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Abstract

In this paper we study a new algebraic structure namely left almost module (LA-module in short).We extend the notion of
congruences to LA-modules which is defined in! for semigroups. We show that every homomorphism defines a congruence
relation on LA-modules and prove analogues of isomorphism theorems. We also define external direct sum of LA-modules

and show that the internal direct sum of LA-submodules is isomorphic to the external direct sum of those LA-submodules.
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1. Introduction

M. A. Kazim and M. Naseeruddin? introduced the notion
of left almost semigroups (LA-semigroups). A groupoid S
with binary operation *’ is said to be a left almost

Semigroup if it satisfies the left invertive law i.e. (a * b)
*c=(c*b)*aVabces.

LA-semigroup is also known as an Abel-Grassmann’s
groupoid (AG-groupoid)®. In%, medial and paramedial
groupoid ware initiated. A medial is a groupoid S satisfy-
ing the medial law: (ab) (cd) = (ac) (bd) while a parame-
dial is a groupoid § satisfying the paramedial law: (ab)
(cd) = (db) (ca) V a, b, ¢, d € S. They proved that AG-
groupoid § always satisfies the medial law: (ab) (cd) =
(ac) (bd) [Lemma 1.1(i)] while an AG-groupoid S with
left identity e satisfies paramedial law: (ab) (cd) = (db)
(ca) [Lemma 1.2(ii)]. In>, the author proved that, an AG-
groupoid S with left identity e also satisfies a (bc) = b(ac)
¥V a, b, ¢ € S [Lemma 4]. Basically an LA-semigroup is
the generalization of a commutative semigroup. In%, M.S.
Kamran extended the concept of LA-semigroup to a
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left almost group (LA-group) which are non-associative
structures. A groupoid G with the binary operation *" a
binary operation is said to be an LA-group if the following
conditions are satisfied: (i) There exists an element e € G
suchthate*a=a Va € G, (ii) For a € G there exists a~!
e Gsuchthata'*a=a*a! =e, (iii) Left invertive law
holds in G. An LA-group is basically the generalization of
a commutative group. LA-groups have interesting resem-
blance to commutative groups. In’, Q. Mushtag, M. S.
Kamran proved most useful results about the said struc-
ture. In®, S.M. Yusuf extended the notion of LA-groups
to left almost rings (LA-rings), the non-associative struc-
tures with two binary operations ‘+” and *’ A left almost
ring is a non-empty set R together with two binary opera-
tions ‘+” and * satisfying the following:

(i) (R, +) is an LA-group, (ii) (R,-) is an LA-semi-
group, (iii) Both left and right distributive laws holds. In®,
T. Shah and 1. Rehman introduced the concept of LA-
modules over LA-rings. Basically the conditions of LA-
modules are close to that of modules which are abelian
groups.
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In'0, T. Shah, M. Raees and G. Ali extended the struc-
ture to its substructure and obtained some useful results.
In the same paper, they defined LA-module homeomor-
phisms in a similar way as that of modules. The terms
endomorphism, monomorphism, epimorphism, isomor-
phism and automorphism can be defined in the same
way. In the said paper they proved some useful results.
In particular they proved first, second and third isomor-
phism theorems. They also defined internal direct sum of
LA-submodules. In this study we give the concept of con-
gruences on LA-modules and show that every homomor-
phism defines a congruence relation on LA-modules. We
also define external direct sum of LA-modules and show
that internal direct sum is isomorphic to external direct
sum.

2. Preliminaries

In this section we give some basic definitions and theo-
rems which have been taken from”!0. We shall use these
results in later sections.

2.1 Definition®

An LA-group (M, +) is said to be an LA-module over
an LA-ring (R, +, -) with left identity 1, if the mapping
RxM->M defined as (, m >rm € M, where m € M and r
€ R, satisfies the following conditions:

r(m+m,) =rmy + rm,,

(r\+ry) m = rym+rym,

ry (rym) =1, (rym),

e I-m=m,Vr1,r,r, € Rand m, my, m, € M°.

It is obvious from the above definition that, every LA-
ring R with left identity I is an LA-module over itself. We
are now going to give a non-trivial example of an LA-
module which has been taken from the source®.

