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1.  Introduction

Association rule mining is one of the data mining 
tasks which have been applied for market analysis1-3. 
Frequent Pattern Mining (FPM) plays a key role to obtain 
associations and correlations among items in a large 

transactional dataset. A large number of algorithms have 
been proposed for frequent pattern generation. Almost all 
these algorithms are used for offline analytical task. With 
the increase in the demand of various real time business 
applications, online analysis is on demand. Fraudsters are 
coming up with new methods every day and between year 
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2012 and 2013, there has been nearly 15 percent increase 
of card frauds reported by cardwatch. Thus an incremental 
parallel frequent pattern mining techniques are essential 
to analyze the dynamically growing databases4,5. This 
study proposes three distributed frequent pattern mining 
algorithms to analyze the transactional data in the 
distributed database and to detect the online fraudulent 
transactions.

The popular algorithm Apriori1 forms the foundation 
for static frequent pattern mining. It generates candidate 
itemsets iteratively, which makes the computational cost 
very high. Instead of using generate and test paradigm 
of Apriori, FP-tree approaches2,6 encode the dataset 
using a compact tree structure and directly extracts 
the frequent itemsets from this structure. But it has to 
generate conditional pattern bases and sub-conditional 
pattern tree recursively. An interactive mining algorithm 
CARMA5 provides a lower and upper bound for its 
support for each set and generates frequent patterns in 
two database scans. Thus the user can interactively adjust 
the support and confidence at any time. A dynamic 
algorithm CanTree6 facilitates incremental mining as well 
as interactive mining with one database scan. It keeps the 
entire transactions in the CanTree for preparing frequent 
itemsets; thus it requires more memory. An incremental 
binary tree algorithm IMBT is presented by Yang C et 
al.7 in which each node of the tree represents one of all 
the possible combinations of items in the entire dataset. 
It also provides incremental and interactive mining with 
less processing and I/O time but requires more memory 
to keep all combinations of items in the database. Sherly 
K, et al.8 proposes IAPI Quad-Filter (Interactive and 
Adaptive Partitioned Incremental FPM) algorithm for 
incremental frequent pattern mining in large databases 
to solve the space and computational complexity. But it 
requires more than two database scan (equivalent to the 
number of frequent items), thus the data fetching time is 
fairly high.

A potential solution for improving the performance 
and scalability in frequent pattern mining from 
dynamically growing database is to parallelize the mining 
algorithms. An algorithm PDM9 is proposed for parallel 
mining which is an adaptation of the DHP algorithm 3 in 
the distributed environment. In PDM each node computes 
the globally large ite  msets by exchanging the support 
counts of the candidate sets, thus O(n2) messages are 
required for support count exchange among n nodes for 
each candidate set. A tree-partition algorithm for parallel 
mining of frequent patterns on shared-memory structures 

is presented in10. It builds one FP-Tree of the entire 
database, then partitions it into several independent parts 
and distributes them to different threads. This approach 
uses a Master/Slave Model. The parallel implementation 
of Apriori algorithm based on MapReduce framework11 
is suggested for processing huge datasets using a large 
number of computers. Iko P, et al.12 proposed a parallel 
FP growth algorithm on distributed environment. It also 
introduced a novel notion of path depth to break down 
the granularity parallel processing of conditional pattern 
bases. But these parallel algorithms are not suitable for 
incremental database. A parallel IMBT13 structure is 
proposed in distributed system to enumerate the support 
count of each itemset in an efficient way after the new 
transactions are added or deleted.

Several researchers have shown interest on credit card 
fraud detection with special emphasis on data mining. 
Jianyun et al.14 have presented a framework for detecting 
fraudulent transactions in an online system using frequent 
pattern mining technique. This paper describes an FP tree 
based method to dynamically create user profile. FP tree 
performs well for high support but the size of the tree 
increases as minimum support reduces. Ghosh and Reilly 
have proposed credit card fraud detection with a three 
layer, Feed-forward Neural network15. Neural network 
requires long training time. For improving the speed 
in credit card fraud detection, Syeda et al.16 have used 
Parallel Granular Neural Networks (PGNNs). It suffers 
load imbalance problem when more number of processors 
are used. Aleskerov et al. introduces CARDWATCH 
algorithm17 for fraud detection. It provides an interface 
to a variety of commercial databases, but it requires one 
network per customer. Chiu and Tsai18 have proposed a 
web service based collaborative scheme for fraud detection 
in the banking industry. In this model participant banks 
share the knowledge about fraud patterns prepared using 
Apriori algorithm in a heterogeneous and distributed 
environment. It undergoes multiple database scan to 
generate fraud pattern. Stolfo et al.19 present a Fraud 
Detection System (FDS) using metalearning techniques 
i.e. by combining and integrating a number of separately 
built classifiers. This technique doesn’t consider short 
term behavioral changes of card holders.

