
Indian Journal of Science and Technology, Vol 8(21), DOI: 10.17485/ijst/2015/v8i21/69958, September 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Object Oriented Java Script is a scripting language which
is used to provide a user interaction form in a dynamic
manner to the web pages for the clients. The Object
oriented java scripting language is used to provide the
user interaction screen to the clients to navigate and do
some dynamic operation over the network. The Object
oriented java script language strictly differs from the java
programming where the java is a real time programming
language. Whereas, the Object oriented java script is a
way to provide a logical communication to the web pages.
Object oriented java script cannot be written directly as
the separate coding. It can only be written inside HTML
language which enables the users who are accessing the
corresponding web pages to download and view the
Object oriented java script content. By doing so, a more
flexible environment can be created through which users

can learn the information about the web page which are
accessed by some set of users.

The Object oriented java scripting language can be
learned more quickly and efficiently. However at the time
of implementation it will be difficult to do the coding
for creation of web pages which needs more focus in
order to avoid the failures of web page creation. At the
time of creation of web pages using the Object oriented
java scripting languages there are many factors to be
considered in order to avoid many security issues. One of
the security issues which might possibly arise is corruption
of the files which are stored in the user file system. This
occurs due to the web page access behaviour of the
innocent users. The end user may open some of the web
pages unaware of Object oriented java script code existing
in the corresponding HTML code. Generally Object
oriented java script code will start to execute instantly at
the time of triggering the page. At the time of triggering

Abstract
Objective: The main goal of this work is to categorize and understand the various types of bugs present in the Object oriented
java scripting language. By finding these faults one can find out the nature of faults which causes the run time failure of
programs. Methods: There are various types of bugs present in the OOJS environment which needs to be categorized well
to understand the nature of fault which has occurred in the OOJS language. By doing so, web pages can be prevented from
the functioning failure and can cause the generation of more user flexible environment. Fault Localization is the approach to
analyse and detect the place of faults present in the java scripting language. Transductive Support Vector Machine (TSVM)
classification algorithm is introduced to categorize the faults into various sub types by classifying them based on types
of bugs. This classification is done on the bug report data set which was created by using the fault localization approach.
Findings: The experimental test conducted proves that the proposed approach named TSVM based categorization of faults
can detect the faults efficiently which can be used further for error detection. The proposed approach improves in its
performance in terms of improved accuracy detection by categorizing the faults correctly through which faults present in
the programming language can be done efficiently. Conclusion: From the findings it can be concluded that the proposed
approach improved in its performance in terms of improved accuracy.

Keywords: Bug Report, Fault Localization, Object Oriented Java Scripting Language

Analysis of Various Types of Bugs in the Object
Oriented Java Script Language Coding

F. Fawzia Khan1* and R. Mallika2

1Department of Computer Science, Karpagam University, Coimbatore - 641021, Tamilnadu, India;
fawziakhanphd@gmail.com

2Department of Computer Science, CBM College, Coimbatore - 641042, Tamilnadu, India

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology2

Analysis of Various Types of Bugs in the Object Oriented Java Script Language Coding

the web page, Object oriented java script can learn the
information residing in the user file system. This needs to
be prevented in order to avoid the user privacy violation
from the Object oriented java scripting language.

Another security issue which may arise due to Object
oriented java scripting language usage is that the web
page developers may be unaware of the advanced features
present in the Object oriented java scripting language. Due
to this situation there may be possibility of the occurrence
of the bugs at the time of program execution. These bugs
cannot be analysed directly because of hidden logical file
traces. These traces need to be identified locally in order
to avoid the failure of the web pages execution.

The main contribution of this work is to locate and
analyse the types of bugs which arise in the Object oriented
java scripting language code creation and prevent from
the web page failure during run time. The identified faults
have been classified in accordance to the fault categories
which can be used to identify the behaviour and nature of
the fault. It is done by gathering the various bug reports
from different web page developers. After gathering the
bug reports, those reports are analysed to find out the
traces and it is categorized as different types of bugs.

