
Abstract
Data Compression plays an important role in reducing data storage space in computer memory and in achieving minimum
data transmission time in communication networks. There are two types of data compression: lossless and lossy. In lossless
data compression, decompression reproduces data that is exactly match with the original data and in lossy data compression,
the decompression reproduces data which is an approximation of the original data. Variable length integer codes such as
Elias Gamma Code, Elias Delta Code, Golomb Code, have been used for data compression (i.e. integer compression, text
compression, etc). In this paper, a new variable length integer code is proposed based on radix conversion and it is used
with Burrows Wheeler Transform for text data compression. The performance of the proposed code is compared with
Elias Gamma Code, Elias Delta Code and Golomb Code. For evaluation, Calgary corpus is used in the experiments, which
­contains both text file and binary files. Experimental results show that the Fibonacci code gives better compression rate
on an ­average than all other coders and Elias Gamma Code gives better compression rate for text files. The other coders
perform well for binary files compared to Elias Gamma Code.

A New Variable-Length Integer Code for Integer
Representation and Its Application to Text

Compression
J. Nelson Raja1*, P. Jaganathan2 and S. Domnic3

1Department of Computer Science, Bharathiyar University, Coimbatore - 641046, Tamil Nadu, India;
raja_nelson@yahoo.com

2Department of Computer Applications, PSNA College of Engineering and Technology, Dindigul – 624622,
Tamil Nnadu, India; jaganathodc@gmail.com

3Department of Computer Applications, National Institute of Technology, Tiruchirappalli – 620015, Tamil Nadu,
India; domnic@nitt.edu

Keywords: Burrows-Wheeler Compressione, Elias Delta Code, Elias Gamma Code, Golomb Code, Variable-Length
Integer Code

1.  Introduction

The main objective of data compression is to store the
data with the minimum number of bits in storage devices
and transmit the data in low band width communication
channels. Data-compression methods can be divided into
two types i.e. lossy and lossless. In lossless compression
methods, data can be decompressed as exactly same as
the source data. In lossy compression, decompressed data
is not 100% identical to the source and has a certain loss
of information. Lossless data compression techniques are
used to compress text data like financial data, executable
programs, text documents, source code, etc. Lossy data

compression technique is used to compress images, video
and audio. Various variable-length codes1 have been used
for data compression. In contrast with fixed length codes,
statistical coding methods achieves compression by
assigning short-length codes to more frequently occur-
ring symbols and long-length codes to rarely occurring
symbols of the source file which needs to be compressed.
The statistical methods require the probabilities of
the input symbols to generate variable-length codes.
Huffman coding2 and Shannon-Fano3 methods are exam-
ples for statistical methods which use symbol tables while
decoding the compressed data. The two passes approach
of the Statistical method is very slow for storage systems4,

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(24), DOI: 10.17485/ijst/2015/v8i24/80242, September 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A New Variable-Length Integer Code for Integer Representation and Its Application to Text Compression

Indian Journal of Science and Technology2 Vol 8 (24) | September 2015 | www.indjst.org

significant bit. EGC is generated as UC (L) | ~ B(n). The
bit length of EGC for an integer n is 2 12log n  + bits.
EGCs for 10 integers are given in Table 2.

2.3  Elias Delta Code (EDC)
EDC developed by Peter Elias6. EDC has two parts:
Gamma Part and binary part ~ B(n). The Gamma part is
the Elias Gamma Code of the bit length (L) of B(n) and
the binary part is the binary representation of the integer
n without its most significant bit. So, EDC is generated
as EGC (L) | ~ B(n). The bit length of EDC for an integer
n is 1 2 12 2 2+   + +  ()



log log logn n bits. EDCs for 10

integers are given in Table 3.

2.4  Golomb Code (GC)
GC7 was developed by Solomon W. Golomb. In GC, the
given number n>0 is first divided by a divisor d. The

sensory systems5 etc. There are other coding methods such
as Elias Gamma Code (EGC)6, Elias Delta Code (EDC)6,
Golomb Code (GC)7 which do not require the probability
values of the input data to produce variable-length codes
and these methods are called as variable-length integer
coding methods or variable-length integer codes. Since
variable-length integer codes does not require symbol
table and probability values, these codes are more pref-
erable in those applications which require fast encoding
and storage. In this paper, a new variable-length integer
code is proposed based on radix conversion and it is used
as the final stage coder in Burrows-Wheeler compressor8,9
for text data compression. The compression performance
of the proposed code is compared with the existing state-
of-the art methods such as EGC, EDC and GC. The
experiments are carried out on Calgary corpus10.

