
Abstract
Background: Cognitive radio is being recognized as an intelligent technology due to its ability to rapidly and autonomously 
adapt operating parameters to changing environments and conditions. In order to reliably and swiftly detect spectrum holes 
in cognitive radios, spectrum sensing must be used. Accurate spectrum sensing is important in improving the efficiency 
of cognitive radio networks. False sensing results in either waste of spectrum or harmful interference to primary users 
who may remotely or physically capture the sensors and manipulate the sensing reports. Methods: A novel framework 
and an innovative approach have been introduced to eliminate the malicious behaviors of secondary users. It is found that 
spectrum sensing alone cannot prevent the malicious behavior without any information on users’ reputation. Based on 
the evaluation of malicious behavior resistance methods, joint spectrum sensing and malicious nodes detection approach 
for optimal prevention from sensing falsification is being proposed. Findings: The proposed approach minimizes Linear 
Minimum Mean-Square Errors (LMMSEs) when it is compared with the existing algorithms such spectrum sensing based 
on HSMM and FNN based spectrum sensing are plotted versus detection probability, false alarm probability. With more 
malicious nodes proposed schemes are more effective to restrain the false alarms. Improvement/Application: The 
proposed spectrum sensesframework with attack detection which is very effective to determine the malicious users in 
spectrum holes. 
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1.  Introduction

Radio spectrum is one among the most rare and significant 
resource for wireless communications. This fact, with new 
perceptions into the use of spectrum has imposed new 
challenges to the conventional approaches to spectrum 
management. It is shown by the current measurements 
that most of the allocated spectrum is largely under-
utilized and the Spectrum- Policy Task Force appointed 
by Federal Communications Commission (FCC) has 
confirmed the same views1. Spectrum efficiency can be 
enhanced substantially by giving expedient access of these 
frequency bands to a group of unlicensed potential users. 
Cognitive Radio (CR)2 has been put forward as a solution 

to increase spectrum efficiency by making good use of 
the unused spectrum in evolving environments. Hence 
the CR design is a path-breaking radio design philosophy 
involving intelligent sensing of the bands of spectrum and 
determination of the transmission characteristics (e.g., 
symbol rate, power, bandwidth, latency) of a group of 
potential users based on the primary user’s behavior. 

Lately, Cognitive Radio (CR) has been suggested as 
a promising technology to enhance spectrum utiliza-
tion by providing secondary access to unused licensed 
bands. For this secondary access, the pre-condition is 
non-interference to the primary system. This necessity 
demands spectrum sensing to act as a key function in 
Cognitive Radio systems. One of the chief components of 
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the Cognitive Radio concept is the measurement, sensing, 
learning and being knowledgeable of the parameters 
related to the radio channel characteristics, availability of 
spectrum and power, radio’s operating environment, user 
requirements and applications, available networks (infra-
structures) and nodes, local policies and other operating 
restrictions. In terms of Cognitive Radio technology, the 
users with topmost priority or legacy rights on the usage 
of a particular part of the spectrum are defined as pri-
mary users. Having said this, secondary users, with lower 
priority, make use of this spectrum without causing any 
interference to primary users. Hence, it is necessary to 
the secondary users to have Cognitive Radio capabilities, 
such as detection of the spectrum with accuracy to check 
if it is being used by a primary user and to make changes 
in the radio parameters to use the unexploited part of the 
spectrum. 

Spectrum sensing schemes need a large communication 
resource which includes sensing time delay, control chan-
nel overhead and consumption energy for reporting 
sensing data to the FC, with large sized networks. This issue 
has been taken into consideration in some of the analysis 
done previously3. In4, the authors put forward making use 
of a censored truncated sequential spectrum sensing tech-
nique for conserving energy. Then again, cluster-based 
Cooperative Spectrum Sensing CSS schemes are looked 
at for reduction of the energy of CSS5 and minimization 
of the bandwidth requirements by reducing the number 
of terminals reporting to the fusion center6. In7, Chen et 
al. advised a cluster-based CSS scheme for optimization 
of the cooperation overhead along with sensing reliabil-
ity. Truly, these suggested cluster schemes can decrease 
the amount of direct cooperation with the FC but can-
not decrease the communication overhead between CUs 
and the cluster header. A same kind of problem can be 
observed in the cluster scheme in8, though the identifi-
cation of optimal cluster size to increase the throughput 
used for negotiation is done. Another fact to be con-
sidered of the cluster scheme is improving the sensing 
performance when the reporting channel is affected from 
a severe fading environment9,10.

