
Indian Journal of Science and Technology, Vol 8(24), DOI: 10.17485/ijst/2015/v8i24/81850, September 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

*Author for correspondence

Detecting Resemblances in Anti-pattern Ideologies
using Social Networks

Saini Jacob Soman*

Department of CSE, SNG College of Engineering, Kadayiruppu - 682311,
Kerala, India; sainijacobs@gmail.com

Abstract
A key argument for modelling knowledge in ideologies is the simple reuse of the facts. However, nearby reliability checking,
current ideology engineering tools give only essential functionalities for analyzing ideologies. Since ideologies can be
considered as graphs, graph analysis techniques are an apt answer for this necessity. The anti-pattern ideology has been
recently proposed as a knowledge base for SPARSE, an intelligent system that can detect the anti-patterns that exist in a
software project. However, apart from the excess of anti-patterns that are intrinsically informal and vague, the data used in
the anti-pattern ideology itself is many times inexactly defined. We exemplify in this paper the benefits of applying social
networks to ontologies and the Semantic Web and discuss which research themes happen on the edge between the two
particular fields. Particularly, we confer how different ideas of centrality portray the core content and structure of ontology.

1. Overview
Anti-patterns symbolize the latest concept in a series of
radical changes in computer science and software engi-
neering thinking. As we move towards the 50-year mark
in developing programmable digital systems, the software
industry has yet to determine some basic problems in
how humans interpret business concepts into software
applications.

An assessment of hundreds of corporate software
development projects showed that eight out of ten soft-
ware projects are considered ineffective. About one third
of software projects are cancelled. The remaining projects
delivered software that was normally double the expected
budget and obtained twice as long to build up as initially
planned9. These repeated failures is highly valuable, how-
ever in that they offer us with practical knowledge of what
does not work and during study: why. Such study, in the
dialect of Design Patterns can be classified as the study of
Anti-patterns.

Design Patterns present the most successful form of
software control yet available, and the whole patterns
progress has gone a better way in codifying a brief ter-
minology for transmitting complicated computer science
thinking. Anti-Patterns are a natural addition to design
patterns, concentrating on the broad and ever-growing
assortment of repeated software problems in an effort to
understand, avoid and recuperate from them. Anti-Pat-
terns are new tools that bridge the gap between architec-
tural theories and real-world executions7.

The design of Anti-patterns is that there are various
fruitless behavior modes in software engineering which
result in similar problems9, and can be treated in various
and possible ways.

2. The Problem
Applying an antecedent prospering resolution to the same
drawback is one amongst the established ways that dur-
ing which humans solve issues. This approach is thought

Keywords: Anti-patterns, Bad Code Smell, Sparse

Detecting Resemblances in Anti-pattern Ideologies using Social Networks

Indian Journal of Science and TechnologyVol 8 (24) | September 2015 | www.indjst.org 2

as nonliteral, allegoric, case-based reasoning and may be
a documented machine learning technique employed in
computer science systems. This approach in drawback
finding needs expertise on previous issues and each
success and failure should be experienced so as to col-
lect the desired experience for future drawback finding.
Moreover, whereas it should be fruitful to check prosper-
ing ways that developers solve issues mistreatment style
patterns these mechanisms haven’t been employed in
project management as they will not accommodate such
advanced descriptions.

The most common mistake created with style pat-
terns, is that the application of a specific style pattern
within the wrong context or setting. Antipatterns rede-
fine the idea of style patterns in a very new type that
makes an attempt to resolve this downside by provid-
ing careful templates6 that state the causes, symptoms
and consequences of an anti-pattern. Finding out fail-
ures and learning from mistakes could be a much more
appropriate approach for project management. Antipat-
terns are the primary mechanisms that adopt a “negative
solutions” perspective at software package development
and are the primary to simply accept and handle the
potential of a software package project for failure7. The
subsequent parts during this section discuss the moti-
vation behind the study of antipatterns, describe the
contribution of the paper and at last present the organi-
zation of this paper.

