
Abstract
Background/Objectives: In the biological sequences, palindromes can create structures that differ from the common
structure of non-palindromic sequences. Unfortunately, mutations introduced by evolutionary methods, make it difficult
to search the palindromes in DNA sequences. Methods/Statistical Analysis: The mutations occur in DNA sequences with
spacer (i.e. set of characters). One version of such algorithms has been intended to search for palindromes with gaps (i.e.
spacer) - gapped palindromes. The concept of Dynamic Suffix Array (DSA) is used to propose algorithms to search two  classes
of gapped palindromes-length constrained and long armed. DSA modifies the previous built suffix arrays when there is
insertion and deletion of a new character, due to which efficiency is improved. DNA datasets obtained from National Centre
for Biotechnology Information (NCBI) is taken as input. The execution time, palindrome weight and length of  palindrome
arms and spacer are analysed. Findings: Our proposed algorithms search maximal length constrained and long armed
gapped palindromes in DNA sequences efficiently. Time complexity of our proposed algorithms is O(n), where n is input
parameters. Also, we compute palindrome weights in the DNA sequences. For length constrained gapped  palindromes, our
proposed algorithm is compared with existing one. The existing algorithm uses only suffix array. Experimental Observations
reveal that by the use of DSA, execution time of our algorithm on different DNA sequences has been improved by maximum 
57.89%. It also shows a decrease in the execution time over existing approach, proving our designed algorithm is space
efficient, faster and easy to implement. Applications/Improvement: Our algorithms analyze short DNA sequences easily.
These algorithms can be executed and tested on standard DNA and datasets with large number of base pairs.
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1. Introduction

A string w is said to be palindrome, if it is equal to its
reverse1,3,4,6,7,11,13,16. Recently, several researchers in the
field of computer science have been interested towards
palindromes4,8,13. Identifying palindromic structures is an
important test case from an algorithmic viewpoint2. 

Computation related to palindrome pattern match-
ing was considered in16. Palindrome pattern matching
problem is to find all positions ‘i’, 1 ≤ i ≤ n, in a reference
sequence r[1…n] such that r[i … i + m – 1] and given pat-
tern p[1 … m] are palindromic equivalent.

In molecular biology, analysis of DNA is one of the
thrust areas of research. It is used to recognize the major 

functioning of living beings at the biological level. Any
DNA sequence is string over four different base pairs:
Adenine (A), Cytosine (C), Guanine (G) and Thymine 
(T)7,8,10,17. Palindromes in the DNA sequence can create
structures that differ from the common structure of non-
palindromic sequences as the nucleotides are uniformly
spaced and lead to associate into complementary DNA
strands. Palindrome structures in sequence show a major
role in determining parameters of gene activities or fur-
ther developments in cells8,15. 

Evolutionary processes introduce transformations
that obscure the searching for palindrome structures in
genome datasets. These transformations occur in struc-
tures with spacer (set of characters). Apart for searching 
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exact palindromes in genome sequences, algorithms 
searches for gapped palindromes12. Hence, execution 
time of these types of algorithms is more, complicates 
their practical utility.

Two linear-time algorithms for computing differ-
ent classes of gapped palindromes were proposed by 
Kolpakov and Kucherov13. The first algorithm is able 
to compute long-armed gapped palindromes using 
Lempel-Ziv factorization method. The other algorithm 
computes length-constrained gapped palindromes 
using suffix array. Those two algorithms gave extensive 
exemplification of all gapped palindromes existing in 
the word. Computation of palindrome weight (number 
and size of gapped palindromes) has also been a signifi-
cant problem. Henstra9 efficiently solved the problem 
of palindrome weight by using suffix array and longest 
common prefix array. Also, an algorithm for searching 
approximate palindromes in biological sequences has 
been designed in10.