The organization of this work is given as follows: In
section 1 detailed description about the introduction of
the Object oriented java script language and the types
of security issues which may arise in them is discussed.
In section 2 previous researches has been discussed in a
detailed manner to analyse the nature of faults which has
been detected and analysed already. Section 3 provides
detailed description about the proposed methodology
in this work with the explanation of the overall flow of
this research. In section 4 experimental tests which has
been conducted before has been discussed in a detailed
manner. Finally in section 5 results that are obtained
are concluded in a manner of how it has improved in
performance.

In1, bug generations are found in the web applications
in order to differentiate types of errors which can occur.
It is done with the help of test case generation process
and the explicit state model checking in which processing
can be evaluated with the consideration of various
functions and methodologies that are present in the
system. Different types of test cases are generated in order
to evaluate the performance of the software in which
various bug fields can be enumerated. This is achieved by
processing the various types of bugs and finding it over
the web applications.

In2, a way to prioritize the bugs in terms of crash

report which has occurred in the different scenarios is
discussed. This is done by identifying the types of bugs
which happened in different location in terms of various
methodologies. The prioritizations of bugs are identified
with the knowledge of the crashes which may happen
due to the corresponding bug. This is done by analysing
and interpreting the various types of bugs that happened
in different types of locations in terms of various
methodologies. It is done by analysing and interpreting
the failure which happened in the system.

In3, distribution of bugs present in the particular
type of software is identified. It is intended to analyse
the various types of bugs and the distribution amount of
those bugs in the software development environment. It
is done by considering the various parameters which can
lead software to a failure mode due to large amount of
crashes present in the system. It is done by considering
the percentage of crashes that occur in the system. This
is achieved with the help of distribution function and the
generative model. It is overcome by the consideration
of various fields in which various types of bugs are
distributed more.

In4, the concurrent bugs are identified in order to
predict the decision which needs to be taken on them to
eliminate. It is done with the help of finding the similarity
present among the various types of bugs which are
present in the network. However it will be more difficult
to identify the concurrent bugs, because of different
formats of bugs. It is done by achieving the similarity
retrieval over the various types of bugs. This is done by
finding the synchronization intention present among the
different bugs. To do so, invariant is identified which is
present among the different types of networks.

In5,14, the bug report can be created only by identifying
the different types of bugs that are present in the system.
It is done by considering the various types of bugs which
is happening in the different types of system. In this
research, bug reports are created by localizing the fault
and create them in accordance to the various fields. Fault
localization is generally achieved by using the software
testing and designing phase. And also identified bugs
are analysed and removed by using the approach called
coincidental correctness. It is done by analysing and
identifying the various types of fields.

In6, multiple ways for constructing the software
without error and constructing the good base software
is discussed. In this work, various studies are conducted
in terms of software availability and the software
requirements that are elicited. Efficient software can

F. Fawzia Khan and R. Mallika

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology 3

be developed with the help of uniqueness of software
characteristics. Good software is differed from other
software in term of its security level. Here security level is
defined in terms of the software failure which will occur at
the time of software compilation. And also, in this work,
security level is divided into two levels and concentrated
individually at the time of software development.

In7, ways for building secure and reliable software
with the consideration of the software development is
discussed. Reliable software development can be obtained
with the consideration of the requirements which are
gathered from the different phases in terms of previous
history of similar type of software. This analysis is done
by the author in the product which he has developed in
his laboratory and the effectiveness is proved with the
consideration of all types of security requirements. This
research results in an effective way for constructing the
software with more reliability without software failure.

 In8,13, a novel approach is introduced to gather the
software requirements from the various phases which
intend to produce good quality software. Good quality
software can be obtained with the consideration of the
complete software requirements. However it is more
difficult to gather the software requirements which are
more relevant to the software which is yet to be developed.
In this work, personal driven approach is introduced
which aims to satisfy the users with the requirements
consideration, which was gathered from them. To achieve
this user interaction interface is created which is named
as the persona, and through which the user requirements
are gathered and processed effectively.

