
Indian Journal of Science and Technology, Vol 8(18), DOI: 10.17485/ijst/2015/v8i18/55109, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Association rule mining is one of the data mining
tasks which have been applied for market analysis1-3.
Frequent Pattern Mining (FPM) plays a key role to obtain
associations and correlations among items in a large

transactional dataset. A large number of algorithms have
been proposed for frequent pattern generation. Almost all
these algorithms are used for offline analytical task. With
the increase in the demand of various real time business
applications, online analysis is on demand. Fraudsters are
coming up with new methods every day and between year

Abstract
Objectives: To develop a memory efficient, incremental and interactive distributed FPM having less communication and
synchronization overhead with good load balancing capability, to analyze the dynamic transactional data in a distributed
database. Methods/Analysis: This technique adopts prefix based equivalence class partitioning scheme to generate
frequent item sets without generating local frequent sets with low memory consumption. This approach uses a range of
support values to update the frequent patterns with less time complexity. This paper proposes distributed FPM techniques
with both count distributed and compressed data distributed parallel approaches. The performance of the algorithms are
tested and compared with popular distributed FPM algorithms using standard datasets. Findings: To deal with the massive
dynamic data stored in distributed databases, this approach develops three distributed frequent set generation algorithms,
which update frequent patterns by reusing the previously stored pattern information with no complex calculations or data
structures. The proposed approaches also provide the user with the facility to interactively adjust the minimum support
value as per their own conveniences by keeping the nearly frequent itemsets with the help of two minimum support
thresholds (low, high). Measures have been taken to reduce the additional itemset storage and computations as well as to
achieve good load balancing with low communication and synchronization overhead. Since the proposed algorithms adopt
prefix based equivalent class partitioning technique at each n-itemset level and undergo four levels of itemset filtering
to remove infrequent items from each class before calculating the individual item count, the inter node communication
required is less in this approach. To eliminate the drawbacks of both count and data distribution approaches one of the
algorithms proposed adopts a hybrid approach which distributes the compressed data only once, hence communication
overhead is less compared with other DD algorithms. Conclusion/Application: The proposed distributed techniques
reduce memory utilization and itemset comparisons compared to the existing approaches. The performances are tested
and evaluated for market analysis and online credit card fraud detection applications.

Keywords: Credit Card Fraud Detection System, Incremental Distributed Frequent Pattern Mining, Interactive Parallel
Mining Techniques, Market Basket Analysis, Prefix Based Equivalence Class Partitioning Approach

A Improved Incremental and Interactive Frequent
Pattern Mining Techniques for Market Basket

Analysis and Fraud Detection in Distributed
and Parallel Systems

K. K. Sherly1* and R. Nedunchezhian2

1Department of Information Technology, Toc H Institute of Science and Technology, Ernakulam - 682313,
Kerala, India; sherly.shilu@gmail.com

2Department of Computer Science and Engineering, Sri Ranganathar Institute of Engineering and Technology,
Coimbatore - 641110, Tamilnadu, India; rajuchezhian@gmail.com

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology2

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

2012 and 2013, there has been nearly 15 percent increase
of card frauds reported by cardwatch. Thus an incremental
parallel frequent pattern mining techniques are essential
to analyze the dynamically growing databases4,5. This
study proposes three distributed frequent pattern mining
algorithms to analyze the transactional data in the
distributed database and to detect the online fraudulent
transactions.

The popular algorithm Apriori1 forms the foundation
for static frequent pattern mining. It generates candidate
itemsets iteratively, which makes the computational cost
very high. Instead of using generate and test paradigm
of Apriori, FP-tree approaches2,6 encode the dataset
using a compact tree structure and directly extracts
the frequent itemsets from this structure. But it has to
generate conditional pattern bases and sub-conditional
pattern tree recursively. An interactive mining algorithm
CARMA5 provides a lower and upper bound for its
support for each set and generates frequent patterns in
two database scans. Thus the user can interactively adjust
the support and confidence at any time. A dynamic
algorithm CanTree6 facilitates incremental mining as well
as interactive mining with one database scan. It keeps the
entire transactions in the CanTree for preparing frequent
itemsets; thus it requires more memory. An incremental
binary tree algorithm IMBT is presented by Yang C et
al.7 in which each node of the tree represents one of all
the possible combinations of items in the entire dataset.
It also provides incremental and interactive mining with
less processing and I/O time but requires more memory
to keep all combinations of items in the database. Sherly
K, et al.8 proposes IAPI Quad-Filter (Interactive and
Adaptive Partitioned Incremental FPM) algorithm for
incremental frequent pattern mining in large databases
to solve the space and computational complexity. But it
requires more than two database scan (equivalent to the
number of frequent items), thus the data fetching time is
fairly high.

