
Abstract
Background/Objectives: In the biological sequences, palindromes can create structures that differ from the common
structure of non-palindromic sequences. Unfortunately, mutations introduced by evolutionary methods, make it difficult
to search the palindromes in DNA sequences. Methods/Statistical Analysis: The mutations occur in DNA sequences with
spacer (i.e. set of characters). One version of such algorithms has been intended to search for palindromes with gaps (i.e.
spacer) - gapped palindromes. The concept of Dynamic Suffix Array (DSA) is used to propose algorithms to search two classes
of gapped palindromes-length constrained and long armed. DSA modifies the previous built suffix arrays when there is
insertion and deletion of a new character, due to which efficiency is improved. DNA datasets obtained from National Centre
for Biotechnology Information (NCBI) is taken as input. The execution time, palindrome weight and length of palindrome
arms and spacer are analysed. Findings: Our proposed algorithms search maximal length constrained and long armed
gapped palindromes in DNA sequences efficiently. Time complexity of our proposed algorithms is O(n), where n is input
parameters. Also, we compute palindrome weights in the DNA sequences. For length constrained gapped palindromes, our
proposed algorithm is compared with existing one. The existing algorithm uses only suffix array. Experimental Observations
reveal that by the use of DSA, execution time of our algorithm on different DNA sequences has been improved by maximum
57.89%. It also shows a decrease in the execution time over existing approach, proving our designed algorithm is space
efficient, faster and easy to implement. Applications/Improvement: Our algorithms analyze short DNA sequences easily.
These algorithms can be executed and tested on standard DNA and datasets with large number of base pairs.

Searching Gapped Palindromes in DNA Sequences
using Dynamic Suffix Array
Shivika Gupta2*, Rajesh Prasad1 and Sunita Yadav2

1Department of Computer Science, Yobe State University, Damaturu, Nigeria; rajesh_ucer@yahoo.com
2Department of Computer Science and Engineering, Ajay Kumar Garg Engineering College, Ghaziabad - 201009,

Uttar Pradesh, India; guptashivika05@yahoo.com, yadav.sunita104@gmail.com

Keywords: Dynamic Suffix Array, Gapped Palindromes, Length Constrained, Long Armed, Palindromes

1. Introduction

A string w is said to be palindrome, if it is equal to its
reverse1,3,4,6,7,11,13,16. Recently, several researchers in the
field of computer science have been interested towards
palindromes4,8,13. Identifying palindromic structures is an
important test case from an algorithmic viewpoint2.

Computation related to palindrome pattern match-
ing was considered in16. Palindrome pattern matching
problem is to find all positions ‘i’, 1 ≤ i ≤ n, in a reference
sequence r[1…n] such that r[i … i + m – 1] and given pat-
tern p[1 … m] are palindromic equivalent.

In molecular biology, analysis of DNA is one of the
thrust areas of research. It is used to recognize the major

functioning of living beings at the biological level. Any
DNA sequence is string over four different base pairs:
Adenine (A), Cytosine (C), Guanine (G) and Thymine
(T)7,8,10,17. Palindromes in the DNA sequence can create
structures that differ from the common structure of non-
palindromic sequences as the nucleotides are uniformly
spaced and lead to associate into complementary DNA
strands. Palindrome structures in sequence show a major
role in determining parameters of gene activities or fur-
ther developments in cells8,15.

Evolutionary processes introduce transformations
that obscure the searching for palindrome structures in
genome datasets. These transformations occur in struc-
tures with spacer (set of characters). Apart for searching

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(23), DOI: 10.17485/ijst/2015/v8i23/70645, September 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Searching Gapped Palindromes in DNA Sequences using Dynamic Suffix Array

Indian Journal of Science and Technology2 Vol 8 (23) | September 2015 | www.indjst.org

exact palindromes in genome sequences, algorithms
searches for gapped palindromes12. Hence, execution
time of these types of algorithms is more, complicates
their practical utility.