In9, an agile methodology is introduced to produce
more secured software which can lead to a successful
completion of software development. The agile
methodology leads to a more effective implementation
of the software development which is based on the
incremental and iterative software development. This
methodology will gather the requirements at each and
every phase at the time of software development in order
to improve the software. The software development may
lead to a successive iteration of every cycle by gathering
the requirements based on the software development
stage.

In10, a novel approach for gathering the requirements
in terms of reuse methodology is discussed. A novel
methodology to gather and process the requirements in
terms of the software development will be useful only for
the corresponding software which is going to be developed

whereas in this work, software is developed with the
consideration of reuse methodology. The requirements
gathered for the software development will be maintained
in the database and then it will be used further for other
similar types of software. And also the characteristics of
the current software also will be gathered and stored in
database to maintain good configurable software.

2. �Object Oriented Java Script
Bug Analysis and Classification

Object oriented java script differs from the other coding
languages in two ways11. Those are abstraction and
encapsulation. The abstraction and encapsulation process
is defined as; the object that is created can be used to
extract the properties and methods of the external objects
by inheriting them. Most Java Script libraries that you can
obtain to make your java script coding easier uses Object
oriented java script within the library itself in order to
make it easy for people to perform the tasks that the library
is designed to provide. Abstraction means that once you
start using a library of objects designed to perform given
tasks you no longer need to worry about exactly how to
perform those tasks without the library. You simply call
the appropriate methods for the appropriate objects and
the library does the rest12. The code within the objects in
the library is encapsulated so that the exact way in which
they implement that functionality doesn’t affect the way
you call it. The library authors can rewrite code within
the objects in their library and provided that they don’t
change the public interface you don’t need to change any
of your code to use their modified objects.

In this research different types of bugs which have
occurred in the Object oriented java script programming
language are attempted to be identified and analysed.
Object oriented java script is a client side scripting
language which may consist of the various types of the
functions and modules to provide an advanced feature
for the creation of the well-defined web pages. The bugs
present in the Object oriented java script language may
lead to a failure of web page creation and will reduce
the user’s satisfaction level. Thus analysing of possible
faults which may arise in the Object oriented java script
language and classifying them according to the fault
categories are more important in the case of real scenario.
In this work this problem is resolved by introducing the
methodology called the fault localization methodology

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology4

Analysis of Various Types of Bugs in the Object Oriented Java Script Language Coding

which aims to analyse the number of faults occurred in the
Object oriented java scripting language with the detailed
information of the fault and fault localization. Here,
TSVM classification methodology is introduced which
aims to classify the faults based on its categorization.
TSVM is the classification methodology which can able to
classify the data points that are partially labelled. TSVMs
are basically iterative algorithms that gradually search
the optimal separating hyper plane in the feature space
with a transductive process that incorporates unlabeled
samples in the training phase. This procedure improves
the generalization capability of the classifier. Various
types of fault categories are analysed here. The types of
fault categories that are assumed are:

2.1 Undefined/Null Variable Usage
Trying to access an Object oriented java script variable
which has been not declared or declared without
assignment of values may lead to a bug. That is accessing
objects or methods which have been defined without
values. For example, trying to access a variable x using
the property bar, x.bar which is not been declared in the
Object oriented java script code.

2.2 Undefined Method
As like previous undefined method bug will arise at
the time of accessing of methods which has not been
declared before in the Object oriented java script code.
For example trying to calling a method food() which has
not been declared in the Object oriented java script code.

2.3 Incorrect Method Parameter
This type of bug will arise at the time of passing wrong
values in to the methods which is defined. The parameters
that are to be invoked will be defined at the time of
function declaration. If it is done wrongly at the time of
function calling by sending wrong values, then the bug
will be created. For example, passing a string value to the
setDate() function instead of sending the integer value
which will lead to a failure of software execution.