A potential solution for improving the performance
and scalability in frequent pattern mining from
dynamically growing database is to parallelize the mining
algorithms. An algorithm PDM9 is proposed for parallel
mining which is an adaptation of the DHP algorithm 3 in
the distributed environment. In PDM each node computes
the globally large ite msets by exchanging the support
counts of the candidate sets, thus O(n2) messages are
required for support count exchange among n nodes for
each candidate set. A tree-partition algorithm for parallel
mining of frequent patterns on shared-memory structures

is presented in10. It builds one FP-Tree of the entire
database, then partitions it into several independent parts
and distributes them to different threads. This approach
uses a Master/Slave Model. The parallel implementation
of Apriori algorithm based on MapReduce framework11
is suggested for processing huge datasets using a large
number of computers. Iko P, et al.12 proposed a parallel
FP growth algorithm on distributed environment. It also
introduced a novel notion of path depth to break down
the granularity parallel processing of conditional pattern
bases. But these parallel algorithms are not suitable for
incremental database. A parallel IMBT13 structure is
proposed in distributed system to enumerate the support
count of each itemset in an efficient way after the new
transactions are added or deleted.

Several researchers have shown interest on credit card
fraud detection with special emphasis on data mining.
Jianyun et al.14 have presented a framework for detecting
fraudulent transactions in an online system using frequent
pattern mining technique. This paper describes an FP tree
based method to dynamically create user profile. FP tree
performs well for high support but the size of the tree
increases as minimum support reduces. Ghosh and Reilly
have proposed credit card fraud detection with a three
layer, Feed-forward Neural network15. Neural network
requires long training time. For improving the speed
in credit card fraud detection, Syeda et al.16 have used
Parallel Granular Neural Networks (PGNNs). It suffers
load imbalance problem when more number of processors
are used. Aleskerov et al. introduces CARDWATCH
algorithm17 for fraud detection. It provides an interface
to a variety of commercial databases, but it requires one
network per customer. Chiu and Tsai18 have proposed a
web service based collaborative scheme for fraud detection
in the banking industry. In this model participant banks
share the knowledge about fraud patterns prepared using
Apriori algorithm in a heterogeneous and distributed
environment. It undergoes multiple database scan to
generate fraud pattern. Stolfo et al.19 present a Fraud
Detection System (FDS) using metalearning techniques
i.e. by combining and integrating a number of separately
built classifiers. This technique doesn’t consider short
term behavioral changes of card holders.

Fan et al.20 suggest the application of distributed data
mining in credit card fraud detection. But it requires more
computational resources and has the incompatibility
schema problem. To address the skewness of data problem
in credit card transaction Phua et al.21 suggest the use of
Meta classifier similar to19. They consider naïve Bayesian,

K. K. Sherly and R. Nedunchezhian

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology 3

C4.5, and Back Propagation neural networks as the base
classifiers. Bayesian networks are more accurate and faster
to train but are slower when applied to new instances.
C4.5 can output accurate predictions, but scalability and
efficiency problem occurs when applied to large data sets.
Amlan Kundu et al.22 suggest a model BLAST-SSAHA
Hybridization technique for fraud detection using a two
stage sequence alignment method by combining anomaly
and misuse detection techniques. Abhinav Srivastava et
al.23 have proposed a Hidden Markov model for detecting
fraudulent transactions. Time series and Markov model
have time complexity problem with large data sets.
Renugadevi et al.24 presents a behavioral pattern mining
technique which prepares both personalized and aggregate
model to detect the online fraud by implementing the
Classifiers Naïve Bayesian and Random Forest.