This paper presents algorithms for gapped palin-
dromes in DNA sequences. Gapped palindrome is a string 
of the form vuvT for some v, u, and vT is reverse comple-
ment (‘reversal’ + ‘complement of base pairs’) of v7,8,13. In 
the string vuvT: vT is called right arm, v is called left arm 
and u is spacer (gap). The first version is called length-con-
strained gapped palindromes in which the length of spacer 
is bounded by lower and upper length values, i.e. MinGap 
≤ |u| ≤ MaxGap, and a length of palindrome arm by the 
lower bound, i.e. MinArm≤ |v|; where MinGap, MaxGap, 
MinArm are pre-defined constants. The second class is 
long-armed gapped palindromes that verify the condition 
|u| ≤ |v|. In both the classes, palindromes discovered are 
required to be maximal.

Our main objective is to design efficient methods that 
can search maximal length constrained and long armed 
gapped palindromes in DNA sequences by using the 
concept of Dynamic Suffix Array (DSA)14. DSA is based 
on the dynamic construction of new suffix array5 from 
the previously built suffix arrays. In this, the suffixes of 
the DNA sequence is stored by their index number not 
by long string of characters, therefore the constructed 
suffix array consumes less space. DSA modifies the 
previous built suffix arrays when there is insertion and 
deletion of a new character, due to which efficiency is 
improved. 

Also, we compute palindrome weights in the DNA 
sequences. Both of our designed algorithms are imple-
mented in asymptotic time O(n), n denotes the length 

of an input sequence. For length constrained gapped 
palindromes, we compared the results of our proposed 
algorithm with KK algorithm explained in13 as it uses 
only suffix array. Experimental results show a decrease in 
the execution time over existing approach, proving our 
designed algorithm is space efficient, faster and easy to 
implement. It shows that by the use of DSA, execution 
time of our algorithm on different DNA sequences has 
been improved by maximum 57.89%.

2. Palindromes

2.1  Length Constrained Gapped 
Palindromes by Kolpakov and 
Kucherov

Kolpakov and Kucherov13 proposed an algorithm (we are 
saying KK Algorithm) for computing length-constrained 
palindromes in a word. This algorithm uses suffix array 
and longest common sub-word methods. It consists of 
two main steps that perform respectively a preparatory 
pre-processing and the main computation.

2.1.1 Pre-Processing 
Considered an input v = v [1 … n]. For a position ‘a’, they 
considered palindromic arms in input word a+ and a–; 
where a–, a+ are denoted as starting positions in backward 
and forward direction respectively. For each position, 
define equivalence relation such that l1, l2 ∈ equivalence 
relation, i.e. l1 ≡ l2 if and only if V(l1) = V(l2). In this step, 
authors assigned the number to each position a–, a+ of its 
equivalence class under the above equivalence relation. 
This was done by using the suffix array for the input word 
v#vT$ which takes time O(n). 

2.1.2 Computation 
The goal of this step was to find all pair of positions 
 satisfying a < b such that 

V(a•	 –) = V(b+) (length constraint of palindrome arm) 
MinGap ≤ b – a ≤ MaxGap•	  (gap length constraint) 
 •	 v[a] ≠ v[b – 1] (maximal condition). 

For such pair of positions, palindrome arm length has 
been computed by using the longest common sub-
word. The gapped palindromes that are maximal and 
verifies length constraints can be found in time O(n + S) 
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 retaining a set of equivalence relation, where n refers to 
the length of input word and S is referred as number of 
output length  constrained palindromes. Kolpakov and 
Kucherov  analyzed the algorithm theoretically; we have 
evaluated the algorithm using three standard DNA data-
sets (obtained from NCBI). The algorithm computes all 
maximal and length constrained palindromes in a given 
sequence. 

2.2  Liner Time Palindrome Pattern 
Matching Algorithm

Tomohiro I et al.16, proposed a linear time algorithm 
(KMP: Knuth Morris Pratt Type Algorithm) to solve the 
palindrome pattern matching problem. They found the 
maximal palindromic structure in the DNA of characters 
that matches structure of pattern. Given DNA sequence 
S of length ‘c’ and pattern P of length ‘d’, their objective 
was to find structure of pattern P in S by using KMP Type 
Algorithm. The KMP type algorithm is implemented by 
using Lpal array and failure function.

The Lpal array for the pattern and sequence is com-
puted. The palindrome pattern matching is success if the 
Lpal array of pattern matches with Lpal in sequence. The 
Lpal array means the length of the lengthiest suffix palin-
drome for each position ‘i’. For example, the Lpal array of 
the sequence A C A A G C G C is 1132113 for the above 
sequence. 

