digital logic

FPGA based High Speed Memory BIST Controller for Embedded Applications

Indian Journal of Science and TechnologyVol 8 (33) | December 2015 | www.indjst.org 8

blocks generated in implementation of memory BIST
Controller. The synthesis tool also generate net list. The
logic blocks are shown in Figure 10 below indicates top
level of design that internally consists of state machine
and memory model.

Table 5.  Experimental Results

Design Area
Slice
LUTs

Time Max
Fre-
quency

Maximum
Combina-
tional path
delay

MBIST
Controller

158 2.010ns 497.475
MHz

1.175ns

Figure 10.  Synthesis Logic Block for MBIST Controller.

6.  Conclusion and Future work
This paper implemented MBIST controller for SoC inte-
gration using Verilog HDL. The design includes MBIST
principle, choice of algorithm, MBIST controller inte-
gration. By MBIST Controller reuse, the area of the chip
saved. Working mode simulation, test time analysis is
done. Simulation has done on Mentor graphics tool
ModelSim simulator and synthesis is done on Xilinx tool

Xilinx 13.2 ISE synthesizer. The design have achieved
fast MBIST controller core for easy integration into SoC
product.

As per the above discussed points the design can use
to improve the chip yield. In the future, we can enhance
the March algorithm for detecting the static and dynamic
faults with very low area overhead. And we can add the
fault repair strategy white integrating with SoC.

7.  References
	 1.	 Acosta R, Nascentric EET. Verification Challenges of

embedded memory devices; 2006 Aug 14. p. 1.
	 2.	 Bosio A, Dilillo L, Girard P, Pravossoudovitch S, Virazel A.

Springer book- Advanced Test Methods for SRAMs. Effec-
tive Solutions for Dynamic Fault Detection in Nanoscaled
Technologies; 2010. p. 1–19.

	 3.	 Sematech H. Semiconductor Industry Association. Inter-
national Technology Roadmap for Semiconductors (ITRS);
Taiwan; 2009 Dec. p. 70–6.

	 4.	 Zorian Y. Embedded infrastructure IP for SOC yield
improvement. Virage Logic Fremont; USA. IEEE Interna-
tional Test Conference (ITC); 2002. p 709–12.

	 5.	 Stroud C. A Designer’s Guide to Built-In Self-Test. Kluwer
Academic Publishers. 2002; 1:429–38.

	 6.	 Li JF, Cheng KL, Wu CW. March-based RAM diagnosis
algorithms for stuck-at and coupling faults. IEEE Test Con-
ference Proceedings International; USA Baltimore: MD;
2001. p. 758–67.

	 7.	 Acharya GP, Rani MA. Survey of Test Strategies for Sys-
tem-On Chip and It’s Embedded Memories. IEEE Recent
Advances in Intelligent Computational Systems (RAICS);
2013 Dec 19-21. p. 199–204.

	 8.	 Wang CW, Cheng KL, Lee JN, Chou YF, Huang CT, Wu
CW. Fault Pattern Oriented Defect Diagnosis for Memo-
ries. ITC International Test Conference IEEE; USA; 2003.
p. 29–38.

	 9.	 Elavarasi R, SenthilKumar PK. An FPGA Based Regenera-
tive Braking System of Electric Vehicle Driven by BLDC
Motor. 2014 Nov; 7(7):173.

	10.	 Aljumah A, Ahmed MA. Design of High speed Data Trans-
fer Direct Memory Access Controller for System on Chip
based Embedded Products. Journal of Applied Sciences.
2015 Jan; 15(3):576–81.

	11.	 Cheng WT, Hill CJ, Kebichi O. MBIST Architect Process
Guide. Mentor Graphics; Software Version; 2010 May. p.
1–19.

	12.	 Xilin X. FPGAs: A Technical Overview for the First- Time
User. Application Note: XAPP 097; (Version 1.3). Available
from: http://www.xilinx.com