2.4 Incorrect Return Value
If the values returned are generated wrongly due to some
minor mistakes existing in the logical programming, this
type of bug will be raised.

2.5 Syntax-based Fault
If the programming is done without following the
syntax rules defined in the Object oriented java scripting
language bin files, then this type of errors will occur. For
example; instead of double quotation we can use single
quotation to define a word.

2.6 Range based Fault
This type of fault will occur when the passing parameters
values for the particular attributes resides in arrange
of values. That is varying of data values based on the
parameter range exists among them.

2.7 Incorrect Object Support
Defining or extracting the objects which are not relevant
to the concept of the methods or functions. The methods
and properties need to be defined properly.

2.8 Other
There are some errors occurred other than the errors
which are defined above. For example, the naming
conflict present among the function and attributes that
are defined.

The above fault categories are concentrated in this
research for better detection of the bugs present in the
Object oriented java scripting language.

The bug detection and classification algorithm is
works as follows:
•	 Detect the place of errors existing in the Object ori-

ented java scripting language code.
•	 Localize the errors and then analysing them for de-

tecting the reason for the occurrence of particular
fault.

•	 And then find the source of fault by calling the func-
tion, in which the error has occurred.

•	 Then classifying the errors by using the TSVM ma-
chine learning algorithm.

2.8.1 Error Localization
First the errors present in the Object oriented java
scripting needs to be analysed in order to find the nature
of fault which can cause the program execution failure.
This is done in two steps:
•	 Error collection.
•	 Error analysis.

F. Fawzia Khan and R. Mallika

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology 5

These two steps are followed to find the exact place
where the error has occurred. In the error collection phase,
the errors in the Object oriented java scripting coding
will be analysed and identified in an iterative manner by
executing them with the minor changes. After collection
of the error evidences, those errors will be analysed to
know what type of errors has occurred and the nature of
the evidences. These two phases are discussed in detail in
the following section.

2.8.1.1 Error Collection
In the error collection phase, the Object oriented java
scripting code will be analysed and searched to identify
the presence of error in the corresponding code. This is
done by analysing the corresponding error present in the
Object oriented java script. The error may be generated
at the time of coding creation which may lead to software
failure. Thus every line of the code needs to be analysed at
the time of execution of coding. The errors in the Object
oriented java script coding are collected based on:
•	 The error line is present in which function;
•	 �The function to which the corresponding line number

belongs to;
•	 Variable and functions in the error lines;
•	 �The previous values of the corresponding variable, in

the previous execution.
After collecting these errors which are present in

the Object oriented java scripting language, the nature
of errors will be identified and the reason behind those
errors occurrences will be identified. By doing so, the
synchronous errors present in the Object oriented java
scripting coding will also be identified.

2.8.1.2 Error Analysis
After collection of errors and its location in the Object
oriented java script code, the analysis of the errors will be
done to identify the nature and behaviour of the errors.
By doing so, the document Object model access which
is responsible for the corresponding error in the Object
oriented java scripting will be identified. That is, root
and source of the bug will be identified and then it will
be analysed for the future prevention from bugs. This is
done by analysing the exact part of the coding which is
responsible for the failure of the web page creation, by

segmentation of the Object oriented java script error code
into partitions.

After segmentation of errors in to the partitions, the
relevant features will be identified by looking for the
DOM access control. Initially, errors will be analysed in
the document by using an error marker and will take an
error as an event. The error will always be observed in
the relevant sequence, since the program will be halted
once the error occurs. That is, in this phase, the sequence
of events which are reason for the corresponding bug
will be identified in order to analyse and remove them
for providing the convenient environment for the users.
The corresponding errors will be analysed for the removal
of such noise, thus the efficient and bug avoided Object
oriented java scripting can be implemented. After this
process, the identified bugs from the various modules and
functions will be categorized and learned for the future
use which can be used to avoid the same type of failure at
the time of project execution.