Section II describes state-of-the art variable length
integer codes. In Section III, the new code is presented.
In section IV, the performance of proposed code with
Burrows-Wheeler Transform (BWT) for text data com-
pression is studied and evaluated on Calgary Corpus data
set. Section V concludes this work.

2.  Variable Length Integer Codes
Variable-length Integer Codes, which are prefix codes, are
used for the compact representation of non-negative inte-
gers. Since these codes are easy to be constructed, they
have been used for image compression, video compres-
sion and text compression. In this section, state-of-the art
Variable-Length Integer Codes: such as GC, EGC, EDC
are presented, which are used to represent non-negative
integers.

2.1  Unary Code (UC)
UC1 is a universal variable-length code and satisfies the
prefix property. Unary code of integer n is defined as
(n – 1) zeros or ones followed by a single one or zero. So,
the length of the UC for an integer n is thus n bits. UCs for
10 integers from 1 to 10 are given in Table 1.

2.2  Elias Gamma Code (EGC)
EGC was proposed by Peter Elias6 in the year of 1975.
EGC of an integer n contains two parts: unary part UC(L)
and binary part ~ B(n), where UC(L) is the unary code
for the length (L) of the binary representation of n and
~B(n) is the binary representation of n without its most

Table 1.  UC for the integers 1 to 10

Integer (n) UC (n) Bit Length
1 0 1
2 10 2
3 110 3
4 1110 4
5 11110 5
6 111110 6
7 1111110 7
8 11111110 8
9 111111110 9

10 1111111110 10

Table 2.  EGC for the integers 1 to 10

Integer (n) B(n) EGC: UC(L) |~B(n)
1 1 1
2 10 10 | 0
3 11 10 | 1
4 100 110 | 00
5 101 110 | 01
6 110 110 | 10
7 111 110 | 11
8 1000 1110 | 000
9 1001 1110 | 001

10 1010 1110 | 010

J. Nelson Raja, P. Jaganathan and S. Domnic

Indian Journal of Science and Technology 3Vol 8 (24) | September 2015 | www.indjst.org

quotient part q and the remainder part r are then used
to code the given number n(>0). The quotient q and the
remainder r are obtained using equation (1).

	

q n
d

r n qd

= −

= − −







1

1 � (1)

The GC contains two parts. The first part of GC is the
value of q +1 which is coded in unary and the second part
is binary value of r. For example, when divisor d = 4, it
produces four possible remainders, 0, 1, 2 and 4 are coded
as 00, 01, 10 and 11 respectively, and are given in the Table
4. Table 4 shows the GC for divisors d = 3 and d = 4.

3. � Proposed Variable-Length
Integer Code

In this section, the proposed variable-length integer code
is presented. It is proposed based on radix conversion to
represent integers. Compact representation of integers is
essential for reducing the storage space requirements and
achieving fast retrieval of integers. The proposed code
for an integer is constructed based on the conversion of
its radix-2 representation to radix-r representation. The

idea is that the number of digits required to represent
a number in higher radix-r is equal or less than that of
lower radix-r. Hence, the number of bits used to repre-
sent higher radix-r in the length part of the proposed
code will be less. Based on this idea, the proposed code
has two parts: length part and data part. Length part is
the number of digits required to represent the integer
to be represented in the selected (higher) radix-r. Data
part of the proposed code is the radix-2 (i.e. binary) rep-
resentation (i.e. bits) of the integer. Since higher radix
representation requires minimum number digits to rep-
resent an integer than lower radix representation, length
part of the integer needs less number of bits to store the
length part of the proposed code. This idea is used to
achieve compact representation.

The state-of-the art methods: Elias Gamma Code,
Elias Delta Code also represents integers in two parts:
length part and data part. Length part denotes the
number of binary digits (bits) required for binary rep-
resentation (data part) of the integer. But, the unary
coding of length part leads to poor representation of
mid-range and large integers by these methods. The dif-
ference between the proposed code and Elias Gamma
Code is that the proposed code uses length part to
denote the number of radix-r digits required to repre-
sent the integer where as Elias code uses length part to
denote the number of binary (radix-2) digits required
for the integer representation. In both proposed code
and Elias codes, data part is the binary representation of
the given integer.

3.1  Algorithm for Encoding
The new variable-length integer code for an integer n is
generated using the following steps:

•	 Select any radix-r to represent the given integer n.
•	 Calculate the number of digits required to represent n

in the radix-r using the equation (2).

	 k r
n=   +log 1 � (2)

•	 Code k in unary (k-1 zeros followed by 1 or k-1 ones
followed by 0).

•	 Generate binary representation (b) of the integer n in

k r
nlog 

bits.

•	 Attach binary code without its most significant bit if
r=2, otherwise attach binary code of the integer n to
the code of k generated in step 3.