Two linear-time algorithms for computing differ-
ent classes of gapped palindromes were proposed by
Kolpakov and Kucherov13. The first algorithm is able
to compute long-armed gapped palindromes using
Lempel-Ziv factorization method. The other algorithm
computes length-constrained gapped palindromes
using suffix array. Those two algorithms gave extensive
exemplification of all gapped palindromes existing in
the word. Computation of palindrome weight (number
and size of gapped palindromes) has also been a signifi-
cant problem. Henstra9 efficiently solved the problem
of palindrome weight by using suffix array and longest
common prefix array. Also, an algorithm for searching
approximate palindromes in biological sequences has
been designed in10.

This paper presents algorithms for gapped palin-
dromes in DNA sequences. Gapped palindrome is a string
of the form vuvT for some v, u, and vT is reverse comple-
ment (‘reversal’ + ‘complement of base pairs’) of v7,8,13. In
the string vuvT: vT is called right arm, v is called left arm
and u is spacer (gap). The first version is called length-con-
strained gapped palindromes in which the length of spacer
is bounded by lower and upper length values, i.e. MinGap
≤ |u| ≤ MaxGap, and a length of palindrome arm by the
lower bound, i.e. MinArm≤ |v|; where MinGap, MaxGap,
MinArm are pre-defined constants. The second class is
long-armed gapped palindromes that verify the condition
|u| ≤ |v|. In both the classes, palindromes discovered are
required to be maximal.

Our main objective is to design efficient methods that
can search maximal length constrained and long armed
gapped palindromes in DNA sequences by using the
concept of Dynamic Suffix Array (DSA)14. DSA is based
on the dynamic construction of new suffix array5 from
the previously built suffix arrays. In this, the suffixes of
the DNA sequence is stored by their index number not
by long string of characters, therefore the constructed
suffix array consumes less space. DSA modifies the
previous built suffix arrays when there is insertion and
deletion of a new character, due to which efficiency is
improved.

Also, we compute palindrome weights in the DNA
sequences. Both of our designed algorithms are imple-
mented in asymptotic time O(n), n denotes the length

of an input sequence. For length constrained gapped
palindromes, we compared the results of our proposed
algorithm with KK algorithm explained in13 as it uses
only suffix array. Experimental results show a decrease in
the execution time over existing approach, proving our
designed algorithm is space efficient, faster and easy to
implement. It shows that by the use of DSA, execution
time of our algorithm on different DNA sequences has
been improved by maximum 57.89%.

2.  Palindromes

2.1 � Length Constrained Gapped
Palindromes by Kolpakov and
Kucherov

Kolpakov and Kucherov13 proposed an algorithm (we are
saying KK Algorithm) for computing length-constrained
palindromes in a word. This algorithm uses suffix array
and longest common sub-word methods. It consists of
two main steps that perform respectively a preparatory
pre-processing and the main computation.

2.1.1  Pre-Processing
Considered an input v = v [1 … n]. For a position ‘a’, they
considered palindromic arms in input word a+ and a–;
where a–, a+ are denoted as starting positions in backward
and forward direction respectively. For each position,
define equivalence relation such that l1, l2 ∈ equivalence
relation, i.e. l1 ≡ l2 if and only if V(l1) = V(l2). In this step,
authors assigned the number to each position a–, a+ of its
equivalence class under the above equivalence relation.
This was done by using the suffix array for the input word
v#vT$ which takes time O(n).

2.1.2  Computation
The goal of this step was to find all pair of positions
satisfying a < b such that

V(a•	 –) = V(b+) (length constraint of palindrome arm)
MinGap ≤ b – a ≤ MaxGap•	 (gap length constraint)
 •	 v[a] ≠ v[b – 1] (maximal condition).

For such pair of positions, palindrome arm length has
been computed by using the longest common sub-
word. The gapped palindromes that are maximal and
verifies length constraints can be found in time O(n + S)

Shivika Gupta, Rajesh Prasad and Sunita Yadav

Indian Journal of Science and Technology 3Vol 8 (23) | September 2015 | www.indjst.org

retaining a set of equivalence relation, where n refers to
the length of input word and S is referred as number of
output length constrained palindromes. Kolpakov and
Kucherov analyzed the algorithm theoretically; we have
evaluated the algorithm using three standard DNA data-
sets (obtained from NCBI). The algorithm computes all
maximal and length constrained palindromes in a given
sequence.