2.2 Example

Let S be a Commutative semigroup and (R, +, -) an
LA-ring. Then,

R[S] ={ Z rs;:1; € Rands; € 8} under the mapping R
finite
x R[S] > R[S] defined by

(Z 1:S; j g Z(Wi )s; is an LA-module.
i=1

i=1
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2.3 Definition

An LA-subgroup N of an LA-module M over an LA-ring
R is said to be an LA-submodule over R, if RN = N. In
other wordsrn € Nforallr e Rand n € N.

2.4 Theorem

[Theorem 2 in10]. If M; and M, are two LA-submodules
of an LA-module M over an LA-ring R, then M; " M, is
an LA-submodule of M.

2.5 Definition

Let M be an LA-module over an LA-ring R with left iden-
tity I and N an LA-submodule of M. We define the quo-
tient LA-module M/N = {m + N: m € M}.That is, M/N is
the set of all cosets of M in N.

2.6 Definition

Let M and N be two LA-modules over an LA-ring R with
left identity 1.A mapping ¢: M > N is said to be an LA-
module homomorphism if, V' r € R and m;, m, € M the
following conditions are satisfied:

o (my+my) ¢=(m) ¢+ (my) ¢,
o (rmy) ¢= r(my) ¢

2.7 Definition

Let M and N be two LA-modules over an LA-ring R with
left identity 1. Suppose ¢: M > N is an LA-module homo-
morphism. Then kernel of ¢ is defined as:

ker¢ ={m e M: (m) ¢ =0}.

2.8 Theorem

[Theorem 7 in 10]. Let M and N be two LA-modules, and
¢: M > N an LA-module Epimorphism. Then , M/ker¢ =
N. More generally if ¢: M > N is an LA-module homo-
morphism then M/ker$ = Imgé.

The above theorem is said to be First Isomorphism
Theorem for LA-modules.

2.9 Definition

Let M, and M, be LA-submodules of an LA-module M.
Then M is called internal direct sum of M; and M,, if
every element m € M can be written in one and only
one way as
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m = my+ m,, where m; € M; and m, € M,. Itis denoted
symbolically as M = M, ® M,.

The following result gives equivalence conditions for
internal direct sums.

2.10 Theorem

[Theorem 10 in 10]. Let M; and M, be LA-submodules
of an LA-module M. Then M is the internal direct sum of
M;and M, if and only if.

° M=M1+M2
° MIFNMZ:{O}.

The following result is modified form of the Exercise
on page 178 of'! which is true for modules. Here we prove
the modified form for LA-modules.

2.11 Theorem

Let M; and M, be two LA-submodules of an LA-module
M such that M = M, ® M,. Then

o ¢: M; ® M, > M, defined by (m; + m,) ¢ = m, for all
m; +m, € M; ® M, is an LA-module epimorphism
and M; © M,/ker¢ = M,.

o ¢:M;®M,-> M, defined by (m; + m,) ¢ = m, for all
m;+my, € M; ® M, is an LA-module homomorphism
and M; ® M,/M, = Img¢.

Proof: (i) To show that ¢: M; ® M, > M, is an epimor-
phism. We first show that ¢ is well defined. Let m; + m,,
m'+m', € M, ® M, be such that

my+my=m';+m',

= (m;+my —my=(m';+m'y) —m

SO (—my+my) +m;=(—my+m',y) +m'; (. by left
invertive law)

S>mp—m';=(—my+m'y) +m') —m',

=(—m';+m'y) + (—my,+ m'y (-.-by left invertive
law) Thus m; —m'; = —my+m', € M;N\M, = {0}

= —my+tm;=10

= my=m',

= (my+my)d=m;+m',)¢.
Now ((m;+ my) + (m'; + m'5)) ¢ = ((m; + m'}) + (my +
m';)) ¢ (-.- by medial law)
Thus =m,+m',

=(my+my) ¢+ (m;+m',) ¢
Let, r € R then, (r(my+my) ¢=(rm;+rmy¢
=rm,

Thus = r (m; + m,) ¢.
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Hence ¢ is an LA-module homomorphism.