The load on signal processing techniques can be 
mitigated to a large extent by using cooperative diver-
sity between Cognitive Radio spectrum sensors. Few 
Cognitive Radio spectrum sensors under independent 
fades can help in reduction of individual sensitivity 
requirements and substantially help in defeating the hid-
den terminal problem by opposing the shadowing and 

multi-path effects. Several cooperative sensing schemes 
have been proposed in the literature11–13. Despite this, it 
was shown in13 that presence of few malfunctioning sens-
ing devices could negatively impact the performance of 
cooperative sensing system. 

A Malicious User’s (MU) presence worsens the 
detection performance of cooperative spectrum sensing. 
An MU is an uninvited and unlicensed user, camouflaged 
in the role of a legal user and transmits false information 
about the status of the primary signal. In general, known 
types of MUs include Always Busy (AB), Always Free 
(AF), Always Opposite (AO) and an MU that transmits 
high signal with probability α and low signal with prob-
ability, 1 – α and we name it α MU. The AB and AF types of 
MU always produce either a high (H1) or a low (H0) signal, 
respectively, irrespective of the original status of the pri-
mary signal. Whereas an AO type of MU, always produces 
a signal in opposition/contrary to the one observed from 
its local observation about the status of the PU. The AO 
MU is observed to be the most harmful type, particularly, 
when the decision is taken opposite to the real status of PU 
(if global decision or actual status of the PU is available).

In this research work, we have improvised schemes to 
recognize and avoid the effect of malicious nodes for the 
case where adaptive fuzzy inference system is used by the 
sensing devices in cluster formation. We applied a simple 
and moderate speedy combination scheme to make the 
decision process easy at the access point. 

Wang et al.14 examined how to make the security of 
collaborative sensing better. Especially, the author formu-
lates a malicious user detection algorithm that calculates 
the suspicious level of secondary users based on their 
past reports. Then, the author calculates trust values 
as well as consistency values that are used to reject the 
influence of malicious users on the primary user detec-
tion results. Through modelling, the author showed that 
even a single malicious user can substantially deteriorate 
the performance of collaborative sensing. The trust value 
indicator can tell apart honest and malicious secondary 
users effectively. The Receiver Operating Characteristic 
(ROC) curves for the primary user detection exhibit the 
development in the security of collaborative sensing.

Gao et al.15 re-examined the already available proposals 
corresponding to secure collaborative spectrum sensing. 
Moreover, the author recognized several new location 
privacy related attacks in collaborative sensing, which 
are expected to expose secondary users location privacy 
by tampering their sensing reports and their physical 
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location. To prevent these attacks, the author introduced 
a new privacy preserving framework in collaborative 
spectrum sensing to prevent location privacy leaking. 
A testbed replicating the actual test system to evaluate 
the system performance has been conceptualised and 
modelled by the author.

Althunibat et al.16 described the effect of multiple 
malicious users on the energy efficiency of a cognitive 
radio network is given. A low-overhead security protocol 
is suggested to deal with SSDF attacks under a compro-
mise between energy efficiency and security. An analysis 
is given to set the optimal number of security bits required 
to maximize energy efficiency. Noteworthy improve-
ment on the achievable energy efficiency is shown in the 
simulation results and the optimal number of bits obvi-
ously depends on the selected fusion rule, the number of 
malicious users and the number of legitimate users.

Wang et al.17 built a joint spectrum sensing and 
access framework to nullify the malicious behaviors of 
both rational and irrational IMUs. Absence of reputa-
tion information makes the malicious behavior resistance 
and deteriorates performance as the honest users may be 
misjudged as IMUs. The author designed an incentive 
suitable method to provide a moderate punishment to 
IMUs, based on the moral hazard principal-agent model. 
The author’s observations show that both spectrum sens-
ing and spectrum access alone cannot prevent malicious 
behaviors without any information on users’ reputation. 
According to the different properties of malicious behav-
ior resistance by spectrum sensing and spectrum access, 
the author applies joint spectrum sensing and access for 
optimal prevention of the IMUs sensing falsification. The 
suggested malicious behavior resistance mechanism is 
shown to provide the same significant performance as the 
ideal case with truthful sensing.