2.8.2 Failure Categorization
After analysis of different types of bugs present in the
Object oriented java scripting language, the identified
bugs will be categorized in accordance to the types of
faults which was discussed in the previous section. This
classification is done by using the classification algorithm
called Transductive Support Vector Machine which aims
to classify the bugs that are identified based on their type
and nature. This TSVM algorithm is used to avoid the
convergence problem which may occur due to the large
volume of data.

TSVM is the iterative algorithm which aims to cover
the unlabelled data present in search space with the help
of transductive function by separating the hyper plane
optimally. In the training phase of the TSVM, unlabelled
data will be considered for the classification. That is the
bugs without label will be considered in the training
phase for the better classification process. By using the
TSVM methodology, better generalization capability of
the classifier can be achieved. Also, this methodology
aims to move the hyper plane gradually based on reaching
a finer place. This methodology aims to achieve a finer
place by achieving the generalization capability of the
classifier. A finer hyper place position can be achieved by
iteratively doing this mechanism. In this approach, better

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology6

Analysis of Various Types of Bugs in the Object Oriented Java Script Language Coding

classification can be achieved by migration of the data into
the class labels which pretend to avoid the misclassification
of the data by avoiding the discriminate functions. This
mechanism also aims to provide more accurate results
than the existing methodology. The convergence of the
categorization depends on the similarity present among
the different class labels.

The designing of TSVM for the fault categorization is
done in two ways and it addresses two issues. Those are:
•	 Select the bugs with the expected accurate labelling.
•	 Choose the informative knowledge source about the

Object oriented java script bug.
TSVM selects the margin of the classification of

bug samples by accurately identifying the upper and
lower side of the samples by analysing and checking the
following conditions. Those are, if P ≥ 1 (ie., falls below or
above the hyper plane region will be identified), then the
transductive samples of bugs closest to the margin bounds
will be assigned as class labels as +1 or -1 respectively. Else
labelling will be done any way without any consideration.

A dynamic adjustment is necessary, taking into
account that the position of the hyper plane keeps
changing at the iteration. Typically, the most confident
unlabelled patterns, together with their predicted labels,
are added to the current training set. The classifier is
retrained and the process is repeated. It is to be noted
that the classifier uses its own prediction to teach itself.
It is natural to imagine that a classification error can
reinforce itself. Therefore, it is important to take a caution
in the selection of transductive samples because wrong
labelling may substantially degrade the performance of
the classifier.

 Due to the fact that support vectors contain the richest
information among the informative samples (i.e., the ones
in the margin band), the unlabelled patterns closest to the
margin bounds have the highest probability to be correctly
classified. Therefore, in the proposed approach, we design
a selection procedure (i.e., filtering process) to increase
the acceptability of the samples with the expected correct
labelling. In other words, an unlabelled sample should be
considered as transductive sample if the TSVM ensemble
assigns the same label to it. We can expect this sample
bearing the information with an expected accurate class
label.

2.9 Algorithm
2.9.1 Input
Labelled points: S = [(xj, yj)], j = 1, 2, . . . , l and unlabelled
points: V = [(xj)], j = l + 1, . . . , n.

2.9.2 Output
TSVM classifier with original training set and the
transductive set.

2.9.3 Begin
1. �Initialize the working set W (0) = S, previous transductive

set (0)
 tA = f and specify C and C*.

2. Train SVM classifier with the working set W (0).
3. Obtain the label vector of the unlabeled set V.
 For i = 1 to T // T is the number of iterations.
4. �Select N+ positive transductive samples from the

upper side of the margin and N− negative transductive
samples from the lower side respectively.

5. �Select positive candidate set B+ containing N+
positive transductive samples and negative candidate
set B − containing N− negative transductive samples
respectively.

6. (i)
 tB = B B+ -È

7. Update the training set:
If (i-1) (i-1) (i)

 t tA = W(i) = W B f È

(i) (i)
t tD = B

Else
(i)
tD = A(i-1)t B(i)t Ç

(i) (i-1) (i-1) (i)
tW = (W -D) D t È

End if
8. (i) (i)

 t tA = B

9. �Train TSVM classifier with the updated training set W
(i).

