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Abstract
In this paper the Model Reference Adaptive System (MRAS) is considered. The feedforward gain adjustment is done by using
adaptive technique and feedforward gain compensation by passivity-based technique is presented. The adaptation of feedforward
gain is considered by using MIT rule and the effect of variation of parameter values and adaptation gain on the response of the
system is simulated. But to achieve more stable system, lyapunov stability theorem is used for parameter adjustment. It has been
shown that the adjustment rule guarantees that error goes to zero. Finally input-output stability theorem is used to construct
adjustment rules for the adaptive system. The passivity theorem is applied to construct adjustment laws. The compensating
network is introduced so that the transfer function relating the error is Strictly Positive Real (SPR). The compensator is designed
by using Kalman – Yakubovich (KY) Lemma. Simulation results are furnished after implementing the adaptive techniques.
Algorithm for the design of compensator using KY Lemma is also presented.
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1.  Introduction

The Model Reference Adaptive Control (MRAC) technique
has been a popular approach to the control systems operating
in the presence of parameter and environmental variations.
The MRAC system was first designed by the performances
index minimization method proposed by Whitaker of
MIT Instrumentation laboratory and since then has been
referred as the MIT rule. This rule has been very popular
because of its simplicity in practical implementation. In
this technique output rate of convergence depend upon the
adaptation gain1-3 .

The other approach to adaptation is based on
Lyapunov’s second method. The adaptive rule is obtained
by selecting the design equations to satisfy conditions
derived from Lyapunov’s second method4, so that the
system stability is guaranteed for all inputs. The quadratic
Lyapunov function was employed by Parks to redesign
systems formerly designed by MIT rule. The main 

disadvantage of Lyapunov method is that the entire state
vector must be available for measurement, which is not
often possible4,5 .

The concept of positive realness plays a central role
in stability theory in general and in many of the stability
proofs of adaptive systems1,6. The definition of Positive
Real (PR) function of a complex variable s arises in circuit
theory. Brune showed that the driving point impedance
of a passive network is rational and positive real. If the
network is dissipative, due to the presence of resistors, the
driving point impedance is strictly positive real. In other
words, a PR and SPR rational function can be realized as
the driving point impedance of passive network. In this
context KY lemma finds applications in adaptive control
theory6.

The passivity theorem1,7 is invoking for the problem
under consideration and it can be shown that the MRAS
can be viewed as a feedback connection of two systems. By
using passivity theorem it is possible to construct a stable 
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adjustment law. For this a simple compensating network 
is introduced so that the transfer function relating the 
error is SPR. The proper compensator is found by using 
algorithm that based on KY Lemma7.

2.  Adaptation by MIT Rule

2.1 MIT Rule
Consider a closed loop system in which a controller has 
one adjustable parameter θ. A model whose output is ym 
specifies the desired closed loop response1. Let e be the 
error between the output y of the closed loop system and 
the output ym of the model. To adjust the parameters in 
such way that the loss function J(θ ) = ½ e2 is minimized. 
To make J 

small, it is possible to change the direction of the 
negative gradient of J, i.e.
d J eY Ye
dt
q

q q
¶ ¶

=- =-
¶ ¶

			   (1)

This is the well-known MIT rule. The partial 
derivative ∂e/∂θ, which is called the sensitivity derivative 
of the system and tells about the influence of error due to 
parameter variation.

2.2 Statement of the Problem
The problem under consideration is to adjust feedforward 
gain. In this problem it is assumed that the process is 
linear with the transfer function kG (s), where G (s) is 
known and k is unknown parameter2. The design problem 
is to find a feedforward controller that gives a system with 
the transfer function Gm (s) = k0G (s), where k0 is given 
constant. With the feedforward controller u = θ uc. Where 
u is the control signal and uc is the command signal and 
assuming parameter θ = k0/k.

The problem is described by following block diagram.
Now using the MIT rule to obtain a method for 

adjusting the parameter θ when k is not known. From 
Figure 1.

y = kG (d/dt) θ Uc,				         (2)

ym = ko G (d/dt) Uc				         (3)
The error is
e = y – ym = kG(d/dt) θUc – koG(d/dt) Uc

Figure 1.    Block diagram of feedforward gain 
adaptation problem.
= kG (d/dt) ( θ - θ0 ) Uc				        (4)

Where d/dt is differential operator and θ0 = ko /k
Partial derivative of Equation 3 with respect to θ is 

taken to obtain the sensitivity as –

( / ) c
e kG d dt u
q

¶
=
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					    (5)

but from equation (3), G(d/dt)uc =  therefore Equation 	
				    5 becomes

0
m

e k y
kq

¶
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¶
					     (6)

As per the MIT rule Equation 1 the adaptation law can be 
written as -

0

' m m
d kY y e Yy e
dt k
q
=- =-

				    (7)

after integrting both sides of Equation 7,

( ) ( )t
mt Yy e s dsq =- ò

				    (8)

where 
0

' kY Y
k

= , Equation 8 gives the law for adjusting the 
parameter.