Li et al.18 took another question in contrary into 
consideration: could a malicious entity take advantage of 
space diversity, e.g., an external attacker or an non-trusted 
Fusion Center (FC), to gain geolocation of a secondary 
user, without its knowledge, by linking his location-based 
sensing report to his physical area. The author presented 
a new location privacy definition to measure the location 
privacy leaking in collaborative sensing by introducing 
a Privacy Preserving collaborative Spectrum Sensing 
(PPSS) scheme, which includes two primitive protocols: 
Privacy Preserving Sensing Report Aggregation proto-
col (PPSRA) and Distributed Dummy Report Injection 
Protocol (DDRI). Especially, PPSRA scheme make use 

of applied cryptographic techniques to allow the FC to 
get the consolidated result from various secondary users 
without learning each individual’s values whereas DDRI 
algorithm can be used to get differential location privacy 
for secondary users by introducing a novel sensing data 
randomization technique. We executed and assessed the 
PPSS scheme in a real-world test system. The assessment 
results show that PPSS can considerably increase the sec-
ondary user’s location privacy with a sensible security 
overhead in collaborative sensing.

Wang et al.19 implemented a moral hazard 
principal-agent framework and modelled an incentive 
suitable method to counter the malicious behaviors 
of rational and irrational IMUs. The author’s observa-
tions show that both spectrum sensing and spectrum 
access alone cannot prevent malicious behaviors without 
any information on users’ reputation. According to the 
different properties of malicious behavior resistance by 
spectrum sensing and spectrum access, the author applies 
joint spectrum sensing and access for optimal prevention 
of the IMUs sensing falsification. The analysis results 
show that the mechanism imparts similar performance as 
the ideal case with perfect sensing.

2.  Proposed Methodology
Traditionally deployed sensing techniques in general are 
associated with sensing spectrum basically in three dimen-
sions which include time, geographic area & frequency. 
Though, other dimensions do require further exploration 
to facilitate spectrum opportunity. Consequently, this kind 
of signals play a major role in the issue related to sensing 
the spectrum. The following innovative spectrum sens-
ing has been basically suggested so as to counteract issues 
inherent in current spectrum sensing methods. Suggested 
spectrum sensing methodology here comprises of specific 
spectrum segmentation, CRN spectrum sensing cluster 
formation that can facilitate malicious detection.

2.1  Spectrum Segmentation 
Spectrum segmentation serves as a first step to identify 
the subbands that are in use at a certain time, when a 
wide portion of the spectrum is observed. The observed 
band is analyzed to find the boundaries of the different 
subbands. In this research, improved histogram based 
on fuzzy is proposed for spectrum segmentation20. 
Before that power spectral density value is calculated for 
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signal before identifying the boundaries of the band. The 
proposed FNN model predicts the channel status as “1” 
for an occupied channel and “0” for unoccupied channel.

Let [f0, fN] be the observed frequency range of the 
radio spectrum. The segmentation process has to estimate 
f0, f1, f2

… ..fN the boundaries of the N frequency intervals 
is illustrated in Figure 2. 

Step 1: Calculate the power spectral density value for each 
and every signal using periodogram function.
Step 2: The histogram of the smoothed PSD value (f(i)val-
ues) is calculated first. The local maxima of the histogram, 
whose values exceed a certain threshold m, are searched. 
Therefore, the threshold on the maxima detection, m, 
depends on the minimum bandwidth considered for 

the sub-bands. Let these maxima be called M1, …, Mk. 
Each interval is the distance between two successive local 
maxima. Then fuzzifies a newly-generated factor from the 
multiplication of two factors the interval and he frequency 
of signals in the interval. The values are proportional to 
the sub-band widths. 
Step 3: Called fi the PSD level corresponding to the center 
of the histogram bin, whose occurrence is Mi, the PSD 
segments whose values lie in a range [fi – δ, fi + δ] are iden-
tified, and a new version of the PSD is generated where 
these segments are rectified to the value fi. The tolerance б 
depends on the variance of the PSD estimate.
Step 4: The slope of the rectified version of the PSD 
between two segments is analyzed to detect a boundary. 
In particular, the boundary is located where a minimum 
of the PSD between two segments is found. A subband 
is found only if the corresponding bandwidth is greater 
than 1. The value of 1 represents the minimum sub-band 
width. Therefore, it should be chosen starting from the 
knowledge of the minimum bandwidth of primary users 
in the observed frequency spectrum.

2.2  Cluster based Spectrum Sensing 
It is imperative for improvisation and development of an 
efficient CSS or Cooperative Spectrum Sensing scheme 
in CR or Cognitive Radio. This is often because of poten-
tial viewed as a system that enables spectrum utilization 
enhancement. Cooperative sensing framework comprises 
of several PUs, cooperating CR users including a FC. 
Cooperative sensing components have been illustrated in 
Figure 1. Here every CU is enabled for conducting a spec-
trum sensing method, referred to as local spectrum sensing 
in distributed scenario and used for primary user PU signal 
detection. Prior to the CU sensing process there is grouping 
of the spectrum value CU’s in the form of clusters. SU loca-
tion found in factual CR networks if found to be distributed 
in a random manner. Hence as a result a couple of SUs pos-
sibly undergo deep fading when others don’t. Conversely 
though, few users adjacent to one other that undergo simi-
lar path fading generally have the same SNR. Hence CR 
network is structured in the form of multiple clusters on 
the basis of geographical position ase in Figure 3.