Fan et al.20 suggest the application of distributed data 
mining in credit card fraud detection. But it requires more 
computational resources and has the incompatibility 
schema problem. To address the skewness of data problem 
in credit card transaction Phua et al.21 suggest the use of 
Meta classifier similar to19. They consider naïve Bayesian, 
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C4.5, and Back Propagation neural networks as the base 
classifiers. Bayesian networks are more accurate and faster 
to train but are slower when applied to new instances. 
C4.5 can output accurate predictions, but scalability and 
efficiency problem occurs when applied to large data sets. 
Amlan Kundu et al.22 suggest a model BLAST-SSAHA 
Hybridization technique for fraud detection using a two 
stage sequence alignment method by combining anomaly 
and misuse detection techniques. Abhinav Srivastava et 
al.23 have proposed a Hidden Markov model for detecting 
fraudulent transactions. Time series and Markov model 
have time complexity problem with large data sets. 
Renugadevi et al.24 presents a behavioral pattern mining 
technique which prepares both personalized and aggregate 
model to detect the online fraud by implementing the 
Classifiers Naïve Bayesian and Random Forest.

Most of the above mentioned approaches are 
supervised methods which require labeled data to train 
the classifiers for both genuine, as well as fraudulent 
transactions. Hence these methods are able to detect the 
known attacks only. This paper proposes an unsupervised 
fraud detection technique, which detects unusual 
behaviors using clustering and association rule mining 
approaches. It prepares adaptive frequent patterns from 
both legal and fraudulent transaction history. Thus 
unknown types of fraud can also be detected.

2.  Basic Terminologies

Let D be a database with N number of variable length 
transactions T. Let I be the item domain, {I1,I2,.....Im} and 
transaction T is a set of items such that T ⊆ I. Let X and 
Y are sets of items. An itemset with k elements is called 
k-itemsets. Database D is a multiset of subsets of I, T Є 
D. Association rule is a relationship between two or more 
items of the form X → Y where X,Y ⊆ I and X ∩ Y = Ø. 
Such a rule reveals that the transactions in the database 
containing items in X tend to contain in Y. Support of 
an itemset X in a transaction sequence is the fraction of 
all transactions containing the itemset i.e. the frequency 
occurrence of X in D. Support S of an association rule X → 
Y in the transaction set D is the percentage of transactions 
in D that contain items both X and Y. An itemset X is 
called a frequent itemset, if the support of X in D is greater 
than the minimum support threshold set by the user. The 
rule X → Y holds in D with confidence C where
C = support D(X ∪ Y)/support D (X)  (1)
A partition on D is 

π(D)= {Di | i Є I, Di ⊆ D} where Di ≠ Ø  (2)
If Di ∩ Dj = Ø for each pair i, j Є I, i ≠ j, and
∪iЄI Di = D     (3)

2.1 Problem Definition
The problem is to identify all interesting frequent patterns 
in an interactive and incremental manner to support the 
market analysis and to prevent the online financial fraud. 
Initially the database D is logically partitioned into r 
partitions of size Z. To assist interactive and incremental 
mining two minimum support values used here are: Sl, 
Sh namely, lower minimum support value and upper 
minimum support value. It creates two category itemsets: 
Frequent (Fset), Nearly Frequent (NFset). Itemset X is 
Frequent if support (X) ≥ Sh and Nearly frequent if Sl 
≤ support(X) ≤ Sh. Pn represents a partition number at 
which a NFset has been last updated. Let f be the frequent 
item domain, {f1 , f2,......fn} in the ascending order of 
occurrence count. Each frequent item is associated with 
a co-occurring itemset list Cfi, refers to the subset of 
frequent items, whereas Cf1 be the co-occurring item list 
of frequent item f1, Cf1 = {f2, f3,.....fn}, Cf2 = {f3, f4,.....fn} be 
the co-itemset list of f2. This indicates that as the frequency 
of occurrence is more the number of co-occurring items 
considered for frequent itemset mining gets reduced. Let 
Cf = {Cf1, Cf2,...Cfn-1} is a nested family of Cfi sets where 
Cfi+1 ⊆ Cfi for all i = 1, 2,…..n-1.