Let m, € M,, then m,= 0+ m, € M; + M,. Thus (m,) ¢ =
m, which implies that ¢ is onto. Hence ¢ is an LA-module
epimorphism. Thus by first isomorphism theorem we
have M/ker¢ =M.

o Is well defined follows from the above part (i). To
show that ¢: M; © M, > M; is a Homomorphism let
mp+my,m';+m', e M;® M,, r € R then
((my+my) + (m' +m'y) = ((my+m';) + (my+m'y))

¢ (-.- by medial law)

Thus =m;+m/,
=(my+my) ¢+ (m;+m',) ¢
Now (r(m;+my)¢=(rm;+rm;)¢
=rm;
Thus =71 (m;+ my) ¢.
Hence ¢ is an LA-module homomorphism.
Thus by first isomorphism theorem we have

M, ® My/kerd = Img¢.

We show that ker¢ = M,. Now let, m; + m, € ker¢$ then

(m; + m,) ¢ = 0, but since (m; + m,) ¢ = m; thus m; = 0.
Now m; + m, = 0 + m, € M, which implies that

m;+ m, € M, implies ker¢ = M.

Now let, m, € M, then m,= 0+ m, € M; + M,. There-
fore (m,) ¢ = 0, so m, € ker¢. It follows that M, Ckerg.

Thus, M,=ker¢. Hence M; ® M,/M, = Img¢.

3. Congruences

In this section we discuss congruences on LA-modules.
Also we shall prove analogues of isomorphism theorems
using the concept of congruence’s. The idea comes from
the book 1 in which the author has done similar calcula-
tion for semigroups.

3.1 Definition

Let (M, +) be an LA-module over an LA-ring (R,+ -)
with left identity 1.A relation p on the set M is said to be
compatible, if for all m;, m,, ms3 m,; € M and for allr € R
such that (m, m,) and (m3, my) € p= (m;+ m,, mz+my)
e pand (rm;, rm,) € p.

A compatible equivalence relation is said to be a con-
gruence relation.

3.2 Example

Consider an LA-ring of order 7, with addition and multi-
plication are defined in following tables.
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H0123456 101234356
00123456 00000000
116012345 110123456
25601234 20246135
34560123 30362514
43456012 40415263
512345601 500531642
61234560 6|0654321

Where 0 is the left additive identity and I is the left
multiplicative identity. According to remark after the
definition of an LA-module the above defined LA-ring
is an LA-module over itself. Let p = {(a, b): a = b} be a
relation on the above defined LA-module. Then one can
easily verify that p is a congruence relation.

We are now going to prove a result in which we show
that every LA-module Homomorphism defines a congru-
ence relation on LA-modules.

3.3 Theorem

If ¢ is an LA-module Homomorphism from an LA-mod-
ule M to an LA-module N. Then ¢ defines a congruence
relation p on M given by (m;, m,) epif and only if (m,) ¢
= (my) ¢, for all m;, m, € M.

Proof: First we show that this relation is an equiva-
lence relation. Since for all m € M,

(m) ¢ = (m) ¢, so (m, m) €p which implies that p is
reflexive. Let m}, m, € M such that (m;, m,) €p. Then (m;)
¢ = (m;,) ¢ which implies that (m,) ¢ = (m;) ¢. Thus (m,, m;)
epand so pis symmetric. Let m;, m,, mz; € M such that (m,
m,) epand (my, m3) epthen (m;) ¢ = (m,) p and (m,) ¢ =
(m3) ¢. So, (m;) ¢ = (m3) ¢ which implies that (m;, m;3) ep.
Thus p is transitive. It follows that p is an equivalence rela-
tion. Next let m, m,, m3, m, € M such that (m;, m,) epand
(m3, my) epthen (m;) ¢ = (m,) ¢ and (m3) ¢ = (m,) ¢. Since
¢ is an LA-module Homomorphism so, (m; + m;3) ¢ = (m;)
¢+ (m3) ¢ = (my) ¢ + (my) ¢ and so, (m; + m3) ¢ = (m, +
m,) ¢ which implies that (m; + m3, m,+ m,) ep. Also for all
r € R, r (m;) ¢ =r (m,) ¢. Since ¢ is an LA-module homo-
morphism so, (r m;) ¢ = (r m,) ¢ which implies that (r
my,tm,) € p, and hence p is compatible. It follows that p is
congruence.