10. Obtain the label vector of the unlabelled set V.
End for,
End,

The above classification algorithm is used to result
the categorization of the failures due to bugs based on the
fault types. Thus with the knowledge of this algorithm
one can analyse the detection of bug that are present in
the Object oriented java scripting language coding easily.

Finally, experimental tests has been conducted to
analyse the types of bugs have been present in the Object
oriented java scripting language is predicted correctly or
not.

3. Experimental Results

The experimental test has been conducted to compare
the effectiveness of the algorithm in order prove the

F. Fawzia Khan and R. Mallika

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology 7

improvement in the proposed research than the existing
research named AUTOFLOX which aims to localize
the faults that are occurring in the Java Script language
automatically. The comparison is done based on the
performance metrics called the precision and the recall
measures.

In this work, Object oriented java script based bug
reports have been collected from the various web page
developer which consists of details about the various
types of bugs which may occur in the different situations.
By analysing the bug report, the Object oriented java
script bug report prediction is done and the types of faults
are categorized. The types of bug which are present in the
Object oriented java script coding has been classified in
accordance to the nature of the bugs.

The comparison based on these performance metrics
are explained in the following sections:

3.1 True Positive Rate (TP)
It is the amount of correct faults that are classified to
correct class.

dTP=
c + d

3.2 False Positive Rate (FP)
It is the amount of negative faults that are classified into
correct class to which it does not belong to:

bFP=
a + d

3.3 False Negative Rate (FN)
It is the amount of negative faults that are classified to
wrong class.

cFN=
c + d

Where,
•	 a is the number of correct predictions that an instance

is negative.
•	 b is the number of incorrect predictions that an

instance is positive.
•	 c is the number of incorrect of predictions that an

instance negative.
•	 d is the number of correct predictions that an instance

is positive.
These are all the measures which are used to calculate

the accuracy values.

3.3.1 Precision
Precision value is used to indicate the successful prediction

of bug report creation based on the true positive and the
false positive information. The equation to calculate the
precision value is defined as follows:

The table that lists the actual precision values that are
obtained while processing the java scripting bug corpus is
given in Table 1.

True positivePrecision=
True positive+False positive

Table 1. Precision values
Number
of bugs

PRECISION
AUTOFLOX TSVM

10 0.96 1
20 0.92 0.98
30 0.79 0.87
40 0.75 0.81

The comparison of precision value between proposed
system and the existing system are shown in the following
graph:

Figure 1. Precision comparison.

From the Figure 1, it is proved that the precision
obtained in the existing work is lower than the proposed
methodology. In x axis, the number of bugs that are
analyzed are taken and in y axis precision value is
considered.

3.3.2 Recall
Recall value is calculated based on the successful
prediction at true positive prediction and false negative.
Recall value is calculated by using the following equation:

The table that lists the actual recall values that are
obtained while processing the java scripting bug corpus
is given in Table 2.

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology8

Analysis of Various Types of Bugs in the Object Oriented Java Script Language Coding

True positiveRecall=
True positive+False negative

Table 2. Recall values
Number
of bugs

RECALL
AUTOFLOX TSVM

10 0.8 1
20 0.76 0.98
30 0.72 0.87
40 0.61 0.81

The comparison graph for recall value is depicted in
the Figure 2.

Figure 2. Recall comparison.

Form the Figure 2 it is proved that the recall value
obtained in the existing work is lower than the proposed
methodology. In x axis, the number of bugs that are
analyzed are taken and in y axis recall value is considered.

From this analysis it can be proved that the proposed
methodology can identify the faults accurately than the
existing approaches from which it has been proved that
the proposed approach provides 70% improvement than
the AUTOFLOX approach.