3.   Proposed Distributed IAPI 
Algorithms

Distributed incremental parallel mining approaches are 
required where the databases are distributed and growing 
dynamically. Fraudsters consistently develop new 
methods of stealing funds and identities and consequently 
consumers are increasingly losing confidence in their 
bank’s ability to protect them from fraud. Banks and 
web merchants face enormous challenges in preventing 
illegal transactions. The major challenge is that millions 
of transactions are processed daily and the data are highly 
skewed, i.e., many more legitimate transactions occur 
than fraudulent ones. For an individual bank, the ratio 
of fraud transactions to normal transactions is extremely 
low. Online fraud can happen from anywhere in the world. 
If banks can share their individual fraud transactions 
to a central center, the integrated data will extract more 
update fraud patterns to help banks enhancing their fraud 
detection. The two types of distributed approaches used 
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in this study are compressed data distributed and count 
distributed parallel mining approaches. Compressed Data 
Distributed approach (CDD-IAPI) is suitable for huge 
business organizations that are distributed into different 
geographical locations. In fraud detection, participating 
banks may not be interested in revealing the fraud details 
to other banks; thus count distributed approach with 
a client server model (CD-IAPI) may be best suited for 
hiding the fraud information from the participating 
banks.

3.1 Count Distributed IAPI
CD algorithms have less communication overhead 
compared to DD algorithms. In CD-IAPI algorithm, first 
every node computes the local support of each item and 
sends to the server. Further server computes their global 
support and identifies the global frequent 1-itemsets. Also 
prepares a co-occurring item list, Cf for each frequent 
item and broadcast them to all the nodes. Second each 
node collects all frequent item transaction groups 
separately with their respective co-occurring itemsets and 
finds the local count of each item in the selected group. 
Then each node sends the local count of items from each 
group to the sever and identifies the global frequent 
2-itemsets. Then proceed to find the higher itemsets by 
sub grouping each 1-itemset transaction groups into 
separate 2-itemset transaction groups according to the 
global frequent itemsets obtained in the previous pass. 
Follow the same procedure to obtain the higher frequent 
itemsets. Functional details of CD-IAPI algorithm is 
shown in Figure 1.

Figure 1.    Functional block diagram of CD-IAPI.

3.1.1 CD-IAPI Algorithm
Input:
D: Transaction database contain N transactions (T1, T2, 
……. TN), horizontally partition 
D into n non-overlapping partitions (P1, P2, …… Pn) and 
sort the items of each transaction in the order of item 
code.
Sl: low minimum support value
Sh: user selected minimum support (Sh > Sl)
Output:
Complete set of frequent item sets
1. For each node do
•	 Read local partition and find local frequency flocal(i) 

for each item i;
•	 Send flocal(i) of each item i to the server
2. In server 
•	 Ftotal(i) = ∑ flocal(i) for each i
•	 F1-itemset ={i | Ftotal(i) ≥ Sh for each item i} and send to 

each node
3. For each node do
•	 Prepare co-occurring itemset list Cf = {Cf1, Cf2, 

….Cfm-1}| Cf1 ⊃ Cf2 ⊃......⊃ Cfn-1
•	 where Cfi = {{fi+1,fi+2...fm}| frequency (fi+1,fi+2,….fm) ≥ 

frequency (fi)}
•	 Assign m buffers to store m frequent items transaction 

groups separately with the corresponding Cfi items.
•	 Read each transaction and store in to each fi buffer if 

it contain the assigned fi , remove items that are not in 
the Cfi list from each transaction.

•	 Find the frequency of each Cfi item flocal(Cfi)in each 
buffer and send to the server and repeat the above 
steps to find the higher frequent itemsets of each fi

4. In server
•	 For each fi
•	 Ftotal (Cfi) = ∑ flocal(Cfi) for each Cfi from each node
•	 Fn-itemset= {Cfi }| Ftotal(Cfi) ≥ Sl for each Cfi item and 

send to all other nodes
•	 Fset = Fn-itemset (fi) if support(Fn-itemset) ≥ Sh) for each fi 

where n=2, 3,……l
•	 Else NFset = Fn-itemset (fi) with last counted partition 

number z.

3.2  Count and Compressed Data Distributed 
IAPI

Unlike other DD approaches, to eliminate the drawbacks 
of both count and data distribution approaches this 
algorithm adopts a hybrid approach. This algorithm 
finds the frequent 1-itemsets and 2-itemsets with count 
distribution approach. Then to find the higher itemsets, 
algorithm assigns separate node for each frequent 
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1-itemset and send the transactions which include only 
the assigned frequent item after removing both infrequent 
1-itemsets and 2-itemsets to the respective nodes. The 
data is distributed only once, hence communication 
overhead is less compared with other DD algorithms. 
The functionality details are shown in figure 2. To 
reduce the communication overhead and to improve 
the load balance first n frequent items are assigned to 
n nodes according to the count of item in these nodes, 
(node which has item count more is assigned with that 
item). Each node calculates the count of items in each 
transaction group and sends to the assigned nodes to get 
the global frequent 2-itemsets of each group. Then after 
removing the infrequent 2-itemsets from each group, the 
compressed transaction groups are sent to the assigned 
nodes. Each node proceeds with the higher frequent 
itemset generation process and whichever node finishes 
the itemset generation, sends request to the server for 
next frequent itemset generation. Server sends request 
to all other nodes to send the count of items in the 
frequent item transaction group from which the higher 
frequent set is to be generated, to the requested node. If 
more than one node requested for next frequent itemset 
generation assigns the transaction groups on first come 
first serve basis. If the requests arrived at the same instant 
then assign the transaction groups based on the count of 
next frequent item in the requested nodes (nodes which 
have more count is assigned first). Same procedure is 
repeated for the remaining frequent items. Finally all 
frequent itemsets generated are sent to the server and 
global frequent and nearly frequent itemsets are stored 
separately.