3.4 Definition

Let M be an LA-module over an LA-ring (R, +, )
with left identity 1 and p a congruence relation on M.
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We define M/p = {(m)" : m € M}. That is, M/p consists
of all equivalence classes corresponding to the elements
of M.

Suppose p is a congruence relation on M. Then we can
make M/p to be an LA-module over the same LA-ring (R,
+, -) with left identity 1 by defining the following binary
operations:

(m;)p+ (my)p = (m;+ my)p and (rm)p =r (m)p for all
m, m;, my, € Mand r € R.

Let m,;, m,, m;, m, € M be such that (m,)? = (m,)P and
(m3)p = (my)p then (m;, m,) € pand

(ms, my) € p. Since, p is a congruence relation so,
(m;+msz my+my) € pand forallr e R, (r my, rm,) € p.

It follows that (m; + m3)p = (m, + my)p and (r m;)p =
(r m,)p. Thus the operations are well defined.

Now let m;, m,, m3, m, € M and r € R such that (m;)p,
(my)p, (m3)p, (my)p € M/p, then
(mp + (my)p) + (m3)p = ((m; + my)p) + (m3)p

= ((m;+my) + m3)p
= ((m3+ my) + my)p (-.- by left invertive law)
= (m3+ my)p + (my)p
= ((m3)p + (my)p) + (my)p
Thus, M/p satisfies the left invertive law.
Now since left additive identity, 0 € M, therefore, (0)p €
M/p. So for (m)p € M/p, we have
(0)p + (m)p = (0+m)p=(m)p. Thus, (0)p is the left addi-
tive identity of M/p. Also, since
m € M implies —m € M, therefore, (-m)p € M/p. So for
(m)p € M/p we have (-m)p (m)p
= (-m + m)p = (0)p and (m)p + (-m)p = (m — m)p =
(0)p. It follows that (—m)p is the additive inverse of M/p.
Thus M/p is an LA-group.
Next let 7, ,, r, € R. Then

() r ((my)p + (my)p) =r ((m;+my)p
= (r (m;+ my))p
=(rm;+rmy)p
=(rmyp + (rmy)p
=r(my)p+r(my)p

(i) (r; + 15) (m)p = ((r; + 1)) m)p
=(rym+rym)p
=(rym)p + (rm)p
=r;(m)p +r,(m)p

(iii) r; (r;(m)p) =1, (r;m)p
= (r; (r,m))p
= (r,(rym))p
=1,(r;m)p
=r1,(r;(m)p)
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(iv) I (m)p = (1-m)p
= (m)p.

Thus M/p is an LA-module.

We are now going to prove analogues of isomorphism
theorems. Theorem 3.5 is analogues of first isomorphism
theorem, Theorem 3.6 is analogues of second isomor-
phism theorem and Theorem 3.7 is analogues of third
isomorphism theorem. These results have been taking
from1 which is true for Semigroups.

3.5 Theorem

If p is a congruence relation on an LA-module M. Then
M/p is an LA-module with respect to the binary opera-
tion defined as:

(my)p + (m)p=(m;+my)pandr(m)p = (rm)pforall

m, m;, my,e Mandr € R.

The mapping p*: M > M/p defined by (m)*p= (m)p for all

m € M is an LA-module Epimorphism.

If $: M > N is a LA-module homomorphism where M
and N are LA-modules. Then the relation
kerg = {(my, my) € M x M: (m;) ¢ = (m,) ¢}
is a congruence relation on M and there is an LA-module
Monomorphism y : M/ker¢ > N such that Img¢ = Iing¢
and the diagram commutes.

M ¢ N
NE—
(kerq>\j /
M/kerd

Proof: The first part of the theorem follows from the
above discussion. Now let m, m;, m, € M and r € R, then

(m;+my)p* = (m; + my)p

=(my)p + (my)p
= (m)p* + (my)p"

and (rm)p* = (r m)p

=r(m)p
=r (m p.