2.2 � Liner Time Palindrome Pattern
Matching Algorithm

Tomohiro I et al.16, proposed a linear time algorithm
(KMP: Knuth Morris Pratt Type Algorithm) to solve the
palindrome pattern matching problem. They found the
maximal palindromic structure in the DNA of characters
that matches structure of pattern. Given DNA sequence
S of length ‘c’ and pattern P of length ‘d’, their objective
was to find structure of pattern P in S by using KMP Type
Algorithm. The KMP type algorithm is implemented by
using Lpal array and failure function.

The Lpal array for the pattern and sequence is com-
puted. The palindrome pattern matching is success if the
Lpal array of pattern matches with Lpal in sequence. The
Lpal array means the length of the lengthiest suffix palin-
drome for each position ‘i’. For example, the Lpal array of
the sequence A C A A G C G C is 1132113 for the above
sequence.

The failure function is constructed for the Lpal array
of pattern, so that it is considered when there is mismatch
between the values of Lpal arrays of pattern and sequence.
The failure function from state i to state j means that j is
the maximum length of prefix and suffix of P [1…i] that
palindrome matches.

Let the sequence T = A C A A G T G A G G C T C T.
The Lpal array in the sequence is computed so that it
matches with the Lpal array of pattern: At position ‘0’,
the longest suffix palindrome is ‘A’ itself, therefore the
first element of Lpal array is ‘1’ and then move right to
the next state; in a similar manner compute the longest
suffix palindrome at each position so that Lpal array is
constructed. But at position ‘7’, the element of Lpal array
is 5, which cannot be transmitted, as it does not match
with Lpal array of pattern P. Then, the failure function
was considered according to which back to state ‘3’.
Then, move three positions back and ignore the first four
characters and then again recomputed Lpal array. The
algorithm followed the same procedure until the Lpal

array in sequence matches with the Lpal array of pattern
at some position.

The palindrome structure of pattern is found in the
sequence. This efficient approach takes linear time i.e.
O(c+d) to perform the computation on arbitrary number
of characters in a sequence.

2.3  Gapped Palindromic Weight in RNA
Henstra9 proposed an algorithm to determine palindrome
weight in RNA. It represents structures in a large RNA
sequence which is to be identified and is defined by the
number and size of gapped palindromes of the input
sequence. Suffix arrays and longest common prefix arrays
are both calculated for the input which enables quick
retrieval of maximal gapped palindromes.

3.  Proposed Algorithms
In this section, we describe two proposed algorithms
(LCGP and LAGP) for computing all maximal gapped
palindromes occurring in DNA sequence using dynamic
suffix array. The first algorithm LCGP computes all gapped
palindromes which are both maximal and length con-
strained. The other algorithm LAGP computes maximal
long armed gapped palindromes.

3.1 � Length Constrained Gapped
Palindromes (LCGP)

This section presents algorithm for verifying length
constrained maximal gapped palindrome. The outward/
inward stretching of a palindrome can lead to a palin-
drome that may not be able verify the length constraints.
For instance, if MinArm = 3, MinGap = 3 and MaxGap = 5,
 the palindrome CAA TTGA TTG is not maximal but
verifies length constraints. On the other hand, its exten-
sion CAAT TG ATTG is maximal but is unable to verify
length constraints.

For MinArm = 3, MinGap = 3 and MaxGap = 5, we
now describe algorithm that computes all maximal length
constrained gapped palindromes. Our proposed algorithm
begins with the sliding window, which slides in forward
direction across the input DNA string of length ‘n’ for the
sequence of length ‘k’ and then, slides one position for-
ward for new sequence, until the entire input is processed.
For sequence of length ‘k’, our algorithm computes if it is
length-constrained or not.

Searching Gapped Palindromes in DNA Sequences using Dynamic Suffix Array

Indian Journal of Science and Technology4 Vol 8 (23) | September 2015 | www.indjst.org

3.1.1 � Computing Length-Constrained Gapped
Palindromes

The steps for computing length-constrained are as
follows:

Step 1: �Reverse Complement- First, we compute reverse
complement of sequence. The reverse complement
is defined as the complementary of base pairs and
then its reversal.