The failure function is constructed for the Lpal array 
of pattern, so that it is considered when there is mismatch 
between the values of Lpal arrays of pattern and sequence. 
The failure function from state i to state j means that j is 
the maximum length of prefix and suffix of P [1…i] that 
palindrome matches. 

Let the sequence T = A C A A G T G A G G C T C T. 
The Lpal array in the sequence is computed so that it 
matches with the Lpal array of pattern: At position ‘0’, 
the longest suffix palindrome is ‘A’ itself, therefore the 
first element of Lpal array is ‘1’ and then move right to 
the next state; in a similar manner compute the longest 
suffix palindrome at each position so that Lpal array is 
constructed. But at position ‘7’, the element of Lpal array 
is 5, which cannot be transmitted, as it does not match 
with Lpal array of pattern P. Then, the failure function 
was considered according to which back to state ‘3’. 
Then, move three positions back and ignore the first four 
characters and then again recomputed Lpal array. The 
algorithm followed the same procedure until the Lpal 

array in sequence matches with the Lpal array of pattern 
at some position.

The palindrome structure of pattern is found in the 
sequence. This efficient approach takes linear time i.e. 
O(c+d) to perform the computation on arbitrary  number 
of characters in a sequence. 

2.3 Gapped Palindromic Weight in RNA
Henstra9 proposed an algorithm to determine  palindrome 
weight in RNA. It represents structures in a large RNA 
sequence which is to be identified and is defined by the 
number and size of gapped palindromes of the input 
sequence. Suffix arrays and longest common prefix arrays 
are both calculated for the input which enables quick 
retrieval of maximal gapped palindromes. 

3. Proposed Algorithms 
In this section, we describe two proposed algorithms 
(LCGP and LAGP) for computing all maximal gapped 
palindromes occurring in DNA sequence using dynamic 
suffix array. The first algorithm LCGP computes all gapped 
palindromes which are both maximal and length con-
strained. The other algorithm LAGP computes  maximal 
long armed gapped palindromes.

3.1  Length Constrained Gapped 
Palindromes (LCGP)

This section presents algorithm for verifying length 
 constrained maximal gapped palindrome. The outward/
inward stretching of a palindrome can lead to a palin-
drome that may not be able verify the length constraints. 
For instance, if MinArm = 3, MinGap = 3 and MaxGap = 5, 
 the palindrome CAA TTGA TTG is not maximal but 
verifies length constraints. On the other hand, its exten-
sion CAAT TG ATTG is maximal but is unable to verify 
length constraints. 

For MinArm = 3, MinGap = 3 and MaxGap = 5, we 
now describe algorithm that computes all maximal length 
constrained gapped palindromes. Our proposed algorithm 
begins with the sliding window, which slides in forward 
direction across the input DNA string of length ‘n’ for the 
sequence of length ‘k’ and then, slides one position for-
ward for new sequence, until the entire input is processed. 
For sequence of length ‘k’, our algorithm  computes if it is 
length-constrained or not. 
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3.1.1  Computing Length-Constrained Gapped 
Palindromes

The steps for computing length-constrained are as 
 follows:

Step 1:  Reverse Complement- First, we compute reverse 
complement of sequence. The reverse complement 
is defined as the complementary of base pairs and 
then its reversal. 

Step 2:  Concatenation with $- In this step, the sequence 
and its reverse complement is concatenated with 
special symbol ‘$’ (Here, $ indicates end of the 
string).

Step 3:  Using Generalized Suffix Array- This step involves 
the paradigm of generalized suffix array. We firstly 
build suffix arrays (permutation of index num-
bers giving the starting positions of suffixes of a 
string in alphabetical order) of sequence and its 
reverse complement. Then we compare each suf-
fix of sequence with each and every suffix of the 
reverse complement for finding all maximal and 
non-maximal gapped palindromes.

Step 4:  Compute Length Constraints- Consider the 
gapped palindrome, in which number of matched 
characters (palindromic arms) should be at least 
to the length of MinArm and length of spacer 
should satisfy MinGap ≤ spacer length ≤ MaxGap. 
The palindrome arms should be complementarily 
equal on the both sides of the spacer.

