
Abstract
For on sea water measurements of range on bearing in naval operations various types of Kalman filters including extended
Kalman filter have been used. In this paper ,input estimation techniques applied normally to in air applications are applied
to on sea measurements using chi – square distribution random sequence residual techniques. In which the algorithm
estimates target motion parameters covering maneuvering. After detecting the target maneuvering, the algorithm corrects
the velocity and position components based on acceleration noise input estimation method. Monte – Carlo simulation has
proved the efficiency of the method. Practical applications of these methods are quite immense. Further test can be carried
out on such cases.
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1. Introduction
Kalman Filter for the sea scenario using the input
estimation technique to detect target manoeuvre, esti-
mate target acceleration and correct the target state vector
accordingly. There are mainly two versions of Kalman
Filter – a Linearised Kalman Filter (LKF) in which polar
measurements are converted into Cartesian coordinates
and the well-known Extended Kalman Filter (EKF)
in which polar measurements are directly considered.
Recently S. T. Pork and L. E. Lee1,2 presented a detailed
theoretical comparative study of the above two methods
and stated that both the methods perform well. Here,
EKF is used throughout the paper. The detection of target
manoeuvre is carried out as follows. In this process, it is
assumed that the estimator EKF is of high quality in the
sense that solution is possible for all scenarios including
all quadrants (Several geometries are tested using EKF
and the solution is invariably obtained). It is also assumed 

that the  solution diverges only when target maneuvers.
When target is not maneuvering, it is observed from
much geometry that the bearing residuals of the EKF are
almost zero and their small scatter around the zero bear-
ing line is the random noise3,4. 

It is also noted that the bearing residuals are not close
to zero when the target is maneuvering. It is very difficult
to confirm whether the target has maneuvered or not just
by visual inspection of the bearing residual plot, due to
the corruption of the bearing measurement with random
noise. Hence, zero mean chi-square distributed random
sequence residuals of the non-maneuvering model, in
sliding window format are used for the detection of target
maneuvers. Target maneuver is declared when the nor-
malized squared innovations exceed the threshold. At the
same time using these innovations of the Kalman Filter,
the acceleration input is estimated and used to correct the
state estimate. During the window period the acceleration
input is assumed to be constant. This procedure is called 

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(28), DOI: 10.17485/ijst/2015/v8i28/73788, October 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645



Tracking of a Manoeuvering Target Ship using Radar Measurements

Indian Journal of Science and Technology2 Vol 8 (28) | October 2015 | www.indjst.org

input estimation and is given in detail, in references3,4. In 
this paper the authors try to extend the input estimation 
technique being used for in-air applications to on-sea 
water applications.

2.  Mathematical Model

2.1  Target Motion Parameters
Let the target state vector be XS (k) and is given by 

	  X (k)  x (k)  y (k)   R (k)   R (k)S x y

T

=










• •
� (1)

Where x and y
• •

(k) (k) are target velocity components, and 
Rx (k) and Ry(k) are range components. For the purpose 
of introducing concepts, to start with target is assumed to 
be non-manoeuvreing. The target state dynamic equation 
is given by 

	  X (k +1) = (k +1/ k)X (k)+ b(k +1)+ (k)S sΦ w � (2)

Where w(k) is zero mean Gaussian plant noise Φ(k + 1/k) 
and b(k + 1) is transient matrix and the deterministic 
vector respectively. These are given by 
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Where it is a sample time between measurements, and

b(k +1) =[0 0 [x (k +1)+ x (k)] [y (k +1)+ y (k)]o o o− −o
T � (4) 

Where xo (k) and yo (k) are own ship position compo-
nents respectively. The true North convention is followed 
for all angles to reduce mathematical complexity and 
easy implementation. The measurement vector Z (k) is 
given by
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Where Bm(k) and Rm(k) are bearing and range measure-
ments and are given by 
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Where B(k) and R(k) are actual bearing and range respec-
tively. These are given by 
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where η(k) and g (k) are zero mean uncorrelated Gaussian 
noises in range and bearing measurements respectively. 
Using (5) and (6), the following equations can be written 

	 Z s(k) H(k)X (k) (k)= + ξ � (8)
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It is assumed that the plant and measurement noises are 
uncorrelated to each other. The covariance prediction is 

P QT(k | k) (k | k)P(k | k) (k | k) (k )+ = + + + +1 1 1 1φ φ � (10)

where Q is the covariance of the plant noise. The Kalman 
gain is 

G(k ) (k | k)H (k )[r(k ) (k ) (k | k) (k )]+ = + + + + + + + −1 1 1 1 1 1 1 1P H P HT T