Most of the above mentioned approaches are
supervised methods which require labeled data to train
the classifiers for both genuine, as well as fraudulent
transactions. Hence these methods are able to detect the
known attacks only. This paper proposes an unsupervised
fraud detection technique, which detects unusual
behaviors using clustering and association rule mining
approaches. It prepares adaptive frequent patterns from
both legal and fraudulent transaction history. Thus
unknown types of fraud can also be detected.

2. Basic Terminologies

Let D be a database with N number of variable length
transactions T. Let I be the item domain, {I1,I2,.....Im} and
transaction T is a set of items such that T ⊆ I. Let X and
Y are sets of items. An itemset with k elements is called
k-itemsets. Database D is a multiset of subsets of I, T Є
D. Association rule is a relationship between two or more
items of the form X → Y where X,Y ⊆ I and X ∩ Y = Ø.
Such a rule reveals that the transactions in the database
containing items in X tend to contain in Y. Support of
an itemset X in a transaction sequence is the fraction of
all transactions containing the itemset i.e. the frequency
occurrence of X in D. Support S of an association rule X →
Y in the transaction set D is the percentage of transactions
in D that contain items both X and Y. An itemset X is
called a frequent itemset, if the support of X in D is greater
than the minimum support threshold set by the user. The
rule X → Y holds in D with confidence C where
C = support D(X ∪ Y)/support D (X) (1)
A partition on D is

π(D)= {Di | i Є I, Di ⊆ D} where Di ≠ Ø (2)
If Di ∩ Dj = Ø for each pair i, j Є I, i ≠ j, and
∪iЄI Di = D (3)

2.1 Problem Definition
The problem is to identify all interesting frequent patterns
in an interactive and incremental manner to support the
market analysis and to prevent the online financial fraud.
Initially the database D is logically partitioned into r
partitions of size Z. To assist interactive and incremental
mining two minimum support values used here are: Sl,
Sh namely, lower minimum support value and upper
minimum support value. It creates two category itemsets:
Frequent (Fset), Nearly Frequent (NFset). Itemset X is
Frequent if support (X) ≥ Sh and Nearly frequent if Sl
≤ support(X) ≤ Sh. Pn represents a partition number at
which a NFset has been last updated. Let f be the frequent
item domain, {f1 , f2,......fn} in the ascending order of
occurrence count. Each frequent item is associated with
a co-occurring itemset list Cfi, refers to the subset of
frequent items, whereas Cf1 be the co-occurring item list
of frequent item f1, Cf1 = {f2, f3,.....fn}, Cf2 = {f3, f4,.....fn} be
the co-itemset list of f2. This indicates that as the frequency
of occurrence is more the number of co-occurring items
considered for frequent itemset mining gets reduced. Let
Cf = {Cf1, Cf2,...Cfn-1} is a nested family of Cfi sets where
Cfi+1 ⊆ Cfi for all i = 1, 2,…..n-1.

3. Proposed Distributed IAPI
Algorithms

Distributed incremental parallel mining approaches are
required where the databases are distributed and growing
dynamically. Fraudsters consistently develop new
methods of stealing funds and identities and consequently
consumers are increasingly losing confidence in their
bank’s ability to protect them from fraud. Banks and
web merchants face enormous challenges in preventing
illegal transactions. The major challenge is that millions
of transactions are processed daily and the data are highly
skewed, i.e., many more legitimate transactions occur
than fraudulent ones. For an individual bank, the ratio
of fraud transactions to normal transactions is extremely
low. Online fraud can happen from anywhere in the world.
If banks can share their individual fraud transactions
to a central center, the integrated data will extract more
update fraud patterns to help banks enhancing their fraud
detection. The two types of distributed approaches used

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology4

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

in this study are compressed data distributed and count
distributed parallel mining approaches. Compressed Data
Distributed approach (CDD-IAPI) is suitable for huge
business organizations that are distributed into different
geographical locations. In fraud detection, participating
banks may not be interested in revealing the fraud details
to other banks; thus count distributed approach with
a client server model (CD-IAPI) may be best suited for
hiding the fraud information from the participating
banks.