Figure 2.    Functional block diagram of CDD-IAPI.

3.2.1 Working of CDD-IAPI FPM with Example
The working of CDD-IAPI can be illustrated using a 
sample dataset having 10 transactions, as given in Figure 3. 
Consider that the dataset is equally distributed among two 
nodes, Node1 and Node 2. During the first database scan 
Node1 and Node 2, calculate the individual item count 
concurrently and send to server to find global frequent 
items. Then server assigns Node 1 to find the higher 
itemsets of item f and node 2 with item e. Then server 
generates co-occurring item list of each item and sends 
to both the nodes to find the higher itemsets of frequent 
items {a, b, c, d, e, f}. Both nodes scan the database second 
time and store each frequent item transaction groups 
with their respective co-occurring itemsets to separate 
buffers as shown in second step in the nodes (Figure 3). 
Then local counts of each item in the selected groups are 
calculated and send to the assigned nodes to identify 
frequent 2-itemsets. Then higher frequent itemsets of 
items f and e are generated in parallel by node 1 and node 
2 respectively. After the completion of frequent itemset 
generation, generated itemsets are sent to the server and 
it assigns the node for next frequent itemset generation 
(item d). According to this example, Node 1 is assigned 
with items b and f and Node 2 with items e and d. Item 
a has no co-items and item c has only one co-item whose 
count is obtained at the second scan.

Figure 3.    Working of CDD-IAPI with example.

 In incremental mining new partitions are added 
at both nodes (Phase 2) and the count of each item in 
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the newly added partition is calculated at each node 
and send to the server. Server adds the count of items 
obtained from each node; then the sum gets added with 
the previous count to identify the present frequent items. 
Frequent item buffers in the newly added partition are 
generated and frequency of the higher frequent itemsets 
is obtained by both the nodes. Higher frequent itemsets 
count in the new partition is added with the previous 
count by the server to update the frequency of the 
existing Fset and NFset. New patterns may get generated 
on adding new transactions made by the new customers 
as well due to the change in purchase behavior. Thus to 
reflect the pattern changes (Phase 3) old transactions may 
be removed and update the frequent patterns. Count of 
individual items in the removing partition is calculated 
by the respective nodes and gets deducted from the total 
count by the server. Further the frequency of the existing 
frequent itemsets in the removed partition is obtained 
by the corresponding nodes and is deducted from the 
previous count by the server. Higher frequent itemsets 
of newly created frequent items (F1new) is obtained by 
rescanning the remaining partitions by respective nodes 
in coordination with the server and update the Fset and 
NFset.

3.2.2 CDD-IAPI Algorithm
Input:
D: Transaction database contain N transactions (T1, T2, 
……. TN), horizontally partition 
D into n non-overlapping partitions (P1, P2, …… Pn) and 
sort the items of each transaction in the order of item 
code.
Sl: low minimum support value
Sh: user selected minimum support (Sh > Sl)
Output:
Complete set of frequent itemsets
1. For each node do
•	 Read local partition and find local frequency flocal(i) 

for each item i;
•	 Send flocal(i) of each item i to the server
2. In server 
•	 Ftotal(i) = ∑ flocal(i) for each i
•	 F1-itemset ={i | Ftotal(i) ≥ Sh for each item i} and send to 

each node
•	 Assign n nodes to find the higher frequent itemsets of 

first n frequent items
3. For each node do
•	 Prepare co-occurring itemset list Cf = {Cf1, Cf2, 

….Cfm-1}| Cf1 ⊃ Cf2 ⊃......⊃ Cfn-1

•	 where Cfi = {{fi+1,fi+2...fm}|frequency(fi+1,fi+2,….fm) ≥ 
frequency(fi)}

•	 Assign m buffers to store m frequent items transaction 
groups separately with the corresponding Cfi items.

•	 Read each transaction and store in to each fi buffer if 
it contain the assigned fi and remove items that are 
not in the Cfi list from each transaction.

•	 Find the frequency of each Cfi item flocal(Cfi)in each 
buffer and send to the assigned nodes.