� (11)

Where are (k + 1) is input measurement error covariance 
matrix. The state and its covariance corrections are given 
by 

State: 

X X G Z(k / k ) (k / k) (k )[Z(k ) ˘(k )]+ + = + + + + − +1 1 1 1 1 1
^

� (12)

Covariance: 

	 P(k / k ) [ (k )H(k )]P(k / )+ + = − + + +1 1 1 1 1I G k � (13)

2.2  Tracking of a Maneuvering Target
Maneuvering targets are characterized by 

	 X(k / k) ((k / )X(k) (k) ( )+ = + + +1 1Φ wk Fu k � (14)

Where u(k) is an unknown input modelling the target 
maneuvers (u = 0 when there is no maneuver). In the 
modelling of the dynamics of non-maneuvering targets, 
the process noise is assumed to be low. A maneuver mani-
fests itself into a large innovation, when target maneuver 
exists.

Estimation of the state is done using the model 
without input (non-maneuvering model). From 
the innovations of the Kalman Filter based on the 
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non-maneuvering model, the input u(k) is detected, 
estimated and used to correct the state estimate. Zero 
mean chi-square distributed random sequence residu-
als, in sliding window format are used for the detection 
of target manoeuvre. During this window period, the 
input is assumed constant. Target manoeuvre is declared 
when the normalized innovations exceed the threshold. 
This procedure is called input estimation and is given 
in detail in5,6. Here the final equations are reproduced 
from the 7,8. Assume that the target starts manoeuvreing 
at time k. It’s unknown inputs during the time interval 
[k, k +s] are u(i), i = k,…..k + s – 1. An asterisk denotes 
the state estimates from the non-manoeuvreing model. 
The innovation of manoeuvreing target model is zero 
mean, white and is given by

	 v(k ) (k ) (k / k)+ = + − +1 1 1Z HX � (15)

The innovations corresponding to non-manoeuvreing 
target model is given by 

	
^
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This innovation has the white noise sequence plus a 
term related to the inputs.
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Can be rewritten as
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v* of the non-manoeuvreing model is a linear measure-
ment of the input manoeuvre u in the presence of the 
additive white noise v. The input can be estimated using 
least squares criterion from y = ϕu + ζ

where
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are the stacked “measurement “ vector and matrix, and 
the “noise”.
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is zero mean with block-diagonal covariance matrix.
	 S = diag [S (i)]� (22)

The estimation can be done in batch form as 

	 ˘ ( S ) Su yT T
=

− − −
Ψ Ψ Ψ

1 1 1^ � (23)

Where S is given by 

S(k + 1) = (H(k + 1)P(k + 1/k)HT(k + 1) + r(k + 1)–1

with the resulting covariance matrix 

	 L T
=

− −( s )Ψ Ψ
1 1 � (24)

Estimation of u is accepted, i.e, a manoeuvre is declared 
only if it is “statistically accepted”. The significance for the 
vector estimate u is 

	 d(u) = u u˘ ˘ ˘TL c−
≥

1^ ^ ^ � (25)

Where c is a threshold. The choice of the threshold is as 
follows. If the input is zero, then 
	 u ~ N(0, L).� (26)

i.e., the estimate is a normal random variable with mean zero 
and covariance P. Then the statistic d from equation (25) is 

Chi-squared distributed with nu degrees of freedom 
and c is chosen such that the probability of false alarm is
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If a manoeuvre is detected, then the state has to be 
corrected, as follows. The input term is used with the 
estimated input.
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The covariance associated with the estimate equation 
(28) is

	 Pu(k + s + 1/k + s) = P(k + s + 1/k + s) + MLMT� (29)

A manoeuvre is considered finished when the input 
estimate based on measurements from the sliding window 

^
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of length s becomes insignificant. The length s is a design 
parameter. In cases where the duration of a manoeuvre is 
short relative to a sample interval, an input pulse length of 
s = 1 or 2 is appropriate.

3. � Implementation of the 
Algorithm

Using first and second sets of bearing and range measure-
ments, the speed components of the target are calculated 
and the actual computation of the Kalman filter starts 
from second measurement onwards. 