Table 3.  EDC for the integers 1 to 10

n EDC Bit Length
1 1 1
2 100 | 0 4
3 100 | 1 4
4 101 | 00 5
5 101 | 01 5
6 101 | 10 5
7 101 | 11 5
8 11000 | 000 8
9 11000 | 001 8

10 11000 | 010 8

Table 4.  Remainder table for divisor d = 3 & 4

Remainders
Binary codes

d = 3 d = 4
0 0 00
1 10 01
2 11 10
3 - 11

A New Variable-Length Integer Code for Integer Representation and Its Application to Text Compression

Indian Journal of Science and Technology4 Vol 8 (24) | September 2015 | www.indjst.org

4. � Experimental Results and
Discussion

In many applications, EGC, EDC, GC have been used.
These codes have been used for compressing indices in
database11, information retrieval system12, and compress-
ing environmental data in wireless sensor networks13,14. In
this work, the proposed code is used for text compression
with BWT compressor. BWT compressor has four phases
as shown in Figure 1. In first phase, the BWT computes
the permutation of the input. In the second phase, the
Move-To-Front (MTF) coder encodes the output of BWT.
In the third phase, MTF output will be encoded by RLE.
In the fourth phase, RLE output will be encoded by the
Variable Length Integer Codes (VLC).

Repeat step 1-5 for all integers.

Example: let n = 25 and r =4
b(n)= 011001
k = 3 ∴Use equation(2)
Proposed code of 25 = unary (3) | b (n).
= 001|011001.

The bit length (BL) of the proposed for an integer n is
give by:

	 BL n rr=   +() +  ()log log1 1 2 � (3)

3.2  Algorithm for Decoding
The compressed integer is decoded using the following
steps.

•	 Read the binary bits until bit 1/0 (unary terminator) is
encountered and count the bits read so far as k. Read
(l-1) bits if r = 2, otherwise, l bits further. The value of
l is calculated using equation (4).

	 l k r=  log2 � (4)

•	 Convert ‘l’ binary bits into decimal equivalent value.
The decimal equivalent value of k binary digits is used
to determine the number of binary digits required to
represent the integer n.

•	 Repeat step1-2 for all integers.

Example:
Let Proposed code = 001|011001, with r = 4
Read 001 and decode.
k = 3,
Compute l = 6 using equation (4).
Read 6 bits further and decode to get n
b = 011001,
n = 25.

Designing variable length codes applicable to all the
probability distribution of the symbols (integers) for best
compression is very difficult. The proposed code repre-
sents an integer n in log logr n r  +() +  ()1 1 2 bits. So
our code is the best when integers follow the probability

distribution of Pn n rr
=

+ () +()
1

2 1 1 2log log
. The parameter r is

the key value in determining the suitability of our code
for the given distribution. Table 6 shows the proposed
code for integers 1 to 10 for r = 2, 3 and 4

Table 5.  GC for the integers 1 to 10

Integer n Golomb Code
d = 3 d = 4

1 0 | 0 0 | 00
2 0 | 10 0 | 01
3 0 | 11 0 | 10
4 10 | 0 0 | 11
5 10 | 10 10 | 00
6 10 | 11 10 | 01
7 110 | 0 10 | 10
8 110 | 10 10 | 11
9 110 | 11 110 | 00

10 1110 | 0 110 | 01

Table 6.  Proposed code for the integers 1 to 10

Proposed code
n r = 2 r = 3 r = 4
1 1 1 | 01 1 | 01
2 01 | 0 1 | 10 1 | 10
3 01 | 1 01 | 0011 1 |11
4 001| 00 01 | 0100 01 | 0100
5 001| 01 01 | 0101 01 | 0101
6 001| 10 01 |0110 01 | 0110
7 001|11 01 | 0111 01 |0111
8 0001| 000 01 | 1000 01 | 1000
9 0001|001 001 | 01001 01 | 1001

10 0001 | 010 001 | 01010 01 |1010

J. Nelson Raja, P. Jaganathan and S. Domnic

Indian Journal of Science and Technology 5Vol 8 (24) | September 2015 | www.indjst.org

The performances of various coders (EDC, EGC,
GC, proposed code) with BWT compressor are evalu-
ated on calgary corpus dataset13 which contains both text
files (bib, book1, book2, news, paper1, paper2, paper3,
paper6, progc, progl, progp, trans and binary files (geo,
obj2, pic). The performance is measured in terms of bit-
rate which is calculated using Eq.5. Experimental results
are given in Table 7. It is noted from Table 7 that pro-
posed code with r = 2 and EGC achieve lowest bit- rate
on an average than EDC, and GC. The proposed code
(r = 4, 8) gives better compression performance than
EDC, EGC and GC for binary files (geo and obj1). The
proposed code gives better results than EDC, GC and

it also gives competitive results when compared to the
results of EGC.