Step 5:  Use of Dynamic Suffix Array- The suffix array 
is constructed for the sequence, but any edit 
operation in the sequence would lead to the con-
struction of a brand new suffix array. Therefore, it 
is possible to modify previous suffix array when 
there is insertion and deletion of a character in the 
sequence.

The major steps of the algorithm are illustrated in 
Example 1.

Example 1: Consider the sequence S = ‘GTTAACAAAC’ 
of length ‘10’. To compute if sequence S is length-con-
strained, the following steps are:

The reverse complement of sequence S is •	
GTTTGTTAAC.
The sequence S and its reverse complement is con-•	
catenated with $ to get GTTAACAAAC$ and 
GTTTGTTAAC$ respectively.

The suffix arrays are constructed for sequence S and •	
its reverse complement. Each suffix of sequence S is 
compared with each and every suffix of the reverse com-
plement for finding maximal and non-maximal gapped 
palindromes. For example, the suffix AAAC$ is com-
pared to the each and every suffix of reverse complement. 
First the suffix AAAC$ is compared to AAC$, the match 
found is AA*. Then the suffix AAAC$ is compared to 
AC$. The match found is A*; where * is unmatched char-
acter. This method will work until the suffix AAAC$ is 
compared to all the suffixes of reverse complement. Only 
those subsequence is considered as gapped palindromes 
when it contains matched and unmatched characters, for 
example, the match found like ‘***’ is not gapped palin-
drome as it does not contain any matched character and 
the match found like ‘AAC’ is also not gapped palindrome 
as it does not contain any unmatched character. Here, for 
suffix AAAC$, the possible gapped palindromes found 
are AA*, A*, *AA* and **A*. 

Similarly, the suffix AAC$ is compared to the each and 
every suffix of reverse complement. Here, for suffix AAC$, 
possible gapped palindromes found are A*, *A*. This proce-
dure will follow until we find all maximal and non-maximal 
gapped palindromes. Table 1 shows all maximal and non-
maximal gapped palindromes found in sequence S.

Our goal of this step is to determine palindromic •	
arms and spacer. Consider the gapped palindrome 
GTT****AAC (Table 1.) with palindromic arm (matched 
characters) of length 3 which is equal to value of 
MinArm. The length of spacer (unmatched charac-
ters) is 4 satisfying MinGap (=3) ≤ spacer length (=4) 
≤ MaxGap (=5). The palindrome arms are comple-
mentarily equal on the both sides of spacer (i.e. left 
arm and reverse of right arm are complementarily 
equal). Hence, the sequence S = ‘GTTAACAAAC’ is 
length constrained gapped palindrome. 
Continuing with sequence S = GTTAACAAAC$, sup-•	
pose there is insertion of the character A at the 11th 
position and deletion of G at the 1st position so that 
the new sequence is TTAACAAACA$. The new suffix 
array of new sequence is constructed from the previous 
suffix array of S. As the character A is newly inserted 
character in S, therefore find out the position of A$ in 
previous suffix array of S and then insert in it. The one 
of the suffixes in S i.e. GTTAACAAAC$ is deleted from 
previous suffix array. The character A is appended at 
the end of remaining suffixes other than $.
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3.1.2 Asymptotic Analysis
The algorithm for finding length constrained gapped 
palindromes can be implemented in time O(n). Step 1 is 
takes time O(n). The step 2 is done in constant time. The 
step 3 requires O(n) time by generalized suffix array. At 
step 4, finding palindromic arm’s length and computing 
spacer length requires O(n) time. At step 5, building of 
dynamic suffix array takes time O(n). Hence, total execu-
tion time of LCGP is O(n). 

3.2  Long-Armed Gapped Palindromes 
(LAGP)

LAGP algorithm computes long armed maximal gapped 
palindromes occurring in input DNA sequences. LAGP 
begins with the sliding window, which slides in forward 
direction across the input DNA string of length ‘n’ for 
the sequence of length ‘k’ and then, slides one position 
forward for new sequence, until the entire input is pro-
cessed. For sequence of length ‘k’, our algorithm computes 
whether it is long-armed or not. 