Thus p* is an LA-module homomorphism. Clearly
p* is onto. Hence p* is an LA-module epimorphism.
From Theorem 3.3 the relation ker¢ is an equivalence
relation.

Now define a mapping y: M/ker¢ > N by ((m) ker¢)
= (m) ¢ for all (m) ker¢ € M/ker¢. Then vy is well defined

and one-one.
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Let (m;)ker¢, (m,) ker¢ € M/ker¢ such that (m;) ker¢
= (my) ker¢p & (m;, m,) € kerd < (m;) ¢ = (m,) ¢ &
((my) kerd) y = ((m,) kerd) y.

Now

((my) ker¢ + (m,) ker¢) y = ((m; + my) ker¢) y
=(m;+my) ¢
=(m) ¢+ (my) ¢

= ((m;) kerd) v + ((my)kerd)
Now let, (m) ker¢p € M/ker¢ and r € R then
(r (m) ker¢) y = ((r m)kerd) y
=(rm)¢
=r(m)¢
=71 ((m) ker) .
Showing that y is an LA-module homomorphism.
Hence vy is a LA-module monomorphism. It is obvious
that Img¢ = Imgy.
Now from the definition it is clear that (m) [ker¢#] y =
[(m) kerd#] y = ((m) kerd) v = (m) ¢.

Thus the diagram commutes.

3.6 Theorem

Let M and N be LA-modules over the same LA-ring (R, +,
-) with left identity I and ¢: M > N a LA-module Homo-
morphism. Suppose p is a congruence relation on LA-
module M such that p c ker¢. Then there exists a unique
LA-module homomorphism y: M/p >N such that Imgy
= Img¢ and the diagram commutes.

M () N

M/?

Proof: Define y: M/p > N by ((m)p) v = (m) ¢ for all
(m)p € M/p. Let (m;)p, (m,)p € M/p such that (m;)p =
(m,)p then (m;, m,) € p  ker¢ which implies that (m;,
m,) € ker¢. Thus
(my) ¢ = (m,) ¢. It follows that y is well-defined. Now let
(m,)p, (my)p € M/p, then
((my)p + (my)p) y = ((m;+my)p) y

=(m;+my) ¢

=(my) ¢ + (my) ¢

=((m)p) v + ((m)p) y.
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Also for r € R we have, (r (m;)p) v = ((rm;)p) v
=(rm;) ¢
=r(m)¢
=r((my)) .
Thus vy is a LA-module homomorphism.
It is clear that Iimg¢p = Img\y.
Now (m) (p*) w = ((m)p*) v = ((m)p) v = (m) ¢. That is
the diagram commutes.
Now let w;: M/p > N be another LA-module Homomor-
phism such that (p*) y; = ¢. Let m € M then (m) (p*) y; =
((m)p*) w;= (m) ¢ = (m) (p*) y which implies that ((m))
vy =((m)) y.
Thus v = ;. Hence the LA-module Homomorphism
is unique.

3.7 Theorem

Let p and p be congruence relations on LA-module M
such that p cp. Then p/p = {((m )P, (m,)P) € M/p x M/p
: (my, m,) € p} is a congruence relation on M/p and M/p
/o/p =M/o.

Proof: First we show that the relation o/p is a
congruence relation on M/p. Since (m, m) € o for all m
€ M, thus ((m)p, (m)p) € o/p which implies that o/p is
reflexive.

Let m;, m, € M be such that ((m;)p, (m,)p) € o/p,
then (m;, m,) € o. Since o is Symmetric so

(m,, m;) € p And so, ((m,)p, (m;)p) € o/p. Hence o/p
is Symmetric. Now let m, m,, ms; € M such that ((m;)p,
(my)p) € o/pand ((m,)p, (m3)p) € o/p, then (m;, m,) €
o and (m,, m;) € o. Since o is Transitive therefore, (m;,
ms) € o. Therefore ((m;)p, (m,)p) € o/p. Hence o/p is
Transitive. So o/p is an equivalence relation.