The motivation behind why Software Project Anti-pat-
tern Knowledge Management is the subject of this prop-
osition is on account of it remains logically unexplored,
as well as on the grounds that anti-patterns can encode
and oversee venture administration, as well as any sort
of programming advancement information that prompts
reoccurring tricky practices or dangerous results. It
makes considering the route with which managers and
programming experts can adequately utilize anti-patterns
an important scholastic wander. Helpful research in this
bearing is significant in giving a specialized answer for
the issues that as of now torment anti-pattern research.
An alternate predominating reason is that few issues
identified with anti-patterns have not been dissected.

Notwithstanding of the extensive number of acces-
sible antipatterns, utilizing anti-patterns as a part of pro-
gramming task administration remains tricky because
of an arrangement of issues that distress the antipattern
research. The primary issue that forbids the more exten-
sive reception of anti-patterns is the absence of a regular

vocabulary4 of terms that might be utilized between indi-
viduals and programming equipment. The absence of for-
malization does not permit the configuration of models,
architectures and programming frameworks that could
profit the engineering of anti-patterns.

3. Anti-Pattern Models
By creating anti-pattern formalisms, the learning encoded
in antipatterns could be formalized and handled by pro-
gramming tools. At a learning representation level, the
anti-pattern ideology can focus the classifications of things
that exist in an anti-pattern and set the ontological duties
of the task supervisor, framework planner or requisition
architect1. Both of the recommended formalisms offer a
medium for proficient reckoning on the grounds that they
don’t just speak to learning; additionally encode data in
a structure that could be transformed productively by
programming. Moreover both BBNs and ideology offer
a medium for human representation3 that might be uti-
lized by project managers within request to have a regular
vocabulary of terms with a strong scientific establishment.

The anti-pattern ideology encodes implied software
project management information into a computer read-
able structure and permits the offering and reuse of this
knowledge by programming tools. Moreover, the issue of
catching and quantifying doubt in the antipattern ideol-
ogy is tended to by including the ideas of anti-pattern
BBN models and their corresponding OWL ontology in
the outline of the non-specific antipattern ideology.

4. Related Literature
Expert systems have been extensively used in most dis-
similar settings including teaching12, medicine7 and secu-
rity decisive systems4. The World Wide Web contains
plentiful examples of expert systems. However, expert
systems are not a solution and can be wrong11. Adams2
has presented some thoughts for the expert system design
that want to be addressed when the system is used via
the web. The author concludes that the viability of giving
expert system capabilities over the web depends upon the
exact situation for which the expert system is developed.

Four primary classes of antipatterns have been recog-
nized in the writing:

•	 Development Anti-patterns: Describe specialized
issues and results that are experienced by programmers.

Saini Jacob Soman

Indian Journal of Science and Technology 3Vol 8 (24) | September 2015 | www.indjst.org

•	 Architectural Anti-patterns: Describe normal issues
in how frameworks are organized.

•	 Environmental Anti-patterns: Describe issues brought
about by a predominating structure or social model,
which are the aftereffect of uncontrolled socio-political
strengths.

•	 Managerial Anti-patterns: Describe issues brought
about by a project director or administration team in
programming and development firms.

Software project management anti-patterns can deal
with all parts of a software project more successfully by
bringing understanding into the reasons, manifestations,
results, and by giving great repeatable results8.

Four group11 formats is a more official layout that fur-
ther incorporates different components, for example, the
inspiration, members, related examples, known utiliza-
tion and coordinated efforts.

In any case, it is impossible that each of the three events
could be determined in the same way5. A more detailed
report is the Mini-Antipattern template, which explains
the two solutions of the anti-pattern, the difficult answer
and the re-factored result13.