3.2.1 Computing Long-Armed Palindromes
The steps for computing long-armed are as follows:

Step 1:  Repeat steps 1–3 that are also used for searching 
length constrained gapped palindromes. 

Step 2:  Compute Length Constraints- Our goal of 
this step is to determine length constraints of 
palindromic arms and spacer. Consider maxi-
mal gapped palindrome, in which there are 
maximum number of matched characters and 
minimum number of unmatched characters. The 
palindromic arms (matched characters) should 
be complementarily equal on both sides. The 
length of palindromic arms should be greater 
than or equal to the length of spacer (unmatched 
characters).

Step 3:  Use of Dynamic Suffix Array- The suffix array is 
constructed for the sequence as shown in step 3, 
but any edit operation in the sequence would lead 
to the construction of a brand new suffix array. 
Therefore, it is possible to modify previous suf-
fix array when there is insertion and deletion of a 
character in the sequence.

The major steps of the algorithm are illustrated in 
Example 2.

Table 1. Maximal and Non-maximal gapped 
palindromes found in GTTAACAAAC$

 Suffixes of  
GTTAACAAAC$

Gapped Palindromes

$ –
AAAC$ AA*

A*

*AA*

**A*

AAC$ A*

*A*

AACAAAC$ A* 
***AA* 

*A**

****AAC 
***A*

*****A*

AC$ A*

ACAAAC$ A**

***AAC 
**A* 

****A*

**AA*

C$ -
CAAAC$ *A*

***A*

*AA*

**AAC
GTTAACAAAC$ GTT****AAC

**T*A*

*T*A*

*T****A*

**TT***AA*

TAACAAAC$ *A*

****A*

T***AA*

T*A**

T****AAC
T*****A*

TTAACAAAC$ *T*A**

*T*****A*

T*A*

T****A*

TT***AA*

TT****AAC
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Example 2: Consider the sequence S = ‘GTTAACTAAC’ 
of length ‘10’. To compute if sequence S is long-armed, the 
following steps are:

The reverse complement of sequence S is •	
GTTAGTTAAC.
The sequence S and its reverse complement is con-•	
catenated with $ to get GTTAACTAAC$ and 
GTTAGTTAAC$ respectively.
The suffix arrays of GTTAACTAAC$ and •	
GTTAGTTAAC$ are shown in Table 2. Each suffix of 
sequence S is compared with each and every suffix of 
the reverse complement for finding maximal and non-
maximal gapped palindromes as shown in Table 3. 
Consider the maximal gapped palindrome •	
GTTA**TAAC found in Table 3, in which there are 
maximum number of matched characters and mini-
mum number of unmatched characters. Here, the 
palindromic arm (matched characters) is of length 4 
and spacer (unmatched characters) is of length 2. The 
palindromic arms are complementarily equal on the 
both sides (i.e. left arm and reverse of right arm are 
complementarily equal). Also, the length of spacer is 
less than the length of palindromic arms. 
Hence, we say that the S = ‘GTTAACTAAC’ is long •	
armed gapped palindrome. 
Continuing with sequence S = GTTAACTAAC$, sup-•	
pose there is insertion of the character A at the 11th 
position and deletion of G at the 1st position so that the 
new subsequence is TTAACTAACA$. The new suffix 

