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Abstract
The present study deals creeping flow of a micropolar fluid past a sphere coated with thin fluid film. On fluid-film interface 
we used non-zero spin boundary condition for the micro-rotation vector. Thevariation of drag force with respect to different 
parameters is studied and some previous results deduced from present analysis.

1.  Introduction
The studies involving non Newtonian fluid are interesting 
in the field of fundamental physical sciences and its appli-
cations in the related fields. The knowledge about non-
Newtonian fluid finds its application in various industrial 
and even day-to-day processes such as polymer process-
ing, coating, inkjet printing etc. Non-Newtonian fluid 
dynamics also helps us to understand natural phenom-
enon like flow of Earth’s mantle, hemodynamic etc. There 
has been extensive literature about analytical and numeri-
cal solutions available regarding non-Newtonian flows on 
account of complex varieties of fluids, there is no single 
governing equation that can describe all the properties of 
every non-Newtonian fluids. In connection to this con-
text, various models of non-Newtonian fluid are on offer 
such as micropolar fluid model propounded by Eringen1. 
Micropolar fluid model demonstrates the effect of local 
rotary and couple stresses. 

The fine liquid films are almost omnipresent in nature 
and it is also dealt with by various modern day tech-
nologies. Therefore, an understanding of the mechan-
ics involved with the non-Newtonian fluid dynamics is 
significant and finds its use in various applications. A 
typical thin film is often composed with the expense of 
liquid partially encapsulated by some solid substrate with 

an open surface and there the liquid stays in contact to 
another fluid. 

Gupalo and Ryazantsev2 studied about coated sphere 
and using matching asymptomatic expansion, they found 
the flow field and resisting force experienced by particle 
coated by a liquid film. Flow past a coated sphere is stud-
ied by E. Johnson3. In this paper he found the flow field 
analytically using perturbation scheme except for fluid 
film profile which required numerical preparation. Dif-
ferent Researchers Kawno and Hashimoto4, Niefer and 
Kaloni5, Choudhury and Padmavati6, Sadhal and John-
son7 studied the flow past a coated sphere and given dif-
ferent results.

2.  Mathematical Formulation
Let us consider a rigid sphere of radius a coated with 
a thin Newtonion fluid film of radius b(b > a) in an 
unbounded medium with origin at the centre O of the 
sphere. We assume that the coated sphere is stationary 
and a steady axisymmetric Stokes flow of micropolar fluid 
has been established around it by a uniform far-field flow 
with velocity of magnitude U along z-axis.

For outside portion (1) we have taken that the body 
force and body couple terms are absent. Therefore, the 
governing equations for outside flow are given by
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For the portion (2), inside the fluid sphere governing 
equation (Happel and Brenner8) is given as
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3.  Stream Function Formulation
The velocity and microrotation can be taken in the spher-
ical polar coordinates ( , , )r    as
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Using the velocity component in terms of stream 
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and pressure from equation (2) and using equation (7), 
we get
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Using above equation (8) in equation (3), we find that
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Eliminating (1)
  from equations (8) and (9) we get,
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Similarly, eliminating the pressure from equations (4) 
and using equations (7), we obtain the equation as, 
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The particular regular solution of equation (10) 

which satisfies the uniform condition at infinity 
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Substituting the value of )1(ψ from equation (12) in 
equation (9), we get microrotation component as 
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For the inside region of the fluid sphere, the particular 
regular solution of equation(11) is given by
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4.  Boundary Conditions
The mathematically consistent boundary condition for 
this problem can be taken as:
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Continuity of tangential velocity across the surface i.e.
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Continuity of the tangential stress rT   i.e.
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Non-zero spin on the boundary (Lukaszewicz10), i.e.
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which on simplification provides
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On the inner solid sphere r = b, the conditions of 
impenetrability and no slip provides
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Using these boundary conditions (15)-(21) and equa-
tions (12) and (14) and solving the resulting equations we 
get the values of all constants which are appears in stream 
functions as
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Where,
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5  Calculation of Drag Force
The drag force F experienced by a coated sphere of radius 
a can be evaluated by the formula

= 2 ∫ [ ( ) − ( ) ]   	
(30)

Putting the expressions for the stresses in spherical polar 
coordinate in above equation and evaluating the integral, 
we found that      

1 2
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2 3
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2 3
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Where 𝜟 is given by equation (29)
Case I: Drag for zero spin on the boundary (𝜏=0)
Putting 𝜏=0 in equation (31) we get drag for without 

spin as

∆1
	(32)

Where 

∆

54

8  

Which agree with the result given by Gupta11

Case II: Drag on a Newtonian fluid sphere in the 
micropolar fluid (b→0)

When b=0 i.e. l=0, then coated fluid sphere becomes 
fluid sphere of radius a In this case the drag force comes 
out as:

	 2 	
(33)
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Where,
	 ∆2 = 6μ22b + 3μ12b

Which agree with the result given by Ramkissoon12.
Case III: Drag on a rigid sphere in an unbounded 

micropolar fluid (b→a)
If b=a i.e. l=1 , then coated fluid sphere becomes a rigid 

sphere. Drag force In this case comes out as 

	
             

3 	
(34)

Which agree with the result given by RamKissoon and 
Mazumdar13

Case IV: Drag on a Newtonian fluid sphere in an 
unbounded Newtonian fluid (𝜅→0)

Drag on a Newtonian fluid sphere comes out as

	

                                                           

                                                                             

     
	

(35)

Where  

Which is same as the result given by Happel and 
Brenner10.

6.  Result and Conclusions
From the Figure 1 we conclude that drag decreases with 
increasing the values of viscosity μ1 and decreases rapidly 
if we take non-zero spin boundary condition in place of 
zero boundary condition for values of μ2 - 20, k - 0.5, and 
l - 0.5. -
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Figure 1.  The comparison of Drag coefficient with non-
zero and zero spin boundary condition for various values of 
μ1 when μ2 - 20, k - 0.5, and l - 0.

The variation of drag coefficient on thickness of fluid 
coating ∈ and spin parameter 𝜏 for the values μ1 - 20,  
μ2 - 100, k - 0.5 and m = 20, is shown in Figure 2. From 
the figure it is clear that the drag coefficient decreases 
as thickness of fluid coating ∈ increases. It means that 
a sphere without fluid coating experience more drag 
while the present of fluid coating reduces the drag on the 
sphere, which agrees the result earlier reported by John-
son2. The variation of drag coefficient on l and vortex vis-
cosity coefficient k for different values of μ1 μ2 t and m is 
shown in Figure 3. From the figure it is clear that the drag 
decreases with increasing the values of vortex viscosity 
coefficient k and drag coefficient increases with increas-
ing the values of l i.e. if l > 1 coated sphere behaves like 
as rigid sphere and obviously in this case drag increases 
which again shows that fluid coating reduces the drag 
force on the sphere. The variation of drag coefficient with 
respect to viscosities μ1 and μ2 is shown in Figure 4. From 
the figure it is clear that the drag decreases with increas-
ing the values of μ1 and drag increases with increasing the 
values of μ2.

Drag 
coefficient 

 
 

	
Figure 2.  Drag coefficient versus thickness ∈ and 𝜏.
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Figure 3.  Drag coefficient versus k and l.
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Figure 4.  Drag coefficient versus viscosities μ1 and μ2.