2.3 Simulation of the System
The adjustment mechanism of Figure 1 can be thought of 
as composed of three parts – a linear filter for computing 
the sensitivity derivative from inputs and outputs, a 
multiplier, and an integrator3.

Now by using MATLAB Simulink for simulation of 
the block diagram shown in Figure 1 and implementing 
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the feedforward gain adjustment law obtained by MIT 
rule Equation 8. For this purpose let us consider the 
transfer function

2

3 2

4 3( )
5 6 1

s sG s
s s s

+ +
=

+ + +

				    (9)

The simulation block diagram is shown in following 
Figure 2.

The input uc is chosen as unit step or as sinusoidal of 
frequency 1 rad/sec selecting from source library4. The 

parameters k, ko are chosen as k = 1, and ko = 2. The results 
of simulation are given by Figure 3 where y, ym, θ, and e 
are shown for different γ values, such as γ = 0.5 and 0.75.

From Figure 3 it has been noted that, for both step 
and sinusoidal the response of the system depends on the 
adaptation gain. The convergence rate depends on the 
value of γ. For small value of γ convergence rate decreases 
and for high value of gamma convergence rate increases5. 
But there is no guarantee of the system stability in this 
adaptation technique.

Figure 2.    Simulation block diagram for adjusting feedforward gain based on MIT rule.

Figure 3.    Simulation of MRAS for adjusting a feedforward gain (a) Step Response for Adaptation gain = 0.5 and 0.75 
(b) Sinusoidal Response for Adaptation gain = 0.5 and 0.75.
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3.  �Adaptation by Lyapunov 
Theorem

The first step in the stability approach to adaptive system 
design is the choice of the adaptive law for adjusting the 
control parameters to assure stability. An alternative 
method for adaptation of MRAS based on Lyapunov’s 
second method is suggested and here it is applied to the 
problem under consideration.

3.1 Lyapunov Theory
The problem of stability in previous method is considerably 
improved in this method. Now Lyapunov’s stability theorem 
is used to construct algorithm for adjusting parameters 
in adaptive system6. For this let us consider a differential 
equation for error, e = y – ym. This differential Equation 
contains the adjustable parameters. Then it is required to 
choose a suitable Lyapunov function and an adaptation 
mechanism so that the error goes to zero.

The error is given by Equation 4 and now using 
Lyapunov theorem1,4,7, first consider the Equation of the 
system as –

e = Ae + k (θ −θ0 )uc				       (10)

writing state equations by considering the relation 
between the parameter θ and error e then,

0( ) c
dx Ax b u e Cx
dt

q q= + - =
			      (11)

If the homogeneou s system x = Ax is asymptotic ally 
stable, there exist positive definite

matrices P and Q such that A T P + PA = −Q	    (12)
Now choosing the Lyapunov function as -

0 21 ( ( ) )
2

TV Yx Px q q= + -
				    (13)

0( )
2

TdV Y T dx dPx x P
dt dt dt dt

= - + - -
q

q q 		  (14)

by using equation 10, equation 13 becomes -

0( )
2

T TdV Y dx Qx YUcB Px
dt dt

=- + - +
q

q q
		  (15)

therefore from equation (14) the parameter adjustment 
law is chosen to be -

T
c

d Yu B Px
dt
q
=- 					     (16)

From Equation 16, it is to be noted that, the derivative 
of Lyapunov function will be negative

as long as x ≠ 0. The state vector x and the error e = 
Cx will go to zero as t goes to ∞. But parameter error (θ 
−θ0 ) will not necessarily go to zero. In this technique the 
restriction is that it requires that all state variables are 
known. A parameter adjustment law that uses output 
feedback can be obtained if Lyapunov function can be 
chosen such that BT P = C, where C is the output matrix of 
the system7.Therefore,

BT Px = Cx = e, and the adjustment law becomes

c
d u e
dt
q

g=-
					     (17)

3.2 Simulation of the System
The control law obtained above Equation 17 is used 
to construct the adjustment mechanism of Figure 1 
and modified by block diagram as shown in Figure 4, a 

Figure 3.    Simulation block diagram for adjusting feedforward gain based on lyapunov theory.
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simulation diagram using MATLAB Simulink. Here again 
the input signal uc is step and sinusoidal are applied to the 
system and simulation results are shown in Figure 5.