•	 Ftotal(Cfi) = ∑ flocal(Cfi) for each Cfi at each node
•	 Fn-itemset= {Cfi }| Ftotal(Cfi) ≥ Sl for each Cfi item and 

send to all nodes
•	 Remove infrequent items from each transaction in the 

corresponding buffers and send each buffer contents 
to the assigned nodes.

•	 Follow the same steps to obtain higher frequent item-
sets of fi ; further there is no need of sending item 
counts to other nodes.

•	 Each node proceeds with the higher frequent itemset 
generation procedures and whichever node finishes 
the itemset generation send request to the server for 
next frequent itemset generation.

•	 Server send request to all other nodes to send the 
count of items in the (n+1)th transaction group to the 
requested node.

•	 If more than one node requested for next frequent 
itemset generation assigns the transaction groups on 
first come first serve basis. If the requests arrived at 
the same instant then assign the transaction groups 
based on the count of next frequent item (nodes 
which have more count is assigned first).

•	 Repeat the above steps till there is no higher frequent 
itemset generation.

•	 Send all frequent itemsets of assigned fi with count to 
the server

4. In server 
•	  Fset = Fn-itemset (fi) if support(Fn-itemset) ≥ Sh) for each fi 

where n = 2, 3,……l
•	 Else NFset = Fn-itemset (fi) with last counted partition 

number z
Procedure Higher-frequentItemset-Generate (fi-
transactions(Buffer1), Fn)
//Fnp : pth item of Fn-itemset
1. Collect fi-transactions contain selected Fn-itemset i.e Fnp 

to a new temporary buffern and remove items having 
count ≤ Fnp from each transaction in the buffern, p 
initialized to 0

2. Find frequency of each item in the selected Fnp trans-
action group

3. F(n+1)-itemset = {Fn(p+k) | frequency(Fn(p+k)) ≥ Sl for each 
Fn(p+k) item where k=1 to (m-p)

4. else remove Fn(p+k) from the Fnp transaction group
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5. Sort F(n+1)-itemset in ascending order
6. To obtain higher frequent itemsets of fi do
7. if (F(n+1)-itemset ≠ Φ) then
8. n = n+1 & Repeat above steps
9. else if p < size(Fn-itemset) then
10. p = p+1 & remove buffern content
11. else n = n-1 & remove buffern content
12. Repeat above steps if n ≥ 2
13. else return

3.2.3 Incremental Mining
Rather than fixing single minimum support value 
IAPI uses a range of support values (Sl, Sh) for making 
the dynamic and the interactive mining faster. The 
incremental mining procedure of CDD-IAPI algorithm is 
given below.
1. For each node do
•	 Read newly added local partition and find frequency 

flocalnew(i) for each item i;
•	 Send flocalnew(i) of each item i to the server
2. In server 
•	 Ftotalnew(i) = ∑ flocalnew(i) for each i
•	 Updated item count UFtotalnew(i) = Ftotal(i) + Ftotal-

new(i)
•	 UpdatedF1-itemset ={i | UFtotal(i) ≥ Sh for each item i}& 

inform each node to find higher frequent itemsets
•	 If new F1-itemset then set Cfnew ⊃ Cf1 and update existing 

Cf and find its higher frequent itemset by collecting 
the transactions containing the new frequent item from 
the entire old partitions. Then include it in the Fset list.

3. For each node do
•	 Read newly added local partition and find the higher 

frequent itemsets of the assigned frequent item fi us-
ing the same Cfi sets.

•	 Send all FrequentItemsets of assigned fi with count to 
the server

4. In server 
•	 Collect FrequentItemsets of each frequent item fi 

from newly added partitions of each node
•	 Update the count of existing Fset and NFset with the 

frequent itemsets of new partition.
•	 If any of the existing Fset are not updated, collect its 

frequency from the corresponding node buffer and 
update it.

•	 If any existing Fset become infrequent shift it to NFset 
list, similarly any existing NFsets become frequent do 
vice versa.

•	 If any new Fset obtained, conduct a possibility test 
and if possible to be frequent find its global count by 
rescanning the entire old partitions.

3.3 CDD-Parallel IAPI 
To reduce the computational cost as well as I/O overhead 
while finding the frequent itemsets, IAPI algorithm 
collects each frequent item transaction group into separate 
buffers and processes them separately. The frequent set 
generation time can be further improved by processing 
these buffers in parallel using multiple processors at each 
node. Thus this approach proposes CDD-Parallel IAPI 
(CDD-PIAPI) algorithm for a faster frequent itemset 
generation. Functional block diagram of CDD-PIAPI 
algorithm is shown in Figure 4.

Figure 4.    Functional block diagram of PCDD-IAPI.