Step 2: �Concatenation with $- In this step, the sequence
and its reverse complement is concatenated with
special symbol ‘$’ (Here, $ indicates end of the
string).

Step 3: �Using Generalized Suffix Array- This step involves
the paradigm of generalized suffix array. We firstly
build suffix arrays (permutation of index num-
bers giving the starting positions of suffixes of a
string in alphabetical order) of sequence and its
reverse complement. Then we compare each suf-
fix of sequence with each and every suffix of the
reverse complement for finding all maximal and
non-maximal gapped palindromes.

Step 4: �Compute Length Constraints- Consider the
gapped palindrome, in which number of matched
characters (palindromic arms) should be at least
to the length of MinArm and length of spacer
should satisfy MinGap ≤ spacer length ≤ MaxGap.
The palindrome arms should be complementarily
equal on the both sides of the spacer.

Step 5: �Use of Dynamic Suffix Array- The suffix array
is constructed for the sequence, but any edit
operation in the sequence would lead to the con-
struction of a brand new suffix array. Therefore, it
is possible to modify previous suffix array when
there is insertion and deletion of a character in the
sequence.

The major steps of the algorithm are illustrated in
Example 1.

Example 1: Consider the sequence S = ‘GTTAACAAAC’
of length ‘10’. To compute if sequence S is length-con-
strained, the following steps are:

The reverse complement of sequence S is •	
GTTTGTTAAC.
The sequence S and its reverse complement is con-•	
catenated with $ to get GTTAACAAAC$ and
GTTTGTTAAC$ respectively.

The suffix arrays are constructed for sequence S and •	
its reverse complement. Each suffix of sequence S is
compared with each and every suffix of the reverse com-
plement for finding maximal and non-maximal gapped
palindromes. For example, the suffix AAAC$ is com-
pared to the each and every suffix of reverse complement.
First the suffix AAAC$ is compared to AAC$, the match
found is AA*. Then the suffix AAAC$ is compared to
AC$. The match found is A*; where * is unmatched char-
acter. This method will work until the suffix AAAC$ is
compared to all the suffixes of reverse complement. Only
those subsequence is considered as gapped palindromes
when it contains matched and unmatched characters, for
example, the match found like ‘***’ is not gapped palin-
drome as it does not contain any matched character and
the match found like ‘AAC’ is also not gapped palindrome
as it does not contain any unmatched character. Here, for
suffix AAAC$, the possible gapped palindromes found
are AA*, A*, *AA* and **A*.

Similarly, the suffix AAC$ is compared to the each and
every suffix of reverse complement. Here, for suffix AAC$,
possible gapped palindromes found are A*, *A*. This proce-
dure will follow until we find all maximal and non-maximal
gapped palindromes. Table 1 shows all maximal and non-
maximal gapped palindromes found in sequence S.

Our goal of this step is to determine palindromic •	
arms and spacer. Consider the gapped palindrome
GTT****AAC (Table 1.) with palindromic arm (matched
characters) of length 3 which is equal to value of
MinArm. The length of spacer (unmatched charac-
ters) is 4 satisfying MinGap (=3) ≤ spacer length (=4)
≤ MaxGap (=5). The palindrome arms are comple-
mentarily equal on the both sides of spacer (i.e. left
arm and reverse of right arm are complementarily
equal). Hence, the sequence S = ‘GTTAACAAAC’ is
length constrained gapped palindrome.
Continuing with sequence S = GTTAACAAAC$, sup-•	
pose there is insertion of the character A at the 11th
position and deletion of G at the 1st position so that
the new sequence is TTAACAAACA$. The new suffix
array of new sequence is constructed from the previous
suffix array of S. As the character A is newly inserted
character in S, therefore find out the position of A$ in
previous suffix array of S and then insert in it. The one
of the suffixes in S i.e. GTTAACAAAC$ is deleted from
previous suffix array. The character A is appended at
the end of remaining suffixes other than $.