SNR for primary signal may be calculated on the basis 
of the following formula

	 SNR P Bi i= (d) / N � (1)

Pi is a primary signal, Ni is band noise and B the 
bandwidth. Here we propose cluster header selection on 

Figure 1.  Overall proposed block diagram of secure 
spectrum sensing.

Figure 2.  Spectrum segmentation.
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the basis of sensing data reliability. Every SU during the 
sensing interval deploys samples to execute spectrum 
sensing through application of the HANFIS detection 
method. Cluster formation method suggested here has 
been explained in the Figure 4.

2.2.1  Spectrum Sensing 
The hybrid adaptive neuro fuzzy inference system model 
which is innovative has been introduced for identifying 
spectrum holes. Suggested technique here potentially 

predicts channel status if in a state of being occupied or 
unoccupied and facilitates spectrum sensing. Bandwidth 
efficiency, power spectral density and capacity over sub-
band are input to hybrid. Subband state prediction is 
carried out by the adaptive neuro fuzzy inference sys-
tem. Spectrum sensing here refers to band white spaces 
detection21,22.

Local spectrum sensing at the ith CU is essentially a 
binary hypotheses testing problem:

	
H x

H x
i i

i is i

0

1

: (t) n (t)
: (t) h (t) n (t)

=

= +





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� (2)

where H0 and H1 correspond, respectively, to hypotheses 
of absence and presence of the PU signal, xi(t) represents 
received data at CUi hi denotes the gain of the channel 
between the PU and the CUi,s(t) is the signal transmitted 
from the primary user and n(t) is additive white Gaussian 
noise. Also channels that correspond to various CUs are 
considered as being independent. Additionally CUs and 
PUs share a common spectrum allocation. 

During practice there is a margin of error in the case 
of spectrum sensing algorithms. These may be catego-
rized as miss detections & false alarms. Miss detection 
generally takes place when primary signal is inherent in 
sensed band & spectrum sensing algorithm chooses the 
hypothesis H0 that potentially leads to harmful interfer-
ence in the case of primary users. Contrarily, false alarm 
takes place when the state of sensed spectrum band 
is idle and when spectrum sensing algorithm chooses 
hypothesis H1. This leads to missed transmission oppor-
tunities and hence lowers spectrum utilization. Physical 
malicious node takes on multiple identities and behaves 
as multiple distinct nodes (called Sybil nodes) in the 
system. Follow a simple interference model wherein the 
transmissions between neighboring secondary nodes 
fail if they are within certain distance of each other and 
use the same frequency band or overlapping frequency 
bands. On the basis of these parameters, spectrum sens-
ing algorithm performance may be inferred by deploying 
two probabilities: the probability of miss detection Pmd 
= P(H0/H1), or its complementary probability of detec-
tion Pd = P(H0/H1) = 1 – Pmd and the probability of false 
alarm Pfa = P(H1/H0) Large Pd and low Pfa values would 
be desirable. However, a trade-off between Pd and Pfa is 
prevalent which indicated that improving any one of 
performance metrics would lead to degradation of the 
other one.

Figure 3.  Cluster-based cooperative spectrum sensing.

Figure 4.  Process cluster formation and cluster head 
selection.



An Efficient Spectrum Sensing Framework and Attack Detection in Cognitive Radio Networks using Hybrid ANFIS

Indian Journal of Science and Technology6 Vol 8 (28) | October 2015 | www.indjst.org

When transmitter received signal, local observation of 
the ith user is given by

	 S x nLOi i
n

S

= ( )
=

∑
2

1

� (3)

where S is the number of samples and is equal to 2TB, and 
T and B are the sensing time and bandwidth, respectively. 

2.2.1.1  Hybrid ANFIS 
Jang was the first one to propose the Adaptive Neuro Fuzzy 
Inference System or ANFIS. Implementation of ANFIS 
is relatively easy given input/output task and is further 
applicable in facilitating spectrum sensing that enables 
identification of spectrum holes. This means that ANFIS 
model combines ANN and FIS tools as a compound, 
basically reflecting absence of boundaries that help in 
distinguishing ANN and FIS features respectively23,24.

if x1 is A1, x2 is A2, … , xn is An Then y = k0 + k1 x1 + k2 
x2 + … ,+ knxn

Where x1, x2, … , xn are considered as input signals A1, A2, 
…, An are fuzzy sets and y is the output variable we can 
find that in such type of fuzzy rule. The output variable is 
a first order polynomial on input variables. 