3.1 Count Distributed IAPI
CD algorithms have less communication overhead
compared to DD algorithms. In CD-IAPI algorithm, first
every node computes the local support of each item and
sends to the server. Further server computes their global
support and identifies the global frequent 1-itemsets. Also
prepares a co-occurring item list, Cf for each frequent
item and broadcast them to all the nodes. Second each
node collects all frequent item transaction groups
separately with their respective co-occurring itemsets and
finds the local count of each item in the selected group.
Then each node sends the local count of items from each
group to the sever and identifies the global frequent
2-itemsets. Then proceed to find the higher itemsets by
sub grouping each 1-itemset transaction groups into
separate 2-itemset transaction groups according to the
global frequent itemsets obtained in the previous pass.
Follow the same procedure to obtain the higher frequent
itemsets. Functional details of CD-IAPI algorithm is
shown in Figure 1.

Figure 1. Functional block diagram of CD-IAPI.

3.1.1 CD-IAPI Algorithm
Input:
D: Transaction database contain N transactions (T1, T2,
……. TN), horizontally partition
D into n non-overlapping partitions (P1, P2, …… Pn) and
sort the items of each transaction in the order of item
code.
Sl: low minimum support value
Sh: user selected minimum support (Sh > Sl)
Output:
Complete set of frequent item sets
1. For each node do
•	 Read local partition and find local frequency flocal(i)

for each item i;
•	 Send flocal(i) of each item i to the server
2. In server
•	 Ftotal(i) = ∑ flocal(i) for each i
•	 F1-itemset ={i | Ftotal(i) ≥ Sh for each item i} and send to

each node
3. For each node do
•	 Prepare co-occurring itemset list Cf = {Cf1, Cf2,

….Cfm-1}| Cf1 ⊃ Cf2 ⊃......⊃ Cfn-1
•	 where Cfi = {{fi+1,fi+2...fm}| frequency (fi+1,fi+2,….fm) ≥

frequency (fi)}
•	 Assign m buffers to store m frequent items transaction

groups separately with the corresponding Cfi items.
•	 Read each transaction and store in to each fi buffer if

it contain the assigned fi , remove items that are not in
the Cfi list from each transaction.

•	 Find the frequency of each Cfi item flocal(Cfi)in each
buffer and send to the server and repeat the above
steps to find the higher frequent itemsets of each fi

4. In server
•	 For each fi
•	 Ftotal (Cfi) = ∑ flocal(Cfi) for each Cfi from each node
•	 Fn-itemset= {Cfi }| Ftotal(Cfi) ≥ Sl for each Cfi item and

send to all other nodes
•	 Fset = Fn-itemset (fi) if support(Fn-itemset) ≥ Sh) for each fi

where n=2, 3,……l
•	 Else NFset = Fn-itemset (fi) with last counted partition

number z.

3.2 Count and Compressed Data Distributed
IAPI

Unlike other DD approaches, to eliminate the drawbacks
of both count and data distribution approaches this
algorithm adopts a hybrid approach. This algorithm
finds the frequent 1-itemsets and 2-itemsets with count
distribution approach. Then to find the higher itemsets,
algorithm assigns separate node for each frequent

K. K. Sherly and R. Nedunchezhian

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology 5

1-itemset and send the transactions which include only
the assigned frequent item after removing both infrequent
1-itemsets and 2-itemsets to the respective nodes. The
data is distributed only once, hence communication
overhead is less compared with other DD algorithms.
The functionality details are shown in figure 2. To
reduce the communication overhead and to improve
the load balance first n frequent items are assigned to
n nodes according to the count of item in these nodes,
(node which has item count more is assigned with that
item). Each node calculates the count of items in each
transaction group and sends to the assigned nodes to get
the global frequent 2-itemsets of each group. Then after
removing the infrequent 2-itemsets from each group, the
compressed transaction groups are sent to the assigned
nodes. Each node proceeds with the higher frequent
itemset generation process and whichever node finishes
the itemset generation, sends request to the server for
next frequent itemset generation. Server sends request
to all other nodes to send the count of items in the
frequent item transaction group from which the higher
frequent set is to be generated, to the requested node. If
more than one node requested for next frequent itemset
generation assigns the transaction groups on first come
first serve basis. If the requests arrived at the same instant
then assign the transaction groups based on the count of
next frequent item in the requested nodes (nodes which
have more count is assigned first). Same procedure is
repeated for the remaining frequent items. Finally all
frequent itemsets generated are sent to the server and
global frequent and nearly frequent itemsets are stored
separately.