Shivika Gupta, Rajesh Prasad and Sunita Yadav

Indian Journal of Science and Technology 5Vol 8 (23) | September 2015 | www.indjst.org

3.1.2  Asymptotic Analysis
The algorithm for finding length constrained gapped
palindromes can be implemented in time O(n). Step 1 is
takes time O(n). The step 2 is done in constant time. The
step 3 requires O(n) time by generalized suffix array. At
step 4, finding palindromic arm’s length and computing
spacer length requires O(n) time. At step 5, building of
dynamic suffix array takes time O(n). Hence, total execu-
tion time of LCGP is O(n).

3.2 � Long-Armed Gapped Palindromes
(LAGP)

LAGP algorithm computes long armed maximal gapped
palindromes occurring in input DNA sequences. LAGP
begins with the sliding window, which slides in forward
direction across the input DNA string of length ‘n’ for
the sequence of length ‘k’ and then, slides one position
forward for new sequence, until the entire input is pro-
cessed. For sequence of length ‘k’, our algorithm computes
whether it is long-armed or not.

3.2.1  Computing Long-Armed Palindromes
The steps for computing long-armed are as follows:

Step 1: �Repeat steps 1–3 that are also used for searching
length constrained gapped palindromes.

Step 2: �Compute Length Constraints- Our goal of
this step is to determine length constraints of
palindromic arms and spacer. Consider maxi-
mal gapped palindrome, in which there are
maximum number of matched characters and
minimum number of unmatched characters. The
palindromic arms (matched characters) should
be complementarily equal on both sides. The
length of palindromic arms should be greater
than or equal to the length of spacer (unmatched
characters).

Step 3: �Use of Dynamic Suffix Array- The suffix array is
constructed for the sequence as shown in step 3,
but any edit operation in the sequence would lead
to the construction of a brand new suffix array.
Therefore, it is possible to modify previous suf-
fix array when there is insertion and deletion of a
character in the sequence.

The major steps of the algorithm are illustrated in
Example 2.

Table 1.  Maximal and Non-maximal gapped
palindromes found in GTTAACAAAC$

 Suffixes of
GTTAACAAAC$

Gapped Palindromes

$ –
AAAC$ AA*

A*

AA

**A*

AAC$ A*

A

AACAAAC$ A*
***AA*

*A**

****AAC
***A*

*****A*

AC$ A*

ACAAAC$ A**

***AAC
**A*

****A*

**AA*

C$ -
CAAAC$ *A*

***A*

AA

**AAC
GTTAACAAAC$ GTT****AAC

**T*A*

*T*A*

*T****A*

TT*AA*

TAACAAAC$ *A*

****A*

T***AA*

T*A**

T****AAC
T*****A*

TTAACAAAC$ *T*A**

*T*****A*

T*A*

T****A*

TT***AA*

TT****AAC

Searching Gapped Palindromes in DNA Sequences using Dynamic Suffix Array

Indian Journal of Science and Technology6 Vol 8 (23) | September 2015 | www.indjst.org

Example 2: Consider the sequence S = ‘GTTAACTAAC’
of length ‘10’. To compute if sequence S is long-armed, the
following steps are:

The reverse complement of sequence S is •	
GTTAGTTAAC.
The sequence S and its reverse complement is con-•	
catenated with $ to get GTTAACTAAC$ and
GTTAGTTAAC$ respectively.
The suffix arrays of GTTAACTAAC$ and •	
GTTAGTTAAC$ are shown in Table 2. Each suffix of
sequence S is compared with each and every suffix of
the reverse complement for finding maximal and non-
maximal gapped palindromes as shown in Table 3.
Consider the maximal gapped palindrome •	
GTTA**TAAC found in Table 3, in which there are
maximum number of matched characters and mini-
mum number of unmatched characters. Here, the
palindromic arm (matched characters) is of length 4
and spacer (unmatched characters) is of length 2. The
palindromic arms are complementarily equal on the
both sides (i.e. left arm and reverse of right arm are
complementarily equal). Also, the length of spacer is
less than the length of palindromic arms.
Hence, we say that the S = ‘GTTAACTAAC’ is long •	
armed gapped palindrome.
Continuing with sequence S = GTTAACTAAC$, sup-•	
pose there is insertion of the character A at the 11th
position and deletion of G at the 1st position so that the
new subsequence is TTAACTAACA$. The new suffix