2.2.1.2  Description of the Method
ANFIS model has six layers; one input, four hidden & one 
output layer, wherein every layer carries out a specific task of 
forwarding the signals. Figure 1 shows an ANFIS model.

Input layer is the first layer, where the neurons just 
transmit received input or crisp signals to the subsequent 
layer. Namely

	 x yi i
1 1
− � (4)

Where xi
1  is the input signal and y i

1  is the output signal 
of neuron in the first layer

ANFIS model second layer is the fuzzification layer 
where the neurons represent antecedent fuzzy sets of fuzzy 
rules. An input signal is further received by the fuzzifica-
tion neuron wherein it ascertains channel capacity.This 
is then deployed for channel transmission rate analysis. 
Calculating input signal channel capacity is carried out 
using the following formula

	 C B SNR= +( )log2 1 � (5)

	 y f C xi i
2 2
= ( )( ) � (6)

where f represents the activation function of neuron i, 
and is set to a certain membership function. 

Second hidden layer or the third one is the fuzzy rule 
layer where every neuron gets signals singularly from 
fuzzification neurons. These are part of the fuzzy rule 
antecedents and are representative of the signal spectral 
efficiency and also help in computation.

	 S x B
C

SNRe i( ) =
∆

+( )log2 1 � (7)

Product operator in the ANFIS, is deployed for 
evaluation of neuron conjunction overall. Hence we arrive 
at the following:

	 y S x ci c
m

e i i
3
=∏ ( ) � (8)

Se(xi)ci is the signal from fuzzification neuron c in the 
second layer to neuron i in the third layer, y i

2  is the out-
put signal of neuron i in this layer and m is the number of 
antecedents of the fuzzy rule neuron i represents 

Normalization layer is considered here as the fourth 
layer where every neuron gets signals from the third 
layer rule neurons. For any given rule it calculates the so-
called normalized firing strength. The specific strength 
value is representative of the channel capacity threshold 
value as well as spectral efficiency. These are utilized for 
determination of spectrum subband state. 

Defuzzification layer is the fifth one where neurons 
here are connected to fourth layer normalization neuron 
respectively. They additionally receive initial input signals 
x1, x2, … , xn. A defuzzification neuron computed the 
“weighted consequent value” of a given rule as:

	 y x k k x k x k xi i i i i in n
5 5

0 1 1 2 2= + + + +( ) � (9)

xi
5  is the input and yi

5  is the output signal of neuron 
i in the fifth layer; and ki0 + ki1+ ki2 + … +kin is a set of 
consequent parameters of rule i.

Output or sixth layer is the summation layer. This layer 
has a single neuron and it computes and summates fifth 
layer defuzzification neurons and post that it generates 
overall ANFIS output y as given below:

	 y xi
i

n

=

=

∑
1

� (10)

xi is the signal from defuzzification neuron i in the 
fifth layer to this summation neuron; and n is the num-
ber of defuzzification neurons, specifically the number of 
fuzzy rules in the ANFIS model.
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2.2.1.3  Training ANFIS Model
In majority of the ANFIS models, most frequently used 
activation function is basically the so-called bell-shaped 
function, as below:

	

y

x
r

t=

+ −






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


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1

1
2s
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where r, s and t are parameters that respectively control 
the slope, center and width of the bell-shaped function. 
During training, specifically parameters may be defined 
as well as adjusted using the learning algorithm.

Particularly ANFIS employs a hybrid learning or 
training algorithm which integrates least-squares estima-
tor and the gradient descent technique and then at the 
end with the Runge Kutta Learning Method (RKLM). At 
first, initial bell-shaped functionalities are assigned and 
those that have specific parameters to every fuzzification 
neuron. Neurons function centre is connected to input 
xi, these are such so that division of domain of xi is uni-
form. Fnction widths and slopes are formulated to permit 
adequate function overlapping (s)25,28. Training dataset is 
presented in the training process in a cyclic manner to the 
ANFIS. In recent work some of the research done under 
based on the Neural Network (NN) based classification 
methods29,30 for various applications. Every cycle in the 
training examples is referred to as an epoch. Every epoch 
that constitutes the ANFIS learning algorithm, consists of 
both forward & backward pass. Forward pass objective is 
forming and adjusting parameters that follow. Backward 
pass adjusts activation functionalities parameters.