Similar to CDD-IAPI this algorithm finds the frequent 
1-itemsets and 2-itemsets with count distribution 
approach using parallel processors at each node. In this 
approach local database of each node is partitioned in 
to n non-overlapped horizontal partitions. The count of 
distinct items from each partition is obtained by n Local 
Processors (LP) simultaneously and sends them to the 
Master Processor (MP) to calculate their total count. 
Then MP of each node sends the local count of each item 
to the server to identify the global frequent 1-itemsets 
and server assigns separate node for each frequent item 
to find their higher length itemsets. Master processors of 
each node collects the assigned frequent item transactions 
groups from all other nodes after removing the infrequent 
2-itemsets and finds their higher length itemsets with IAPI 
approach in parallel manner using their LPs. Algorithm 
steps are given below.
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3.3.1 CDD-PIAPI Algorithm
1. Partition the database at each node into n horizontal 

partitions
2. For each local processor at each node do

 Read local partition and find local frequency flocal(i) 
for each item i;

3. In master processor at each node do
Fnode (i) =∑ flocal(i) and send to server

4. In server do
•	 F1-itemset ={i | ∑ Fnode (i) ≥ Sh for each i}and assign 

node(i) to find higher large itemsets
•	  Prepare co-occurring itemset list Cfi = {fi+1,fi+2...fm} 

|count (fi+1,fi+2,….fm) ≥ count (fi)} for each fi & send to 
Master Processor (i)

5. At each node
•	 Read each transaction and send to LP
•	 For each local processor do
•	 Collect transactions contain frequent item fi in to buf-

fer1 and remove items that are not in the Cfi list from 
each transaction.

•	 Find the local frequency of each Cfi item in the select-
ed fi-transaction group and send to the master pro-
cessors of the assigned nodes.

6. Master processor calculates the global frequency of 
each Cfi i  tem in the assigned group and sends the 
frequent item list to all nodes.

7. At each node LP removes the infrequent items in the 
assigned transaction group and sends the compressed 
transactions to the respective nodes.

8. Each node proceeds with the higher frequent itemset 
generation procedures by assigning each LP to each 
frequent n-itemsets transaction groups and whichev-
er node finishes the itemset generation send request 
to the server for next frequent itemset generation.

9. Server sends request to all other nodes to send the 
count of items in the (n+1)th transaction group to the 
requested node.

10. If more than one node is requested for next frequent item-
set generation, assign the transaction groups on first come 
first serve basis. If the requests arrived at the same in-
stant, then assign the transaction groups based on the 
count of next frequent item (nodes which have more 
count are assigned first).

11. Repeat the above steps till there is no higher frequent 
itemset generation.

4.   Proposed Fraud Detection 
System

An intelligent Fraud Detection System (FDS) monitors 

card transactions, collects data from the current and 
previous transactions and processes this data to compute 
a transaction score for the current transaction. In 
every credit card transaction there are three stages of 
verifications. At the first stage of verification the merchant 
sends the card details and the amount of purchase to the 
card issuing agency for the identity verification. After 
passing the authenticity check, the merchant verifies the 
transaction data to make sure that card owner is doing 
the transaction. As a security measure the third stage 
verification is done by the Fraud Detection System (FDS) 
at the Bank. Transaction data stored in the bank database 
contains the attributes such as credit card number, 
account number, transaction amount, transaction 
date, merchant and city. In this paper we consider six 
transaction attributes such as transaction amount, time, 
IP address of the machine from which the order is placed, 
Card holder’s address, item purchased and delivery/
shipping address, which are relevant for identifying the 
user spending behavior. Every credit card has a credit 
limit, the transaction within the credit limit is considered 
as valid transaction. The transaction time, IP address 
of the order placing machine and the delivery address 
are not restricted. The transaction time depends on the 
card holder’s convenience, surroundings and lifestyle. 
The spending behavior such as amount, item, city and 
frequency of purchase may change over time.

4.1 Data Discretization
A credit cardholder makes different kinds of purchases of 
different amounts over a period of time. Therefore these 
raw data need to be classified into specific groups for 
generating frequent patterns and association rules. In this 
approach first phase converts these continuous parameters 
into categorical parameters using efficient clustering and 
classification techniques. In the second phase frequent 
patterns and association rules are generated using Parallel 
and distributed IAPI algorithms.

The purchase time is categorized into two slots, 
namely, morning (MR) and evening (EV).The second 
attribute the transaction amount be quantized into three 
different levels - Low (CL), Medium (CM) and High (CH) 
for convenience, using K-means clustering algorithm. 
Each individual transaction amount usually depends 
on the corresponding type of item purchased. Based on 
the spending habit of individual card holders purchase 
amount ranges can be determined dynamically using 
K-Means clustering algorithm on their past transactions. 
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The third attribute IP address of order placing machine 
is also an important parameter which can assist fraud 
detection easily. Classify them into two category local/
small group (SG) and dynamic/large group (LG). The 
fourth attribute shipping address is categorized into two 
groups, user address (UA) and other address (OA). The 
fifth attribute item purchased can be categorized into five 
groups such as Groceries (Gr), Electronic items (EI), Gold 
(Gl), Medical (MD) and Miscellaneous (Mi) purchases. 
Some merchant may sell variety items, the item purchased 
from these merchants may consider as miscellaneous for 
convenience. Categorization of the items purchased can 
be done by referring the merchant profile database and 
applying If-THEN classification technique.

