
Abstract
Radar is assumed to be tracking a cannon launched projectile travelling in a 2 dimensional drag environment. Extended
Kalman Filter (EKF) is explored for the estimation of position and velocity of the projectile. Simulation is carried out using
MATLAB and the results are presented. Finally, based on the results, EKF is recommended for tracking the projectile.
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1. Introduction
During flight gravity and drag have a major impact on
the path of the projectile and are to be considered when
predicting how the projectile will travel. Gravity imparts
a downward acceleration causing the projectile to drop
from the line of sight. Drag decelerates the projectile with
a force proportional to the square of the velocity. As we
are taking the velocities in both X and Y directions con-
sidering the drag, the velocity in one direction will have
impact on the velocity in the other direction. So, while
obtaining the acceleration in one direction, instead of
taking direct square of the velocity we need to take the
vector form of the velocity, i.e. the velocity in a particular
direction multiplied by the relative velocity.

2. Mathematical Modelling
Consider a simple example in which radar tracks a
cannon-launched projectile travelling in two-dimension
(with drag environment). After the projectile is launched
at an initial velocity, gravity as well as air resistance acts
on the projectile. So we can say that in the downrange or
x-direction there is acceleration due to air drag and in the 

y-direction or altitude there is acceleration of gravity and
air drag. Considering the relative velocity
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We can express the location of the cannon-launched
projectile (i.e., xT, yT) in terms of the radar range (r) and
angle (α) as

x rT R= +cos xα (4)

y r yT R= +sinα (5)


α =

−
− 





−tan 1 y yT R

x xT r
(6)

r y y x xT R T R= −( ) + −
2 ( )2 (7)

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(29), DOI: 10.17485/ijst/2015/v8i29/78221, November 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645



Cannon Fired Ball with Relative Velocity

Indian Journal of Science and Technology2 Vol 8 (29) | November 2015 | www.indjst.org

Where xT and yT are the co-ordinates of target location 
and xR and yR are the co-ordinates of radar location.

The states for the cannon launched projectile tracking 
model can be chosen as projectile location and velocity 
in the downrange or x direction and projectile location 
and velocity in the altitude or y direction and the ballistic 
co-efficient (β) as it is unknown. Thus, the proposed states 
are given by
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Therefore, when the preceding Cartesian states are 
chosen the state-space differential equation describing 
projectile motion becomes
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In equation 9 gravity g is not a state that has to be 
estimated but is assumed to be known in advance. We 
have also added process noise np to the acceleration por-
tion of the equations as protection for effects that may 
not be considered by the Kalman filter. Thus the systems 
dynamic matrix is given by
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The fundamental matrix φ(t) for a time in variant sys-
tem is given by Taylor series approximation is given by
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As the fundamental matrix will only be used in the 
Riccati equations but not used in state propagation, we 
will take only the first two terms of the Taylor series 
expansion
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∴ The discrete fundamental matrix can be found by 
substituting Ts for t and is given by
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As we have chosen states to be Cartesian, the radar 
measurements r and α will automatically be nonlinear 
functions of those states. Therefore, we must write the 
linearized measurement equation as
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where nα and nr represent the measurement noise on angle 
and range, respectively. Because the angle from the radar 
to the projectile is given by
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The five partial derivatives of the angle with respect to 
each of the states are computed as
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The five partial derivatives of the range with respect to 
each of the states are computed as
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The linearized measurement matrix is given by
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Substituting equations (17) – (26) in equation (27) 
gives the linearized measurement matrix as
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For this problem it is assumed that we know where the 
radar is so that xR and yR are known and do not have to be 
estimated. The states required for the discrete linearized 
measurement matrix will be based on the projected state 
estimate or
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The discrete measurement noise matrix is given by 
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where sα
2  and sr

2  are the variances of the angle noise 
and range noise measurements, respectively. Similarly the 
continuous process-noise matrix is given by
	 Q = E[wwT]
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where ϕs is the spectral density of the white noise. Sources 
assumed to be on the downrange and altitude accelera-
tions acting on the projectile. The discrete process-noise 
matrix can be derived from the continuous process-noise 
matrix according to
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Substitution of the equations (12) and (31) into the 
equation (32) yields
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To propagate the states from the present sampling time 
to the next sampling time, we use the fundamental matrix 
with Runge–Kutta second order differential equation. 

For the linear filtering problem the real world was 
represented by the state-space equation

	 X DX Gu + wk s= + � (34)

where G is a matrix multiplying a known disturbance 
or control vector u that does not have to be estimated. 
We can show that the discrete linear Kalman-filtering 
equation is given by
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Where Kk is the Kalman gain matrix, zk is measurement 
equation in discrete form, H is measurement matrix and 
Gk is given by
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The Kalman gains are computed from the Riccati 
equations which are given as
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where Ck is the covariance matrix representing the errors 
in the state estimates before an update, Pk is a covariance 
matrix representing the errors in the state estimates after 
an update.

If we forget about the gain times the residual portion 
of the filtering equation, we can see that the projected 
state is simply

	 xk = +− −φk k k kx G u˘ 1 1
^

and our projected state is determined from

	

x
d d d

d d d
k =

+

+ +









1 0 0 0
1 0 0

0 0 1 0
0 0 1 1
0 0 0 0 1

21 22 22

43 44 45

τ
τ τ τ

τ
τ τ τ















+

−

− +





























−x

g
T

T
d T

k

s

s
s

1

2

44

0
0

2

1
2

0









−uk 1

�(35)

3.  Simulation Results
The path of a cannon fired projectile is not exactly a 
parabola in real time which is obtained when using relative 

velocity which can be seen from Figure 1. The downrange 
and altitude also differ while using relative velocity. 

From Figure 2, we can see that the error in estimation 
of downrange is low (of the order 105) when using relative 
velocity than the one without relative velocity (of order 
10152).

From Figure 3, we can see that simulation result of 
the error in estimation of altitude is much nearer to the 
theoretical bounds when using relative velocity than the 
one without relative velocity. 

The error in the estimation of downrange velocity is 
also more within the theoretical bounds when using rela-
tive velocity rather than not using the relative velocity. 
The same can be observed from Figure 4. 

Error in the estimation of altitude velocity is low and 
within theoretical bounds in the case of using relative 

Figure 1.  Path of a cannon fired projectile.

Figure 2.  Error in estimation of downrange.
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velocity while the error in estimation of altitude velocity 
is high though within the theoretical bounds in case of 
not using the relative velocity, which can be observed 
from Figure 5. 

4.  Conclusion
From the simulation results it is observed that the 
estimation of down range and altitude differ a lot when 
relative velocity is considered. As we are taking drag into 
consideration velocity vector has to be taken instead of 
taking velocities in individual directions.
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Figure 3.  Error in the estimation of altitude.

Figure 4.  Error in estimation of downrange velocity.

Figure 5.  Error in estimation of altitude velocity.