4.1 Anti-pattern Interrelationship
Anti-patterns can seem separated yet can likewise be
connected with different anti-patterns. The later sort is
alluded to as cooperating anti-patterns9 and is clear when
a project management anti-pattern causes a software
advancement anti-pattern or a construction modelling
anti-pattern. It is vital to comprehend the extravagance
of anti-pattern interrelationships so as to have the ability
to determination anti-patterns exclusively as well as loca-
tion them as an assembly of interrelated anti-patterns.
This proposition keeps tabs on software project manage-
ment anti-patterns however considers the way that these
anti-patterns could be connected with different sorts of
anti-patterns. Anti-patterns could be connected through
the properties of following Table 1.

Table 1. Attributes relating to software project manage-
ment anti-patterns

Causes A list which recognizes the causes of this
antipattern.

Symptoms A list which comprises the observable
symptoms of this antipattern.

Consequences A list which comprises the penalties that
result from this antipattern.

Figure 1. Dataset of anti-patterns relations through their
attributes.

Figure 1 outlines a sample relationship between 3
separate anti-patterns, through their reasons, manifesta-
tions and outcomes. These are the primary qualities of an
anti-pattern that characterize how an anti-pattern is con-
nected with different anti-patterns.

5. Methodology
Here our methodology is that ideology based method
to characterize and apply the properties of hostile to
examples, bad code smells, refactoring (OABR), and the
relations between them. We have gathered, sorted out
and arranged the properties of the related ideas and we
extended the properties for bad code smell by making
a quality list used to prioritize bad code smells with the
objective of giving backing to recognizing which bad
code smells ought to be evacuated, or endured. We then
made layouts dependent upon properties for extra bad
code smells and refactoring examination. We likewise
created scientific categorizations for against examples,
refactoring and bad code smells to give progressive char-
acterizations. Here additionally we have demonstrated
the phrasings and relations spoke to by the essential
Descriptive Logics (DL) used to characterize ideology
dialect. We created an OABR base including hostile to
examples, related software issues and location depen-
dent upon the properties, taxonomy and non-taxonomy
relations. At last, we portray making, gaining entrance
to, saving, questioning and mapping of OABR with
the ontological devices, stages and ideology registries/
repositories.

Detecting Resemblances in Anti-pattern Ideologies using Social Networks

Indian Journal of Science and TechnologyVol 8 (24) | September 2015 | www.indjst.org 4

5.1 Antipattern Properties
Numerous properties of existing anti-patterns were
characterized by2 and10 independently. In this explora-
tion, we chose properties, for example, name, causes,
results, symptoms and refactoring. Different properties,
for example, root causes, variations, background and
general structures are not included as they are depen-
dent on the developer’s personal experiences. Addition-
ally, an excess of properties for a particular idea will
expand the multifaceted nature as per the essential stan-
dard that —the more expressive the language, the harder
the thinking11.

5.2 Refactoring Properties
We characterized the refactoring properties as name,
situation, and mechanics. The name of a refactoring gen-
erally comprises of an operation and an object. Case in
point, for the ‘Remove Middle Man refactoring’, Remove
is an operation while - Middle Man is an item. The situ-
ation property gives portrayal to each one refactoring
about when it will be connected. The mechanics property
depicts how to apply methods step by step for every refac-
toring to tackle the related issue.

5.3 Bad Code Smell Properties
A goal of this research is to give a more formal and pre-
dictable documentation of properties to make every bad
code smell less demanding to recognize and distinguish.
Current terms of bad code smells are depicted and sorted
out in a fairly casual and conflicting way. We analysed
initial properties of bad code smells as name, symptoms,
measurements and refactoring. Symptoms property
depicts how to search a bad code smell.

Software Product Metrics measure programming tools
at distinctive development stages, extending from mea-
suring the complexity of programming design to the
extent of the final source code. The measurability of a bad
code smell relies on upon the size, the multifaceted nature
and the structure of the bad code smell. Some bad code
smells, for example, long Method might be effortlessly
recognized by accepted programming tools such as Cyc-
lomatic complexity and Halstead measures

5.4 Tools and Platforms
A software application permits research problems to be
resolved by using software solutions. This level of research

also provides the chance to check the formerly defined
theory and methods for seizure and significance.