Figure 2. Functional block diagram of CDD-IAPI.

3.2.1 Working of CDD-IAPI FPM with Example
The working of CDD-IAPI can be illustrated using a
sample dataset having 10 transactions, as given in Figure 3.
Consider that the dataset is equally distributed among two
nodes, Node1 and Node 2. During the first database scan
Node1 and Node 2, calculate the individual item count
concurrently and send to server to find global frequent
items. Then server assigns Node 1 to find the higher
itemsets of item f and node 2 with item e. Then server
generates co-occurring item list of each item and sends
to both the nodes to find the higher itemsets of frequent
items {a, b, c, d, e, f}. Both nodes scan the database second
time and store each frequent item transaction groups
with their respective co-occurring itemsets to separate
buffers as shown in second step in the nodes (Figure 3).
Then local counts of each item in the selected groups are
calculated and send to the assigned nodes to identify
frequent 2-itemsets. Then higher frequent itemsets of
items f and e are generated in parallel by node 1 and node
2 respectively. After the completion of frequent itemset
generation, generated itemsets are sent to the server and
it assigns the node for next frequent itemset generation
(item d). According to this example, Node 1 is assigned
with items b and f and Node 2 with items e and d. Item
a has no co-items and item c has only one co-item whose
count is obtained at the second scan.

Figure 3. Working of CDD-IAPI with example.

 In incremental mining new partitions are added
at both nodes (Phase 2) and the count of each item in

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology6

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

the newly added partition is calculated at each node
and send to the server. Server adds the count of items
obtained from each node; then the sum gets added with
the previous count to identify the present frequent items.
Frequent item buffers in the newly added partition are
generated and frequency of the higher frequent itemsets
is obtained by both the nodes. Higher frequent itemsets
count in the new partition is added with the previous
count by the server to update the frequency of the
existing Fset and NFset. New patterns may get generated
on adding new transactions made by the new customers
as well due to the change in purchase behavior. Thus to
reflect the pattern changes (Phase 3) old transactions may
be removed and update the frequent patterns. Count of
individual items in the removing partition is calculated
by the respective nodes and gets deducted from the total
count by the server. Further the frequency of the existing
frequent itemsets in the removed partition is obtained
by the corresponding nodes and is deducted from the
previous count by the server. Higher frequent itemsets
of newly created frequent items (F1new) is obtained by
rescanning the remaining partitions by respective nodes
in coordination with the server and update the Fset and
NFset.

3.2.2 CDD-IAPI Algorithm
Input:
D: Transaction database contain N transactions (T1, T2,
……. TN), horizontally partition
D into n non-overlapping partitions (P1, P2, …… Pn) and
sort the items of each transaction in the order of item
code.
Sl: low minimum support value
Sh: user selected minimum support (Sh > Sl)
Output:
Complete set of frequent itemsets
1. For each node do
•	 Read local partition and find local frequency flocal(i)

for each item i;
•	 Send flocal(i) of each item i to the server
2. In server
•	 Ftotal(i) = ∑ flocal(i) for each i
•	 F1-itemset ={i | Ftotal(i) ≥ Sh for each item i} and send to

each node
•	 Assign n nodes to find the higher frequent itemsets of

first n frequent items
3. For each node do
•	 Prepare co-occurring itemset list Cf = {Cf1, Cf2,

….Cfm-1}| Cf1 ⊃ Cf2 ⊃......⊃ Cfn-1

•	 where Cfi = {{fi+1,fi+2...fm}|frequency(fi+1,fi+2,….fm) ≥
frequency(fi)}

•	 Assign m buffers to store m frequent items transaction
groups separately with the corresponding Cfi items.

•	 Read each transaction and store in to each fi buffer if
it contain the assigned fi and remove items that are
not in the Cfi list from each transaction.

•	 Find the frequency of each Cfi item flocal(Cfi)in each
buffer and send to the assigned nodes.

•	 Ftotal(Cfi) = ∑ flocal(Cfi) for each Cfi at each node
•	 Fn-itemset= {Cfi }| Ftotal(Cfi) ≥ Sl for each Cfi item and

send to all nodes
•	 Remove infrequent items from each transaction in the

corresponding buffers and send each buffer contents
to the assigned nodes.