Now let m;, m,, ms;, my € M and r € R be such that,
((my)p, (m;)p) and ((m3)p, (my)p) € o/p. Then (m;, m,)
and (m3, my) € obut p is compatible therefore, (m; + m3,
m,+ my) € cand

(rmy, rmy) € o. Thus ((m; + m3)p, (m,+ my)p) € o/p
and ((r my)p, (r m,)p) € o/p. Thus 6 /p

is compatible. Hence o /p is a congruence relation on
M/p. Next, define a mapping

¢: M/p > M/o by ((m)p) ¢ = o(m).

Let (my)p, (my)p € M/p such that (m;p = (m,)p then
(m;, m,)€ P < o which implies that
(my, my) € othus (m;)° = (m,)° which implies that ((m)
p) ¢ = ((m,)p) ¢. It follows that ¢ is well-defined. Now let,
(my)p, (my)p € M/p then
((m)p + (my)p) ¢ = ((m; + my)p) ¢

= (m;+my)°
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= (my)° + (my)°

=((my) ¢ + ((m3)) ¢.
Also for r € Rwe have, (v (m;)) ¢ = ((r m)p) ¢
= (rm)°
=r(my)°
=r((my) ¢.

Thus by Theorem 3.5 there is an LA-module Mono-
morphism y: M/p /ker¢ > M/c defined by,
((m)p) ker¢p) v = (m)°. Clearly it is onto, because for
(m)° € M/p there exists
((m)p) ker¢ € M/p/ker¢ such that, (((m)p) kerd) y =
(m)o. Hence M/p / ker¢ = M/o.
Now, kerd = {((m)p, (m,)p) € M/p xM/p: ((m)p) ¢
= (m,)p) ¢}
={((m)p, (my)p) € M/p x M/p: (m})° = (m)p }
={((m})p, (mx)p) € M/p xM /p: (m; m,) ec}
=o/p
Hence M/p /o/p = M/oc.

4, External Direct Sum

In'0 the authors have defined internal direct sum of LA-
submodules M; and M, of an LA-module M. In this sec-
tion we define external direct sum of LA-modules. We
show that internal and external direct sums are isomorphic
and prove a result which is based on external direct sum.

4.1 Definition

Let M; and M, be LA-modules over the same LA-ring
(R, +, -) with left identity /. Then we can define addition
and scalar multiplication on the set M; X M, as follows:
(my, my) + (m'y, m'y) = (my+m'y, my+m'y)
And
r(m;, my) = (rmy, rmy).

For all (m;, m,), (m';, m';) € M1 x M2 and r € R. In
other words and addition and scalar multiplication are
defined coordinate wise. According to the above binary
operation M1 x M2 become an LA-module over the same
LA-ring R which we call external direct sum of M1 and
M2. Tt is denoted by M1 ® M2.

The following result shows that the external and inter-
nal direct sums are isomorphic.

4.2 Theorem

Let M; and M, be two LA-submodules of an LA-module
M such that
M=M,®M,then M=M, ® M,.

Indian Journal of Science and Technology



Fawad Hussain, Muhammad Sajjad Ali Khan, Khaista Rahman and Madad Khan

Proof: Define a mapping ¢ : M > M; ® M, by (m; +
my) ¢ = (my, my) forallm; + my e M

Letml + m,, m'; + m', € M be such that

m;+my=m';+m,

= (mp+my)—my=(m';+m')—m,

= (-my+my) +my=(—my+m'y) + m'; (- by left
invertive law)

= my=(—my+m',) +m'

= my—m'=((-my+my)+m'y)-m',

= my-my=(-mi+m'y)+ (—-my+m'y) (- byleft
invertive law)

= my-m;=-my+m', e M\;N M,

By Theorem 2.10 we have M; "M, = {0}so, m; —m'; =
0and - m, + m', = 0. Thus, m; = m'; and m, = m’', There-
fore, (m;, m,) = (m';, m,’). Hence, (m; + m,) ¢ = (m'; +
m',) ¢. It follows that ¢ is well-defined. Also it is obvious
from the above discussion that ¢ is one-one.