4.2  Two Stage IAPI Enabled Fraud Detection 
System

Figure 5 shows the structure of the Fraud Detection 
System (FDS) proposed to implement at the banking 
sector. This has two sections; first part is to generate 
frequent transaction patterns of each card holder 
from their legal transaction history using parallel IAPI 
algorithm also to generate frequent fraud patterns from 
the fraudulent transaction history of all participating 
bank using CD-IAPI algorithm. Second part verifies the 
newly arrived transactions with the frequent legal and 
fraud patterns and distinguishes fraudulent transaction 
from legal transactions. Second section has two stages, 
the first stage identifies the anomalous behavior and the 
second stage confirms the misuse. 

Figure 5.    Structure of proposed FDS.

This model checks the similarity of the incoming 
transactions with the profiled legal frequent transaction 
patterns of the card holder and high score transactions 
are considered as genuine transactions. Low scored 
transactions have suspected anomalies and the second 

stage confirms whether the detected anomalies were 
due to fraudulent transaction or short term behavioral 
changes by comparing with the fraud patterns generated. 
If the similarity score with fraud patterns is high, the 
transaction is highly suspicious; then alarm is generated 
and locks the transaction. Low scored transaction may be 
a new type of attack; to reduce the detection cost alarm will 
be generated only when the transaction amount is higher 
than a certain threshold value and an alert message is sent 
to the user for low amount transaction. After getting the 
confirmation from the user the transactions are recorded 
in the respective history database and further protection 
should be performed for the detected fraud.

5.   Experimental Setup and 
Performance Analysis

Functionalities and effectiveness of the proposed IAPI 
algorithms were tested with market basket datasets 
T10I4D100K prepared by IBM Almaden Quest research 
group and a Synthetic dataset. This algorithm is developed 
and tested using programming language Java and MySQL 
Server 4.1 on Xeon 6 core processor with GPU as server 
and 10 to 30 nodes with Intel dual core processor systems 
having Debian 7.0 OS. Execution time and memory 
utilization are compared for different number of nodes 
with various support threshold values and different sized 
partitions as well as with different number of partitions in 
both datasets.

Experimental results show that execution time is 
directly proportional to the size of the dataset when the 
minimum support value remains constant (Figure 6). 
CDD-IAPI algorithm designed in this research work has 
less communication overhead compared to CD-IAPI 
approach. Thus time required to generate frequent pattern 
in CDD-IAPI is less compared with CD-IAPI. The speed 
of pattern generation of CDD-IAPI is further improved 
by using CDD-Parallel IAPI algorithm. Updating of 
the frequent sets on addition of new data and deletion 
of old data requires less time compared with the initial 
pattern creation time. From the test results it is observed 
that updating time is related with the heterogeneity of 
the data, i.e. if new frequent 1-itemset generated, then it 
requires entire database scan, else previous information 
can be used and require less time (5%-30% of the initial 
pattern creation time) depends on the number of frequent 
itemsets (Figure 8). It is also observed that, when the 



Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology10

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in 
Distributed and Parallel Systems

support threshold reduces, the number of frequent items 
increases, thus execution time required is more. Due to 
heterogeneity of dataset there are chances of reducing the 
number of frequent items, even though the dataset size 
increases. The test results illustrate that the execution time 
and the memory requirement of all IAPIs directly depend 
on the number of frequent items in the dataset. Figure 
7. shows that the execution time gets reduced when the 
number of nodes increases.

Figure 6.    Execution time comparison of the proposed 
algorithms.

Figure 7.    Execution time comparison with variable 
number of nodes.

Figure 8.    Pattern update time comparison.