2.2.2  Cluster Head Selection 
Nodes that possess the foremost reliable sensing result 
assume the cluster header’s roles. These roles are mak-
ing and reporting cluster’s decision to FC. For lowering 
reporting time as well as bandwidth, the foremost reliable 
cluster head sensing data, is employed to make a cluster 
decision. This technique method basically implies that 
decision of a cluster is based on the selective combination 
technique. FC integrates cluster decisions to take a final 
decision and then further broadcast final sensing decision 
to the entire network. Here we propose a cluster header 
selection on the basis of sensing data reliability. For every 
sensing interval, most reliable sensing data CU is chosen 
as the cluster header. Sensing data CR is computed by 
the probability of detection Pd which is a measure of the 

interference to the PU and the probability of false alarm 
PF which sets the upper bound on spectrum utilization. 
Detection and false alarm probabilities of the ith user are 
given, respectively, as: 
Probability of detection is

	 P P y H Q
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Where λi is local channel capacity threshold , γi is the 
Signal to noise ratio and σu

2  is the variance. N is the 
number of sample received signals. 
Probability of false alarm
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Where λi is local channel capacity threshold, and σu
2  is 

the variance. N is the number of sample received signals. 
On evaluating sensed data results, CRU reliability is 

computed and this reliability value is employed for cluster 
head selection. The remaining CRN join as cluster mem-
bers on the basis of geographical position. Every cluster 
header usually is not fixed however it is chosen dynami-
cally for every sensing interval on the basis of sensing 
data quality at every CU.

2.3  Attacks Detection 
Malicious secondary users adversely impact spectrum 
sensing performance. These users are identified on the 

Figure 5.  Proposed malicious user detection.
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basis of specific network parameters like attack strength 
and probability. Hence to address this issue arising on 
account of suspicious level, calculation of nodes is carried 
out in the cluster. The suspicious value is then retained as 
a table in the cluster are shown in Figure 5.

2.3.1  Suspicious level calculation
Presence of malicious user in the network is assumed 
here. We define secondary users as: 

	 S t P T M Fi i t( ) =( )� | � (14)

as the suspicious level of node i and j at time t, where 
Tn(= HorM) is the type of node and Ft represents all 
observations from time slot 1 to time slot t. The suspi-
cious value calculation is described by Wang et al.14. The 
formula used for calculating the suspicious value is: 

	 S ti

t
i

j
N t

i
( ) =

∏ ( )

∑ ∏ ( )

=

= =

τ

τ

θ τ

θ τ

1

1 1

� (15)

Where τ is a time slot, N is number of secondary users 
present in the cluster and θi(τ) is a probability of reports at 
time slot t conditioned that node n is malicious.

	 θ τi d i f iP P( ) = +, , � (16)

In the cluster users’ suspicious values are computed, 
thereafter these are then updated as in the cluster head. 
Once spectrum sensing is completed, calculation of node 
suspicious value is carried out, where the suspicious value 
that exists below that of the threshold, node is considered 
as the honest node whereas the particular value that is 
inherent beyond the threshold, in that scenario that value 
is considered as malicious. After identification of node as 
being a malicious node, this information is then passed 
on to the cluster head. The cluster head in turn forwards 
the message to other cluster members. This leads to isola-
tion of the suspicious node. 

3.  Experimental Results 
In this section, performance evaluation is done for 
securespectrum sensing technique in comparison with 
conventional techniques. The minimum distance between 
the secondary users and the primary user is 1000m and 
the maximum distance is about 2000m. For the local 
spectrum sensing, the bandwidth-time creation12,26,27 is m 
= 5. For the primary user transmission power is 200mW. 

The noise level σ2 is about –110dBm. The Signal-to-Noise 
Ratio (SNR) of individual secondary user depends on its 
position and assumed Rayleigh fading. The parameters 
employed to measure the performance of the proposed 
technique are linear MMSE value. It should be noticed 
that the simulation is not carried out over a physical net-
work model since the proposed work does not depends 
on any physical layer setting. In a cognitive radio system, 
each SU has a detection probability Pd,i and a false alarm 
probability Pf,i on a primary channel.