Table 2.  Suffix Arrays of GTTAACTAAC$ and
GTTAGTTAAC$

Index for
Subsequence

Suffix of
Subsequence

Index for
Reverse

Complement

Suffix of
Reverse

Complement

11 $ 11 $

8 AAC$ 8 AAC$

4 AACTAAC$ 9 AC$

9 AC$ 4 AGTTAAC$

5 ACTAAC$ 10 C$

10 C$ 5 GTTAAC$

6 CTAAC$ 1 GTTAGTTAAC$

1 GTTAACTAAC$ 7 TAAC$

7 TAAC$ 3 TAGTTAAC$

3 TAACTAAC$ 6 TTAAC$

2 TTAACTAAC$ 2 TTAGTTAAC$

Table 3.  Maximal and Non-Maximal Gapped
palindromes found in GTTAACTAAC$

Suffixes of GTTAACAAAC$ Gapped Palindromes
$ –

AAC$ A*

A**

*AA
A

ACTAAC$ A*

A**TAAC
****A*

*A**

AC$ A*

A*

ACTAAC$ A**

A*

A*T*A
**TAAC

TA

***A*

C$ -
CTAAC$ *T*A*

*T*A*

**A*

*TAAC
*TA**

GTTAACTAAC$ **T*A**

GTTA**TAAC
*T*A*

*T*A***A*

TAAC$ *A*

TA**

T*A*

T*A*

TAACTAAC$ *A*

*****A*

TA**TAAC
T*A**

T*A*T*A*

TTAACTAAC$ *T*A**

*T*A*T*A*

T*A*

T****A*

TTA**TAAC

Shivika Gupta, Rajesh Prasad and Sunita Yadav

Indian Journal of Science and Technology 7Vol 8 (23) | September 2015 | www.indjst.org

dataset 2, Cytosine methylation (mC) is tissue specific.
mC location is non-random and clustered. All mCs
are located in ‘CG’ doublets, better than half of which
are in short palindromes. The palindrome ‘CCGG’ is
almost completely methylated in various tissues, ‘TGCA’
differently in the various tissues.

We implemented the algorithms (LCGP, LAGP and
KK) in C, compiled with Turbo C++ compiler, with
Windows 8, 2.13 GHZ processor with 4 GB RAM.

4.1 � Length Constrained Gapped
Palindromes (LCGP)

Execution time of the algorithm is measured in
milliseconds (ms). For length constrained palindromes,
the execution time varies with the base pairs in DNA
datasets. As the base pairs increases, the execution time of
the algorithm increases. Results are shown in Table 4. For
analyzing dataset 1 of length 32 base pairs (bp), the algo-
rithm takes 0.439560 ms. for dataset 2 of 131 base pairs
(bp), the execution time increases to 0.318681 ms. simi-
larly, for dataset 3 of 230 base pairs (bp), the execution
time increases to 1.520579 ms.

The Table 4 also gives a palindrome weight computed
by LCGP algorithm. Palindrome weight is represented
by number and size of gapped palindromes. Dataset 1
does not contain any length constrained gapped pal-
indrome whereas dataset 2 and dataset 3 contain four
and three length constrained palindromes of length ‘10’
respectively. The Table 4 also shows actual length con-
strained gapped palindromes found by LCGP in DNA
datasets.

array of new sequence is constructed from the previous
suffix array of S. As the character A is newly inserted
character in S, therefore find out the position of A$ in
previous suffix array of S and then insert in it. The one
of the suffixes in S i.e. GTTAACTAAC$ is deleted from
previous suffix array. The character A is appended at
the end of remaining suffixes other than $.

3.2.2  Asymptotic Analysis
All long armed gapped palindromes is to be found in
O(n) time. Step 1 is implemented in time O(n). At step 2,
finding palindromic arm’s length and computing spacer
length requires O(n) time. At step 3, dynamic suffix array
construction requires O(n) time. Hence, total execution
time of LAGP is O(n).