5.1 Performance Comparison
Performance of CD-IAPI Algorithm, CDD-IAPI 
Algorithm and Parallel CD-IAPI Algorithm are 
compared with three parallel algorithms Parallel FP- tree, 
Parallel-IMBT and parallel-Apriori using T10I4D100K 
dataset and a synthetic dataset. Experimental results 
shown in Figure 9. illustrates that IAPI algorithms 
generate frequent itemsets in less time and requires less 
memory compared with Parallel-IMBT and Parallel-
Apriori. IAPI algorithms requires only two database scan 
for frequent itemset generation where as Apriori has to 
read the entire database in every pass. FP-growth shows 
an outstanding improvement over Apriori; but it has to 
generate conditional pattern bases and sub- conditional 
pattern tree recursively. Thus initial pattern creation time 
of IAPI is less compared with Apriori and FP tree. It is 
observed that IMBT tree requires more time to create and 
more memory to store the entire tree. Thus it may not 
be suitable for datasets having more number of distinct 
items. In FP-Tree addition of new transactions may 
require reconstruction of the tree. Apriori also doesn’t 
support incremental mining. Since IAPI algorithms use 
a range of values for minimum support: lower minimum 
support Sl and upper minimum support Sh, addition 
and deletion of dataset doesn’t introduces much time to 
update the frequent patterns. IBT approach doesn’t need 
to predetermine the minimum support threshold and 
scans the database only once. Thus IMBT requires less 
time to update the frequent sets on addition and deletion 
of data than other algorithms.

Figure 9.    Performance comparison of popular FPM.

Transaction history of customers is required to analyze 
the spending behavior. No credit card companies are ready 
to share their data for testing the efficiency of the system. 
Thus experiments are conducted on synthetic dataset and 
past few years’ real world card transaction data of few 
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credit card holders, who belong to three spending groups: 
low, medium and high. The relevant attributes are selected 
and categorized into specific category. Preprocessing of 
the transaction amount is done using K-Means clustering 
algorithm and frequent transaction sets are identified 
using Parallel IAPI and CD-IAPI algorithms.

The performance of the proposed model is tested and 
compared with the model developed by Jianyun et al. 15 
and Chiu and Tsai 19 using synthetically generated data 
of different category spending behavior and minimum 
support, with the help of a transaction simulator 
developed by us. Frequent itemsets generated with low 
minimum support value can profile a user’s behavior 
more accurately. The execution time of proposed IAPI 
algorithms directly depend on the number of frequent 
1-itemsets generated whereas FP growth algorithm used 
by Jianyun et al. requires more time to construct FP tree for 
small support values. Apriori algorithm used to generate 
fraud pattern in Chiu and Tsai model also requires more 
time due to multiple database scan.

The accuracy of the model is tested with a test set of 
both real-life and synthetic data that were not used to 
generate association rule with different support values 
and calculated the percentage of test set tuples that are 
correctly detected by the model. Standard performance 
metrics: True Positive (TP) and False Positive (FP) are 
used to analyze the effectiveness of the system. Percentage 
of fraudulent transaction identified as fraud is TP and 
percentage of genuine transactions identified as fraud is 
FP. It is found that the accuracy of the system is dependent 
on the minimum support percentage. TP reduces with 
low support values and FP increases with high support 
percentages. In our approach we are able to get 90% and 
above TP and up to 10% FP with moderate support values. 
Variation in TP & FP with different minimum support 
values observed with the proposed method is shown in 
Figure 10.

By comparing the results reported in the literature 
survey we found that Maes et al. 14 have achieved 70% 
TP, 15% FP by applying neural network and 74% TP, 
15% FP by applying Bayesian belief network. Abhinav 
Srivastava et al. 24 have achieved an overall accuracy of 
80% even under large input condition variations which 
is much higher than the method proposed by Stolfo et 
al. 20. Aleskerov et al. 18 obtained a fraud detection rate of 
85%. Depending on the mode of implementation and the 
selected operating point for fraud detection Ghosh and 

Reilly 16 brought about a fraud loss reduction from 20% to 
40%. Amlan Kundu et al. 23 have achieved about 85% TP 
and up to 5% FP with moderate profile size. But it is not 
much effective for very large profile size.

Figure10.    Variation of TP-FP with different Support.

6.  Conclusion

The hybrid of the anomaly and misuse detection models 
can improve the efficiency of fraud detection systems. 
Credit card transaction database of bank customers is 
utilized to conduct experiments. Most of the frequent 
pattern mining algorithms have complex structures and 
requires more time to generate frequent patterns. This 
approach uses three distributed frequent set generation 
algorithms, which incrementally generate frequent 
patterns and identifies the anomalies with less time and 
space complexity resulting in speedy decisions irrespective 
of the data set size with no complex calculations or data 
structures. The most attractive feature of IAPI algorithms 
is that the user can interactively adjust the support 
values with less time to update the frequent patterns. 
To eliminate the drawbacks of both count and data 
distribution approaches CDD-IAPI algorithm adopts 
a hybrid approach which distributes the compressed 
data only once; hence communication overhead is less 
compared with other DD algorithms. Thus the proposed 
method can prepare more accurate user spending 
profile with low minimum support in short time period. 
Experimental results show that proposed algorithms are 
capable to efficiently generate frequent patterns from very 
large sized dynamically growing distributed database with 
less communication overhead and good load balancing 
feature. 
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