4. Conclusion and Future Work

Object oriented java script bug handling is the most
complex process in the real world web page development
environment. The small errors which arise during
development of the client side programming may lead
to the entire corruption of the execution of the coding.
Finding of bugs in the Object oriented java script coding
will also be more complex process due to the small logical
errors which cannot be identified. In this work, fault
localization and the fault categorization methodology is

introduced which aims to predict and classify the bugs
that are present in the Object oriented java scripting
code based on the nature and behaviour of the bugs. In
our work, six types of bugs have been considered for the
effective categorization of the bugs that are present in the
document. The finding of this work demonstrates that the
proposed methodology can lead to an efficient prediction
of the bugs and their classification which provides a
convenient way for the web page developers to avoid the
bugs during run time.

In the future scenario, automatic classification of bugs
occurring can be introduced through which the time
complexity can be reduced considerably. The various
prospects of the java script language need to be concerned
more for supporting the higher technology software.

5. References
1. Artzi S, Kie_zun A, Dolby J, Tip F, Dig D, Paradkar A, Ernst

MD. Finding bugs in web applications using dynamic test
generation and explicit-state model checking. IEEE Trans
Software Eng. 2010 July-Aug; 36(4):474–94.

2. Kim D, Wang X, Kim S, Zeller A, Cheung SC, Park S. Which
crashes should I fix first?: Predicting top crashes at an early
stage to prioritize debugging efforts. IEEE Trans Software
Eng. 2011 May-June; 37(3):430–47.

3. Concas G, Marchesi M, Murgia A, Tonelli R, Turnu I. On
the distribution of bugs in the eclipse system. IEEE Trans
Software Eng. 2011 Nov-Dec; 37(6):872–7.

4. Lu S, Park S, Zhou Y. Detecting concurrency bugs from
the perspectives of synchronization intentions. IEEE Trans
Paralell Distr Syst. 2012 June; 23(6):1060–72.

5. Zhang Z, Chan WK, Tse TH. Fault localization based only
on failed runs. IEEE Computer Society. 2012; 45(6):64–71.

6. McGraw Gary. Building secure software: Better than
protecting bad software. IEEE Software. 2012 Dec 16;
19(6):57–8.

7. Fichtinger B, Paulisch F, Panholzer P. Driving secure soft-
ware development experiences in a diverse product envi-
ronment. IEEE Computer and Reliability Societies. 2012
March-April; 10(2):97–101.

8. Cleland-Huang J. Meet elaine: A persona driven approach
to exploring architecturally significant requirements. IEEE
Software, IEEE Computer Society. 2013; 18–21.

9. ben Othmane L, Angin P, Weffers H, Bhargava B. Extend-
ing the agile development approach to develop acceptably
secure software. Journal of IEEE Transactions on Depend-
able and Secure Computing. 2014; 11(6):497–509.

10. Hermoye LA, van Lamsweerde A, Perry DE. A reuse-based
approach to security requirements engineering. Proceed-
ings of 9th International Workshop on Requirements En-
gineering: Foundation for Software Quality (REFSQ’03);
2003.

F. Fawzia Khan and R. Mallika

Vol 8 (21) | September 2015 | www.indjst.org Indian Journal of Science and Technology 9

11.	 Artzi S, Dolby J, Jensen S, Moller A, Tip F. A framework for
automated testing of java script web applications. ACM in
International Conference on Software Engineering (ICSE);
2011. p. 571–80.

12.	 Ocariza F, Pattabiraman K, Zorn B. Java Script errors in
the wild: An empirical study. Proceedings of International
Symposium on Software Reliability Engineering (ISSRE).
IEEE Computer Society; Hiroshima. 2011 Nov 29-Dec 2.
p. 100–9.

13.	 Groeneveld F, Mesbah A, van Deursen A. Automatic in-
variant detection in dynamic web applications. Delft Uni-
versity of Technology. Tech Rep; 2010.

14.	 Zheng Y, Bao T, Zhang X. Statically locating web applica-
tion bugs caused by asynchronous calls. International Con-
ference on the World-Wide Web (WWW), ACM; 2011. p.
805–14.