Table 2. Suffix Arrays of GTTAACTAAC$ and 
GTTAGTTAAC$

Index for 
Subsequence

Suffix of  
Subsequence

Index for 
Reverse 

Complement

Suffix of  
Reverse 

Complement

11 $ 11 $

8 AAC$ 8 AAC$

4 AACTAAC$ 9 AC$

9 AC$ 4 AGTTAAC$

5 ACTAAC$ 10 C$

10 C$ 5 GTTAAC$

6 CTAAC$ 1 GTTAGTTAAC$

1 GTTAACTAAC$ 7 TAAC$

7 TAAC$ 3 TAGTTAAC$

3 TAACTAAC$ 6 TTAAC$

2 TTAACTAAC$ 2 TTAGTTAAC$

Table 3. Maximal and Non-Maximal Gapped 
palindromes found in GTTAACTAAC$

Suffixes of GTTAACAAAC$ Gapped Palindromes
$ –

AAC$ A*

A**

*AA
*A*

ACTAAC$ A*

A**TAAC
****A*

*A**

AC$ A*

A*

ACTAAC$ A**

A*

A*T*A
**TAAC

**TA**

***A*

C$ -
CTAAC$ *T*A*

*T*A*

**A*

*TAAC
*TA**

GTTAACTAAC$ **T*A**

GTTA**TAAC
*T*A*

*T*A***A*

TAAC$ *A*

TA**

T*A*

T*A*

TAACTAAC$ *A*

*****A*

TA**TAAC
T*A**

T*A*T*A*

TTAACTAAC$ *T*A**

*T*A*T*A*

T*A*

T****A*

TTA**TAAC
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dataset 2, Cytosine methylation (mC) is tissue  specific. 
mC location is non-random and clustered. All mCs 
are located in ‘CG’ doublets, better than half of which 
are in short palindromes. The palindrome ‘CCGG’ is 
almost completely methylated in various tissues, ‘TGCA’ 
 differently in the various tissues. 

We implemented the algorithms (LCGP, LAGP and 
KK) in C, compiled with Turbo C++ compiler, with 
Windows 8, 2.13 GHZ processor with 4 GB RAM. 

4.1  Length Constrained Gapped 
Palindromes (LCGP)

Execution time of the algorithm is measured in 
 milliseconds (ms). For length constrained palindromes, 
the execution time varies with the base pairs in DNA 
datasets. As the base pairs increases, the execution time of 
the algorithm increases. Results are shown in Table 4. For 
analyzing dataset 1 of length 32 base pairs (bp), the algo-
rithm takes 0.439560 ms. for dataset 2 of 131 base pairs 
(bp), the execution time increases to 0.318681 ms. simi-
larly, for dataset 3 of 230 base pairs (bp), the  execution 
time increases to 1.520579 ms. 

The Table 4 also gives a palindrome weight computed 
by LCGP algorithm. Palindrome weight is represented 
by number and size of gapped palindromes. Dataset 1 
does not contain any length constrained gapped pal-
indrome whereas dataset 2 and dataset 3 contain four 
and three length constrained palindromes of length ‘10’ 
respectively. The Table 4 also shows actual length con-
strained gapped palindromes found by LCGP in DNA 
datasets. 

array of new sequence is constructed from the previous 
suffix array of S. As the character A is newly inserted 
character in S, therefore find out the position of A$ in 
previous suffix array of S and then insert in it. The one 
of the suffixes in S i.e. GTTAACTAAC$ is deleted from 
previous suffix array. The character A is appended at 
the end of remaining suffixes other than $.

3.2.2 Asymptotic Analysis
All long armed gapped palindromes is to be found in 
O(n) time. Step 1 is implemented in time O(n). At step 2, 
finding palindromic arm’s length and computing spacer 
length requires O(n) time. At step 3, dynamic suffix array 
construction requires O(n) time. Hence, total execution 
time of LAGP is O(n). 

4. Main Results
For experiments, we use three DNA datasets obtained 
from National Centre for Biotechnology Information 
(NCBI): 

Dataset 1:•	  Chain B, Structure of the Rep Associates 
Tyrosine Transposase Bound to A Rep Hairpin.
Dataset 2:•	  Bovine testis satellite I (1.715 g/ml) DNA, 
segment 3. 
Dataset 3:•	  Human lymphocyte antigen (HLA-DN2) 
mRNA, 3’ flank.