4.  Main Results
For experiments, we use three DNA datasets obtained
from National Centre for Biotechnology Information
(NCBI):

Dataset 1:•	 Chain B, Structure of the Rep Associates
Tyrosine Transposase Bound to A Rep Hairpin.
Dataset 2:•	 Bovine testis satellite I (1.715 g/ml) DNA,
segment 3.
Dataset 3:•	 Human lymphocyte antigen (HLA-DN2)
mRNA, 3’ flank.

In dataset 1, Rep associates represents class of extra genic
sequences that form nucleotide stem-loop structures. In

Table 4.  Comparison of existing Algorithm with proposed algorithm

Dataset Total base
pairs in
dataset

Palindrome Weight Palindrome
Arm Length

Gap
Length

Length
Constrained

Gapped
Palindrome

Time
(in ms) by KK

algorithm13

Time (in ms)
by LCGP
algorithm Number of

palindrome
Size of

palindrome

Dataset 1 32 bp 0 – – – – 1.043956 0.439560

Dataset 2 131 bp 4 10
10
10
10

3
3
3
3

4
4
4
4

GGACTTCTCC
ATCTTGCGAT
GGGACTCCCC
ACTCCCCAGT

1.373626 1.318681

Dataset 3 230 bp 3 10
10
10

3
3
3

4
4
4

TCTACAAAGA
CCAGGCATGG
GGCTGGGGCC

1.538462 1.520579

Searching Gapped Palindromes in DNA Sequences using Dynamic Suffix Array

Indian Journal of Science and Technology8 Vol 8 (23) | September 2015 | www.indjst.org

4.2  Comparison with other Algorithm
We compared the execution time of our proposed LCGP
algorithm with KK algorithm13. Results are shown in
Table 4. It has been observed that, the execution time of
LCGP is less than the execution time of KK algorithm.
For DNA dataset 1, the execution time of our LCGP
algorithm improves by 57.89%. For another dataset 2,
execution time improves by 3.99%. In another dataset 3,
the execution time is improved by 1.16%. Figure 1 shows
fair comparison between the existing (KK Algorithm)
and proposed algorithm. It provides comparison of exe-
cution time against number of base pairs. The results
show that LCGP algorithm is efficient as compared to KK
algorithm.

4.3 � Long Armed Gapped Palindromes
(LAGP)

Execution time of the algorithm is measured in
milliseconds (ms). For long armed palindromes, the
execution time varies with the base pairs number in

Figure 1.  Comparison of execution time between existing
(KK Algorithm) and proposed algorithm.

(a)

(b)

Figure 2.  Snapshots of the output. (a) Searching length
constrained Gapped Palindromes in Dataset 2 and
(b) Searching long armed Gapped Palindromes in Dataset 3.

Table 5.  Long Armed Gapped Palindromes detected in standard Datasets

Dataset Total base
pairs in
dataset

Palindrome Weight Length of
Palindrome

arm

Spacer
Length

Long Armed
Gapped

Palindrome

Time (ms)
by LAGP
algorithmNumber of

Palindrome
 Size of

Palindrome

Dataset 1 32 bp 1 10 4 2 GCGTTTACGC 0.824176

Dataset 2 131 bp 1 10 4 2 CGCTGTAGCG 0.989011

Dataset 3 230 bp 1 10 4 2 ATTTAAAAAT 1.483516

DNA datasets. As the base pairs number increases, the
execution time of the algorithm increases. Results are
shown in Table 5. For analyzing dataset 1 of length 32 base
pairs (bp), the algorithm takes 0.824176 ms. For dataset
2 of 131 base pairs (bp), the execution time increases to
0.989011 ms. similarly, for dataset 3 of 230 base pairs (bp),
the execution time increases to 1.483516 ms.

The Table 5 also gives a palindrome weight computed
by LAGP algorithm. Each dataset contain one long armed
gapped palindrome of length ‘10’. The Table 5 also shows
actual long armed gapped palindromes found by LAGP
in DNA datasets.