In Figure 6, the Linear Minimum Mean-Square Errors 
(LMMSEs) of the proposed spectrum sensing algorithm 
is compared with the existing algorithms such spectrum 
sensing based on HSMM and NN based spectrum sens-
ing are plotted versus the noise variance σu

2 . The sensing 
unit is modeled to have a detection probability of Pd = 0.6 
and a false-alarm probability of Pf = 0.2. It is observed 
that the proposed algorithms achieve the lowest LMMSEs 
whereas other algorithms had the worst performance, as 
expected. In addition, as the noise variance increases, the 
LMMSEs increase and the performance of the estimators 
of the proposed approach obtained nearer to each other. 
The Table 1 shows that the values of the comparison 

Figure 6.  Comparison of LMMSE vs noise power.

Table 1.  Comparison of LMMSE vs noise power
Noise 
power

HSMM based 
spectrum sensing

FNN based 
spectrum sensing

Hybrid Secure 
Spectrum sensing

0.2 0.41 0.385 0.361

0.4 0.536 0.4932 0.4634

0.6 0.568 0.5351 0.5183

0.8 0.593 0.5638 0.5429

1 0.613 0.5943 0.5618
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of LMMSE vs. noise power for proposed and existing 
algorithms.

In Figure 7, the Linear Minimum Mean-Square Errors 
(LMMSEs) of the proposed spectrum sensing algorithm 
is compared with the existing algorithms such spectrum 
sensing based on HSMM and NN based spectrum sensing 
are plotted versus detection probability. It is observed 
that the proposed algorithms achieve the lowest LMMSEs 
whereas other algorithms had the worst performance, as 
expected. Table 2 shows that the values of the comparison 
of LMMSE vs detection probability for proposed and 
existing algorithms.

In Figure 8, the LMMSEs values of the proposed 
algorithm is compared with the existing algorithm such 
spectrum sensing based on HSMM and NN based spec-
trum sensing are plotted versus the false-alarm probability 
for a detection probability of and Pd = 0.6 a noise variance 
of σu

2 0 2= . . . It is observed that the LMMSEs increase 
as the false-alarm probability increases. This is mainly 
because the power of the pilot symbol is reduced (Pt1 is 
employed) in the presence of a false alarm; that is, when 

Figure 7.  Comparison of LMMSE vs detection 
probability.

Table 3.  Comparison of LMMSE vs false alarm 
probability
False alarm 
probability

HSMM based 
spectrum  
sensing

FNN based 
spectrum  
sensing

Hybrid Secure 
Spectrum 

sensing

0 0.3689 0.3231 0.3024

0.1 0.3838 0.3618 0.3413

0.2 0.4037 0.3816 0.3618

0.3 0.4514 0.4276 0.3917

0.4 0.4836 0.4518 0.4218

0.5 0.5137 0.4812 0.4467

Table 2.  Comparison of LMMSE vs detection 
probability

Detection 
probability

HSMM based 
spectrum sensing

FNN based 
spectrum sensing

Hybrid Secure 
Spectrum sensing

0.5 0.413 0.3932 0.3735

0.6 0.4386 0.4102 0.3796

0.7 0.4432 0.4138 0.3813

0.8 0.4516 0.4213 0.3918

0.9 0.4594 0.4238 0.4035

1 0.4612 0.4297 0.4106

Figure 8.  Comparison of LMMSE vs false alarm 
probability.

the channel sensing unit decides that the primary users 
are present in the system when in fact they are not. Table 
3 shows that the experimental values of the proposed 
algorithm and existing algorithms. 

Power Spectral Density (PSD) of the received signal 
and a simplified function of frequency is minimized. The 
best fitting simplified function is then used to estimate 
the subband boundaries. The experimental validation 
stage has been organized by creating four methods such 
as optimal scheduling, Hidden Semi Markov Model 
(HSMM), Fuzzy Neural Network (FNN) and  Hybrid 
Adaptive Neuro Inference System (ANFIS), in which 
several signals are located on different sub-bands. Two of 
them represent under various configurations that can be 
found in certain telecommunication bands. 

In particular, the optimal scheduling scenario 
(Figure 9a) includes with different power density levels 
and symbol frequencies. The second HSMM (Figure 9b) 
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represents a frequency band, including  signals. In this 
case, the signals located in the different subbands have dif-
ferent power density levels, but the same symbol period, 
since the spectrum segmentation is not  performed in this 
schema.