Letm;+ m, m'; + m', € M; ® M, then
(my+my) +(m' +m'5) ¢=((my+m'y) +(my+m';)) ¢
(- by medial law)

=(mp+m', my+m'y)
= (my, my) + (m'y, m'y)
=(my+my ¢+ (m';+m'y)¢.
Now let, ¥ € R then (r (m; + m,) ¢ = (r m; + rmy) ¢
= (rmp, rm,)
=71 (m;, my)
=1 (m; + m,) ¢.

Thus ¢ is an LA-module homomorphism. Clearly ¢ is
onto; because for (m;, m,) € M; ® M, there exists m; +
m, € M;® M, such that (m; + m,) ¢ = (m;, m,). Hence
M=M,®M,.

We are now going to prove a result which has been
taken from!? which is true for ideals in a ring. Here we
prove it for LA-modules.

4.3 Theorem

Let M be an LA-module over an LA-ring (R, +, -) with left
identity 1. Suppose M; and M, be two LA-submodules of
M. Then M/M; "\ M, = M/M; ® M/M,.

Proof: Define a mapping ¢ : M > M/M1 ® M/M, by
(m) ¢ = (m+ M1, m + M2). Then ¢ is well defined. Let m,
m' € M be such that m = m' then m + M1 =m' + M, and
m + M2 =m' + M2 which implies that (m + M1, m + M2)
=(m' + M1, m + M2) thus, (m) ¢ = (m') ¢.

Now let m, m" € M, then, (m + m') ¢ = ((m + m') + M1,
(m+m') +M2)
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=(m+M1)+(m' + M1), (m + M2) + (m' + M2))
=(m+Ml,m+M2)+ (m' + M1, m" + M2)
=(m) ¢+ (m') ¢.
Now forall r € Rwe have, (rm) ¢ =(rm+M1,rm+M2)
=r(m+Ml,m+M2)
=r(m) ¢.
Thus ¢ is LA-module homomorphism. Clearly ¢ is onto;
because for (m + M1, m + M2) € M/M; ® M/M, there exists
m € M such that (m) ¢ = (m + M1, m + M2). Thus by first
isomorphism theorem we have M/ker¢ = M/M; ® M/M,.
Now  ker¢ ={m e M| (m) ¢ = (M1, M2)}
={meM|(m+ M1, m+M2)= (M1, M2)}
={m eM|m+Ml=MI1,m+M2=M2}
={m eM|m e M1 and m € M2}
={meM|m e M1l N M2}
=M1 N M2.
Hence M/M; N M, = M/M; ® M/M,.

5. References

1. Howie JM. Fundamentals of semigroup theory. Clarendon
Press; 1995.

2. Kazim MA, Naseeruddin M. On almost semigroups. The
Alig Bull Math. 1972; 17(2).

3. Protic PV, Stevanovi N. AG-test and some general properties
of abel-grassmann’s groupoid. PUMA. 1995; 4(6):371-83.

4. Cho JR, Pusan, Jezek J, Kepka T. Paramedial Groupoids.
Czechoslovak Mathematical Journal. 1996; 49(124).

5. Mushtaq Q, Yusuf SM. On Locally Associative LA-semi-
groups. ] Nat Sci Math. 1979Apr;1:57-62.

6. Kamran MS. Conditions for LA-semigroups to resemble
associative structures [PhD thesis]. Quaid-i-Azam Uni-
versity, Islamabad; 1993. Available from: http://eprints.hec.
gov.pk/2370/1/2225.htm

7. Mushtaq Q, Kamran MS. Left almost group. Proc Pak Acad
of Sciences. 1996;1(33).

8. Yusuf SM. On left almost ring. Proc of 7th International
Pure Math Conference; 2006.

9. Shah T, Rehman I. On LA-rings of finitely nonzero func-
tions. Int ] Contemp Math Sciences. 2010; 5(5):209- 22.

10. Shah T, Raees M, Ali G. On LA-modules. Int ] Contemp
Math Sciences. 2011; 21(6):999-1006.

11. Jacobson N. Basic algebra 1. New York: WH Freeman and
company; 1910.

12. Malik DS, Mordeson M, Sen MK. Fundamentals of abstract
algebra. McGr Hill Companies Inc; 1997.

Indian Journal of Science and Technology | 7 -



	_GoBack