Shivika Gupta, Rajesh Prasad and Sunita Yadav

Indian Journal of Science and Technology 9Vol 8 (23) | September 2015 | www.indjst.org

  4.	 Glen A, Justin J, Widmer S, Zamboni LQ. Palindromic
richness. European Journal of Combinatorics. 2009;
30(2):510–31.

  5.	 Goel A, Prasad R. Efficient Indexing Techniques for Record
Matching and Deduplication. International Journal of
Computer Vision and Robotics (Inderscience). 2014;
4(1/2):75–85.

  6.	 Groult R, Prieur E, Richomme G. Counting distinct palin-
dromes in a word in linear time. Information Processing
Letters. 2010; 110(20):908–12.

  7.	 Gupta R, Mittal A, Gupta S. An efficient algorithm to detect
palindromes in DNA sequences using periodicity trans-
form. Signal Processing. 2006; 86:2067–73.

  8.	 Gusfield D. Algorithms on Strings, Trees, and Sequences.
Cambridge University Press, New York; 1997.

  9.	 Henstra SJ. Determining gapped palindrome density in
RNA using suffix arrays. Leiden Institute of Advanced
Computer Science. Leiden University; 2010. p. 1–15.

10.	 Hsu PH, Chen KY, Chao KM. Finding all approximate
gapped palindromes. Proceedings of ISAAC, LNCS. 2009;
5878:1084–93.

11.	 Jeuring J. Finding Palindromes: Variants and Algorithms,
the Beauty of Functional Code, Lecture Notes in Computer
Science 8106; 2013. p. 258–72.

12.	 Kolpakov R, Kucherov G. Finding repeats with fixed gap.
Proceedings of the 7th International Symposium on String
Processing and Information Retrieval (SPIRE), A Coruña,
IEEE; 2000. p. 162–68.

13.	 Kolpakov R, Kucherov G. Searching for gapped palindromes.
Theoretical Computer Science. 2009; 410(51):5365–73.

14.	 Salson M, Lecroq T, Leonard M, Mouchard L. Dynamic
extended suffix arrays. Journal of Discrete Algorithms.
2010; 8:241–57.

15.	 Smith GR. Meeting Palindromes head- to- head. Genes and
Development. 2008; 22:612–20.

16.	 Tomohiro I, Inenaga S, Takeda M. Palindrome Pattern
Matching. Theoretical Computer Science; 2012. p. 1–9.

17.	 Sreejith K, Sebastian CD. Molecular Phylogeny and Genetic
Analysis of Green Leafhopper-Nephotettix Virescens
(Distant) Using Mitochondrial COI Gene. Indian Journal
of Science and Technology. 2015; 8.1:61–4.

5.  Conclusions
This paper presents novel algorithms for searching the
gapped palindrome. The proposed algorithms are based
on dynamic suffix array and allow constructing the new
suffix array from the already built suffix array. The pre-
sented algorithms ensure finding long armed and length
constrained versions of gapped palindromes in the bio-
logical DNA sequence, verifying all the conditions. Our
algorithms analyzed short DNA sequences easily.

The proposed algorithms utilize the advantages of
suffix array and dynamic suffix array. They achieve time
complexity O(n), consume less space and are easy to
implement.

Comparing our algorithm (for length constrained) to
other algorithm using suffix array, the algorithm shows
improvement in execution time. Experimental results
showed that execution time of our algorithm improves by
57.89%.

These algorithms can be executed and tested on stan-
dard DNA and datasets with large number of base pairs.
The same can be extended for searching different classes of
gapped palindromes in protein sequences. In addition,
the work can be extended for biological sequences having
palindromes with insertions, substitutions and deletions.

6.  References
1.	 Bannai H, Masayuki T. Computing palindromic

factorizations and palindromic covers on-line. Proceedings
of 25th Annual Symposium on Combinatorial Pattern
Matching (CPM); Moscow, Russia: Springer; 2014.
p. 150–61.

2.	 Bille P, Gortz IL, Sach B, Vildhoj HW. Time-space trade-
offs for longest common extensions. Journal of Discrete
Algorithms. 2014; (25):42–50.

3.	 Chowdhury SR, Hasan MM, Iqbal S, Rahman MS.
Computing a longest common palindromic subsequence.
Fundamental Informaticae. 2014; 129(4):329–40.