A third Fuzzy Neural Network (FNN)  scenario has 
been added to verify the limits of the methods in criti-
cal conditions (Figure 9c). It has been observed, in fact, 
that the proposed method can fail when signals with 
high differences in the PSD slopes are present within the 
observed  spectrum. Therefore, in this third scenario, 
two signals have been provided. The former has a wide 
band and a high rolloff factor such that the PSD slope 
is very smooth; the latter is a narrowband signal with a 
low roll-off factor, thus having a sharp slope. Such a sce-
nario has been repeated several times, by progressively 
reducing the bandwidth of the narrowband signal thus 
increasing spectrum sensing results. In Figure 9c, one 
of the PSDs of such Hybrid Adaptive Neuro Inference 
System (ANFIS) scenario is reported under malicious 
node identified results. So in this ANFIS model  has been 
also repeated several times, by progressively reducing 
the bandwidth of the narrowband signal thus increasing 
spectrum sensing results and identification of malicious 
nodes 

Figures 10 show the False alarm probability of 
density of malicious nodes  α, the ratio of malicious 
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Figure 9. (a) PSDs of the Optimal schdeuling considered during the experimental 

validation phase. (b)  PSDs of the Hidden Semi Markov Model (HSMM) considered 

during the experimental validation phase. (c)  PSDs of the Fuzzy Neural Network (FNN)  

considered during the experimental validation phase. (d)  PSDs of the Adaptive Neruo 

Fuzzy Interfernce System (ANFIS)  considered during the experimental validation phase 

 

Figure 9.  (a) PSDs of the Optimal schdeuling considered 
during the experimental validation phase. (b) PSDs of the 
Hidden Semi Markov Model (HSMM) considered during the 
experimental validation phase. (c) PSDs of the Fuzzy Neural 
Network (FNN)  considered during the experimental validation 
phase. (d) PSDs of the Adaptive Neruo Fuzzy Interfernce System 
(ANFIS) considered during the experimental validation phase

Figure 10.  Comparison of the false alarm probability.
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Figure 10. Comparison of the false alarm probability. 

 

Table 4.  False alarm probability of  when the population size increases to 1,000, nodes 

 

 

Density value  ( ) 

False alarm probability 

optimal scheduling HSMM FNN HANFIS

0.20 0.150 0.190 0.420 0.620 

0.25 0.180 0.210 0.435 0.638 

0.30 0.210 0.230 0.450 0.645 

0.35 0.230 0.254 0.486 0.658 

0.40 0.245 0.261 0.492 0.663 

Table 4.  False alarm probability of α when the 
population size increases to 1,000, nodes

Density 
value (α)

False alarm probability

optimal  
scheduling

HSMM FNN HANFIS

0.20 0.150 0.190 0.420 0.620

0.25 0.180 0.210 0.435 0.638

0.30 0.210 0.230 0.450 0.645

0.35 0.230 0.254 0.486 0.658

0.40 0.245 0.261 0.492 0.663

0.45 0.262 0.281 0.510 0.681

0.50 0.271 0.310 0.536 0.710

0.55 0.291 0.321 0.541 0.725

0.60 0.302 0.336 0.558 0.734

versus total number of nodes as 1000. The results 
confirm the behavior discussed earlier; we see a clear 
separation of the two classes only when the malicious 
nodes and non malicious nodes. When the density of 
malicious nodes approaches is 0.7341 for 0.6 density 
values. It shows that the false alarm detection probabil-
ity of the proposed schema is  high value  when compare 
to other values. The false alarm detection probability of 
the other schemas such as optimal scheduling, HSMM 
and FNN are 0.302, 0.3361 and 0.5581  respectively 
which is very less when compare to proposed schema 
for the density value of 0.6 ,the values are tabulated in 
Table 4. 
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4.  Conclusion 
A novel spectrum sensing approach is proposed here 
which is based on artificial intelligence. This proposed 
work comprises of spectrum segmentation, spectrum 
sensing and malicious user detection in cognitive radio 
networks. A spectrum segmentation method is based 
on the evaluation of improved histogram of the PSD in 
the observed band is used for identifying the subband 
boundaries and it is separated by a low computational 
load. The secondary users are grouped into cluster the 
cluster head is selected based spectrum sensing. Hybrid 
ANFIS is proposed for identification of the spectrum hole 
or free subband in the spectrum that could be chosen to 
the aspiring SU. The possession is firmed by examining 
some channel parameters, e.g., SNR, channel capacity, 
BW efficiency and power spectral density also. The pro-
posed algorithm indicates the channel status occupancy 
in a quantized index form {0, 1} after right training of 
the HANFIS.The malicious user is predicted in the clus-
ter in order to avoid the false detection of primary user. 
The suspicious value is employed for identifying the mali-
cious user. The estimator is used for detecting the false 
alarm probability and detection probability for proposed 
algorithms to evaluate the performance. Through by the 
use of the proposed sensing method, spectrum sensing 
error can be minimized by satisfying spectrum sensing 
requirement.
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