In dataset 1, Rep associates represents class of extra genic 
sequences that form nucleotide stem-loop structures. In 

Table 4. Comparison of existing Algorithm with proposed algorithm

Dataset Total base 
pairs in 
dataset

Palindrome Weight Palindrome 
Arm Length

Gap 
Length

Length 
Constrained 

Gapped 
Palindrome

Time  
(in ms) by KK 

algorithm13 

Time (in ms) 
by LCGP 
algorithm Number of 

palindrome 
Size of 

palindrome

Dataset 1 32 bp 0 – – – – 1.043956 0.439560

Dataset 2 131 bp 4 10
10
10
10

3
3
3
3

4
4
4
4

GGACTTCTCC
ATCTTGCGAT
GGGACTCCCC
ACTCCCCAGT

1.373626 1.318681

Dataset 3 230 bp 3 10
10
10

3
3
3

4
4
4

TCTACAAAGA
CCAGGCATGG
GGCTGGGGCC

1.538462 1.520579
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4.2 Comparison with other Algorithm
We compared the execution time of our proposed LCGP 
algorithm with KK algorithm13. Results are shown in 
Table 4. It has been observed that, the execution time of 
LCGP is less than the execution time of KK algorithm. 
For DNA dataset 1, the execution time of our LCGP 
algorithm improves by 57.89%. For another dataset 2, 
execution time improves by 3.99%. In another dataset 3, 
the execution time is improved by 1.16%. Figure 1 shows 
fair comparison between the existing (KK Algorithm) 
and proposed algorithm. It provides comparison of exe-
cution time against number of base pairs. The results 
show that LCGP algorithm is efficient as compared to KK 
 algorithm.

4.3  Long Armed Gapped Palindromes 
(LAGP)

Execution time of the algorithm is measured in 
 milliseconds (ms). For long armed palindromes, the 
execution time varies with the base pairs number in 

Figure 1. Comparison of execution time between existing 
(KK Algorithm) and proposed algorithm.

(a)

(b)

Figure 2. Snapshots of the output. (a) Searching length 
constrained Gapped Palindromes in Dataset 2 and  
(b) Searching long armed Gapped Palindromes in Dataset 3.

Table 5. Long Armed Gapped Palindromes detected in standard Datasets

Dataset Total base 
pairs in 
dataset

Palindrome Weight Length of 
Palindrome 

arm

Spacer 
Length

Long Armed 
Gapped 

Palindrome

Time (ms) 
by LAGP 
algorithmNumber of 

Palindrome 
 Size of 

Palindrome

Dataset 1 32 bp 1 10 4 2 GCGTTTACGC 0.824176

Dataset 2 131 bp 1 10 4 2 CGCTGTAGCG 0.989011

Dataset 3 230 bp 1 10 4 2 ATTTAAAAAT 1.483516

DNA datasets. As the base pairs number increases, the 
 execution time of the algorithm increases. Results are 
shown in Table 5. For analyzing dataset 1 of length 32 base 
pairs (bp), the algorithm takes 0.824176 ms. For dataset 
2 of 131 base pairs (bp), the execution time increases to 
0.989011 ms. similarly, for dataset 3 of 230 base pairs (bp), 
the execution time increases to 1.483516 ms. 

The Table 5 also gives a palindrome weight computed 
by LAGP algorithm. Each dataset contain one long armed 
gapped palindrome of length ‘10’. The Table 5 also shows 
actual long armed gapped palindromes found by LAGP 
in DNA datasets. 
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14. Salson M, Lecroq T, Leonard M, Mouchard L. Dynamic 
extended suffix arrays. Journal of Discrete Algorithms. 
2010; 8:241–57.

15. Smith GR. Meeting Palindromes head- to- head. Genes and 
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5. Conclusions
This paper presents novel algorithms for searching the 
gapped palindrome. The proposed algorithms are based 
on dynamic suffix array and allow constructing the new 
suffix array from the already built suffix array. The pre-
sented algorithms ensure finding long armed and length 
constrained versions of gapped palindromes in the bio-
logical DNA sequence, verifying all the conditions. Our 
algorithms analyzed short DNA sequences easily. 

The proposed algorithms utilize the advantages of 
suffix array and dynamic suffix array. They achieve time 
complexity O(n), consume less space and are easy to 
implement. 

Comparing our algorithm (for length constrained) to 
other algorithm using suffix array, the algorithm shows 
improvement in execution time. Experimental results 
showed that execution time of our algorithm improves by 
57.89%. 

These algorithms can be executed and tested on stan-
dard DNA and datasets with large number of base pairs. 
The same can be extended for searching different classes of 
gapped palindromes in protein sequences. In addition, 
the work can be extended for biological sequences having 
palindromes with insertions, substitutions and deletions. 
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