	 Bit - rate =
Size of Compressed file

Number of symbols in the input file
� (5)

5.  Conclusion
In this paper, a new variable-length integer codes are
proposed to represent integers compactly. The pro-
posed method represents an integer by converting its
radix-2 representation to its radix-r representation.
The proposed method is also used as the final stage
encoder in Burrows-Wheeler compressor for text data
compression. Experiments are carried out on Calgary
corpus files. The compression performance of the pro-
posed is compared with the state-of-the art methods
(EGC, EDC, GC). The experimental results show that
the proposed code gives better results than EDC, GC
and it also gives competitive results when compared to
the results of EGC.

6.  References
1.	 Salomon D. Variable-length codes for data compression.

London: Springer-Verlag; 2007. p. 69–100.
2.	 Huffman DA. A method for the construction of

minimum-redundancy codes. Proceedings of the Institute
of Radio Engineers. 1952; 40:1098–101.

3.	 Shannon CE. A mathematical theory of communica-
tion. Bell System Technical Journal. 1948; 27:379–423,
623–56.

4.	 Ramana YV, Eswaran C. A new algorithm for BTC bit plane
coding, IEEE Transactions on Communications. 1995;
43(6):2010–11.

5.	 Leon-Salas WD. Low-complexity compression for sensory
systems. IEEE Transactions on Circuits and Systems - II:
Express Briefs. 2015 Apr.; 62(4).

6.	 Elias P. Universal codeword sets and representations of the
integers. IEEE Transactions on Information Theory. 1975
Mar; 21(2):194–203.

7.	 Golomb SW. Run-length encodings. IEEE Transactions on
Information Theory. 1966; 12(3):399–401.

8.	 Fenwick PM. Burrows wheeler compression with variable
length integer codes. Software-Practice and Experience.
2002; 32(13):1307–16.

9.	 Burrows M, Wheeler D. A block sorting lossless data
compression algorithm. Technical Report 124, Digital
Equipment Corporation; 1994.

Figure 1.  Stages of Burrows-Wheeler Compressor.

 Input
file

BWT MTF
code
r

RLE
coder

VLC

coder

Table 7.  Performance (bits per symbol) of variable
length integer codes on Calgary corpus

Files EDC
EGC Proposed code GC

r=2 r=4 r=8 d=4 d=8

bib 2.419 2.219 2.219 2.626 2.885 2.362 2.576

book1 3.435 3.077 3.077 3.666 4.048 3.130 3.600

book2 2.843 2.573 2.573 3.095 3.430 2.751 3.097

geo 5.888 6.152 6.156 5.769 5.535 11.120 7.350

news 3.217 2.997 2.997 3.479 3.762 3.268 3.412

obj1 4.536 4.628 4.631 4.602 4.609 7.726 5.529

paper1 3.005 2.752 2.752 3.284 3.623 2.985 3.266

paper2 3.035 2.745 2.745 3.284 3.629 2.881 3.246

paper3 3.350 3.042 3.042 3.610 3.972 3.160 3.530

paper5 3.734 3.491 3.491 4.059 4.401 3.092 3.231

paper6 3.074 2.828 2.828 3.391 3.729 3.111 3.385

pic 0.922 0.884 0.884 0.931 0.959 0.942 0.861

progc 2.960 2.763 2.763 3.247 3.530 3.092 3.231

progl 2.063 1.901 1.901 2.330 2.575 2.145 2.352

progp 2.007 1.873 1.873 2.309 2.554 2.222 2.379

trans 1.791 1.669 1.669 2.067 2.297 1.983 2.127

Average 3.017 2.850 2.850 3.234 3.471 3.498 3.323

A New Variable-Length Integer Code for Integer Representation and Its Application to Text Compression

Indian Journal of Science and Technology6 Vol 8 (24) | September 2015 | www.indjst.org

13.	 Stephen Chang et.al. Energy and storage reduction in data
intensive wireless sensor network applications. Technical
Report 15-07; 2007.

14.	 Mihajlovic B. Compression and security platform for the
testing of wireless sensor network nodes [Thesis]. Montreal,
Canada: McGill University; 2008.

10.	 Witten IH, Bell T. The calgary/canterbury text compression
corpus; 1990.

11.	 Williams HE, Zobel J. Indexing and retrieval for genomic
databases. IEEE Transactions on Knowledge and Data
Engineering. 2002; 14(1):63–78.

12.	 Trotman A. Compressing inverted files. Information
Retrieval. 2003; 6(1):5–19.