SPARSE is web-based collaborative ontology control
software in which the anti-pattern ontology can be aug-
mented. Web-Protege has been used in order to propose
a Web-based interface that uses the Protege platform,
in order to permit combined ontology editing as well
as gloss and selection of both ontology mechanism and
ontology changes.

5.5 Technologies for Communities
Ontology is an open system endorsing broad use and
sharing. Its growth and justification depend on the contri-
bution from the users of related community. The standard
way is to list the ontology with an ontology search engine,
or with a storehouse to make the ontology noticeable to
the community. The feedbacks from the community will
make the ontology more reliable and consistent.

6. Conclusion and Future Works
Against examples and bad code smells portray perpetual
issues that influence programming quality. Refactoring
can help fathom hostile to examples and bad code smells.
In this examination, we created an ontological base,
OABR, indicating the relations between against exam-
ples, bad code smells, and refactoring to help in the dis-
tinguishing proof and determination of their partnered
issues.

The paper draws information from different sources
to speak to, model and examine antipattern information
with a specific end goal to resolution issues that encom-
pass the innovation of antipatterns. The effects needed
structure the work of the creator and his associates have
gone far in creating hypothetical models, applying strate-
gies and creating a product device with a specific end goal
to aid the anti-pattern location process. Be that as it may,
the work might likewise raise numerous other essential
issues that need to be explored further. These issues must
be dealt with and not so much in place of vitality.

The Dependency Structure Matrix (DSM) has been
proposed as a strategy that pictures and breaks down the
conditions between related qualities of software project
management anti-patterns. The methodology was exem-
plified through a DSM of 50 traits of 25 related software
project management anti-patterns that show up in the lit-
erature and the Web. A good set of blended anti-pattern

Saini Jacob Soman

Indian Journal of Science and Technology 5Vol 8 (24) | September 2015 | www.indjst.org

information including advancement, design and manage-
rial antipatterns will uncover the appropriateness of the
technique in such settings.

The progressing tests and future work of the explora-
tion incorporate the accompanying:

•	 Obtain more inputs from the software group to grow
OABR and set requirements for the class properties,
given that the improvement of OABR is an iterative
methodology.

•	 Develop OABR registries and related web administra-
tions, making it less demanding for clients to recog-
nize and test new bad code smells, hostile to examples,
and refactoring.

•	 Expand or make another ideology by consolidating or
selecting OABR with different ontologies about soft-
ware improvement, for example, configuration designs,
software measurements, and software quality attributes.

7. References
 1. Basilevsky A. Statistical factor analysis and related meth-

ods: Theory and application. New York: Wiley; 1994.
 2. Charles P. Pfleeger: Security in computing. 2nd edition.

Prentice Hall PTR; 1996.

 3. Degenne A, Forse M. Introducing social networks. Thou-
sand Oaks, California: Sage Publications; 1999.

 4. Gollmann D. Computer security. John Wiley and Son Ltd;
1999.

 5. Gamma E, Helm R, Johnson RE. Design patterns. Elements
of reusable object-oriented software. Addison-Wesley
Longman; 1995.

 6. Valiente G. Algorithms on trees and graphs, Springer;
2002.

 7. Fowler M. Refactoring. Addison-Wesley; 1999.
 8. Lanza M, Marinescu R. Object-oriented metrics in prac-

tice. Springer; 2006.
 9. Fenton NE. Software metrics: A rigorous approach. Chap-

man and Hall Ltd; 1991.
 10. Devanbu P. GENOA - A customizable, front-end retar-

getable source code analysis framework. ACM Transac-
tions on Software Engineering and Methodology. 1999;
177–212.

 11. Scott J. Social network analysis: A handbook. Second
Edition. Thousand Oaks, California: Sage Publications;
2000.

 12. Levenshtein VI. Binary codes capable of correcting dele-
tions, insertions and reversals. Soviet Physics Doklady.
1988; 707–10.

 13. Wasserman S, Faust K. Social network analysis. Methods
and applications. Cambridge: Cambridge University Press;
1994.