The initial estimate of target state vector X(2/2) is 
given by

X Rm m m
T( / ) [term term ( )sinB ( )cosB ( )]2 2 1 2 2 2 2= � (30)

where

	 term ( )sinB ( ) R ( )sinB ( ) / t1 2 2 1 1= −Rm m m m

	 term ( )cosB ( ) R ( )cosB ( ) / t2 2 2 1 1= −Rm m m m � (31)

It is assumed that the initial estimate, X (2|2) is uni-
formly distributed. Then the elements of initial covariance 
diagonal matrix can be written as
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The target motion parameters are target’s range, 
course, bearing and speed and these are calculated from 
the estimated state vector as follows.
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 The Kalman filter is implemented as follows. After 
receiving the second measurement, X(2/2) and P(2/2) 
are computed using equation (30) and (32) respectively. 
Using X(2/2), P(2/2) and H(2) are calculated. Then tran-
sient matrix, Kalman gain, correction in state vector and 
its covariance matrix are computed. Target motion param-
eters are calculated from the corrected state vector using 
equation (33) and the validity of the solution is found out 
using the corrected covariance matrix. After the receipt of 
the 3rd sample, transient matrix is computed and then the 
state vector and its covariance matrix are updated. Using 
Kalman gain, the state vector and its covariance matrix 
are corrected. In this way, the process is repeated for a 
simulation period of 30 minutes9,10.

The size of the sliding window, in manoeuvre detec-
tion, is selected on the basis of the results of several 
geometries in Monte-Carlo simulation. If the window size 
is less than two, it is seen that the performance is drasti-
cally reduced and hence a 2-sample window is employed.

4.  Simulation and Results
Let us consider active sonar with range scales and their 
corresponding measurement timings as 5 Km, 10 Km, 
20 Km, 40 Km and 10 sec, 20 sec, 40 sec and 80 sec 
respectively. It means that if range is less than 5 km, 
then range and bearing measurements are available 
at 10 sec and so on. The time intervals based on these 
range scales are not considered in Kalman filter, as 
these are not exact. They are recalculated based on the 
range measurement considering that the sound veloc-
ity in water as 1500 m/sec. Let the maximum noise 
in the bearing and range measurements be 1 deg and 
20 meters respectively.

The algorithm is realized using Matlab on a pc plat-
form. Let us consider a typical long-range scenario on sea. 
The observer is moving on 65 degrees course at a speed of 
30 knots. The target is moving on 100 degrees course at 
a speed of 10 knots. The target is initially at zero degrees 
line of sight and at a range of 30 km. The positions of tar-
get and observer are updated at every second. However 
the measurements after corruption with noise available to 
the Kalman filter are according to range scales. Here the 
range is 30 km, so the time interval between the measure-
ments is 80 seconds.

In general, the errors allowed in the estimated tar-
get motion parameters are 8% in the range, 3o in the 
course and 3m/s in velocity estimates. The results of 
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this scenario in Monte-Carlo Simulation with 100 runs 
are shown in Figure 1. In these figures and in the sub-
sequent figures, R error, C error and S error denote the 
errors in range, course and speed estimates respectively. 
From the results, it is observed that the solution with the 
required accuracy is obtained from 6th sample (480 sec-
onds) onwards. The theoretical value of the chi-square 
variable with 2 degrees of freedom at 90% confidence 
level is 4.61. Out of 100 Monte-Carlo runs, it is observed 
that the maximum value of d(u) is 1.6 and mostly it is 
around 0.3. So, when there is no target manoeuvre, the 
experimental value is matching with that of theoretical 
value.

For the purpose of illustration, in the previous sce-
nario, it is assumed that the target is changing its course 
from 100 to 180 degrees at 540 seconds. The target has 
completed the manoeuvre by 560 seconds, with turning 
rate of 3 degrees per second. The statistic threshold d(u) 
is changed to 0.4, 1, 6.7 at 7th (560 secs), 8th (640 secs) and 
9th (720 secs) samples respectively. So the correction of 
state vector is commenced from 10th sample onwards. The 
statistic threshold d(u) is changed to 3.8, 0.9 at 10th and 
11th samples respectively.

5.  Limitations of Filter
It is seen that the filter is able to provide good results when 
the error in bearing measurement is less than 1.5o rms. 

6.  Conclusion
The authors have attempted an approach to extend the 
algorithm for applications in air to the applications in 
underwater-viz. Tracking a maneuvering target using 
measurements from active sonar. The experiment shows 
that the algorithm is able to track the target and hence it 
can be used for underwater applications.
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Figure 1.  (a) Error in Range Estimate. (b) Error in Course 
Estimate. (c) Error in Speed Estimate.

(a)

(b)

(c)

(b)

Figure 2.  (a) Error in Range Estimate. (b) Error in Course 
Estimate. (c) Error in Speed Estimate.

(c)

(a)
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