In this section it has been shown that it is possible 
to construct parameter adjustment rules based on 
Lyapunov’s stability theory. The adjustment rules obtained 
in this way guarantee that the error goes to zero, but it 
cannot be asserted that the parameters converge to their 
correct values. Therefore some advanced technique like 
passivity is used to construct adjustment rules for the 
adaptive system8.

4.  �Adaptation by Passivity 
Theorem

The problem of feedforward gain compensation is the 

main objective of this paper. In this section compensation 
obtained an adjustment rules based on passivity theorem. 
The same problem was treated in section 2 with Lyapunov’s 
stability theory and obtained parameter adjustment law 
described by Equation 17. According to passivity theorem 
the adaptive system will be stable if the transfer function 
G(s) is SPR. This condition indicates that the result is 
related to passivity theory9.

4.1 �Application of Passivity to Adaptive 
Control

The passivity theorem1,6,7 along with small gain theorem 
is used to derive stability results for the system under 
consideration Figure 1. Figure 6 shows a linear time 
invariant system described by G(s) and that corresponds 
to the plat together with a fixed controller, while the 

Figure 5.    Simulation of MRAS for adjusting a feedforward gain using lyapunov theory (a) Step response 
for adaptation gain = 0.5 and 0.75 (b) Sinusoidal response for adaptation gain = 0.5 and 0.75.

Figure 6.    Block diagram for the system with adjustable feedforward gain when using the control law of 
Equation 17.
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feedback system H corresponds to the mechanism 
generating the parameter error, θ and the corresponding 
control input (θ – θ0)uc. Thus passivity theorem1,7 is 
applied directly to such systems to prove L2 – Stability if 
G(s) is strictly passive and H is passive.

The passivity theorem gives a convenient way 
to construct adjustable mechanism. For this simply 
introducing a compensating network so that the transfer 
function relating the error to (θ – θ0) uc is SPR, and the 
compensator is designed by using algorithm given in 
Section 4.2. This mechanism is simulated as shown in 
Figure 7 and simulation results are shown in Figure 8 for 
sinusoidal input signals10-12.

4.2 �Algorithm based on KY Lemma for 
Designing Compensator

Step-1: By using KYP Lemma G(s) = B(s)/A(s) Finding 
polynomial C(s) such that C(s)/A(s) is SP Canonical 
realization of 1/A(s) is obtained by using tf2ss command 
of control system toolbox.

Step-2: Choosing a symmetric positive definite matrix 
Q and finding matrix P by using lyap command.

Step-3: The coefficients of a C polynomial such that 
C(s)/A(s) is SPR are then the first row of the P Matrix. i.e. 
C = P(1,:)

Therefore numerator polynomial of Gc = C and 
denominator polynomial of Gc is polynomial of B(s).

Figure 7.    A Stable Parameter Adjustment Law by Passivity and Ky Lemma.

Figure 8.    Simulation of MRAS for a feedforward gain Compensation using KY Lemma (a) Step Response for 
Adaptation Gain = 0.5 and 0.75 (b) Sinusoidal Response for Adaptation Gain = 0.5 and 0.75. 
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5.  Conclusion

The problem in which the system under consideration 
Figure 1, where adjustment mechanism replaced by 
MIT rule Equation 8 was performed well for the smaller 
adaptation gain but stability is disturbed for slightly 
increase in the γ value. Therefore the allowable range of 
the Gamma depends on the magnitude of the reference 
signal. Consequently it is not possible to give fixed limits 
which guarantee stability. Thus the MIT rule based 
adaptive systems are said to be closed loop unstable 
systems.

Adaptation based on Lyapunov’s direct method 
guarantees the stability for all kinds of inputs and allows 
high gains in the adaptive loops i.e. adaptation gain, γ. 
From Figure 5 it has been seen that the stability of the 
system is asymptotic for the chosen k, k0 and γ values.

Adaptation mechanism due to passivity theorem along 
with small gain theorem and the design of compensator 
by using KY lemma is described in Figure 7. As per this 
arrangement it has been shown in Figure 8 that error e(s) 
goes to zero as t goes to infinity. MRAS of Figure 8 is stable 
for all values of γ > 0 when SPR condition is satisfied. This 
results in faster adaptation.
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