•	 Follow the same steps to obtain higher frequent item-
sets of fi ; further there is no need of sending item
counts to other nodes.

•	 Each node proceeds with the higher frequent itemset
generation procedures and whichever node finishes
the itemset generation send request to the server for
next frequent itemset generation.

•	 Server send request to all other nodes to send the
count of items in the (n+1)th transaction group to the
requested node.

•	 If more than one node requested for next frequent
itemset generation assigns the transaction groups on
first come first serve basis. If the requests arrived at
the same instant then assign the transaction groups
based on the count of next frequent item (nodes
which have more count is assigned first).

•	 Repeat the above steps till there is no higher frequent
itemset generation.

•	 Send all frequent itemsets of assigned fi with count to
the server

4. In server
•	 Fset = Fn-itemset (fi) if support(Fn-itemset) ≥ Sh) for each fi

where n = 2, 3,……l
•	 Else NFset = Fn-itemset (fi) with last counted partition

number z
Procedure Higher-frequentItemset-Generate (fi-
transactions(Buffer1), Fn)
//Fnp : pth item of Fn-itemset
1. Collect fi-transactions contain selected Fn-itemset i.e Fnp

to a new temporary buffern and remove items having
count ≤ Fnp from each transaction in the buffern, p
initialized to 0

2. Find frequency of each item in the selected Fnp trans-
action group

3. F(n+1)-itemset = {Fn(p+k) | frequency(Fn(p+k)) ≥ Sl for each
Fn(p+k) item where k=1 to (m-p)

4. else remove Fn(p+k) from the Fnp transaction group

K. K. Sherly and R. Nedunchezhian

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology 7

5. Sort F(n+1)-itemset in ascending order
6. To obtain higher frequent itemsets of fi do
7. if (F(n+1)-itemset ≠ Φ) then
8. n = n+1 & Repeat above steps
9. else if p < size(Fn-itemset) then
10. p = p+1 & remove buffern content
11. else n = n-1 & remove buffern content
12. Repeat above steps if n ≥ 2
13. else return

3.2.3 Incremental Mining
Rather than fixing single minimum support value
IAPI uses a range of support values (Sl, Sh) for making
the dynamic and the interactive mining faster. The
incremental mining procedure of CDD-IAPI algorithm is
given below.
1. For each node do
•	 Read newly added local partition and find frequency

flocalnew(i) for each item i;
•	 Send flocalnew(i) of each item i to the server
2. In server
•	 Ftotalnew(i) = ∑ flocalnew(i) for each i
•	 Updated item count UFtotalnew(i) = Ftotal(i) + Ftotal-

new(i)
•	 UpdatedF1-itemset ={i | UFtotal(i) ≥ Sh for each item i}&

inform each node to find higher frequent itemsets
•	 If new F1-itemset then set Cfnew ⊃ Cf1 and update existing

Cf and find its higher frequent itemset by collecting
the transactions containing the new frequent item from
the entire old partitions. Then include it in the Fset list.

3. For each node do
•	 Read newly added local partition and find the higher

frequent itemsets of the assigned frequent item fi us-
ing the same Cfi sets.

•	 Send all FrequentItemsets of assigned fi with count to
the server

4. In server
•	 Collect FrequentItemsets of each frequent item fi

from newly added partitions of each node
•	 Update the count of existing Fset and NFset with the

frequent itemsets of new partition.
•	 If any of the existing Fset are not updated, collect its

frequency from the corresponding node buffer and
update it.

•	 If any existing Fset become infrequent shift it to NFset
list, similarly any existing NFsets become frequent do
vice versa.

•	 If any new Fset obtained, conduct a possibility test
and if possible to be frequent find its global count by
rescanning the entire old partitions.

3.3 CDD-Parallel IAPI
To reduce the computational cost as well as I/O overhead
while finding the frequent itemsets, IAPI algorithm
collects each frequent item transaction group into separate
buffers and processes them separately. The frequent set
generation time can be further improved by processing
these buffers in parallel using multiple processors at each
node. Thus this approach proposes CDD-Parallel IAPI
(CDD-PIAPI) algorithm for a faster frequent itemset
generation. Functional block diagram of CDD-PIAPI
algorithm is shown in Figure 4.

Figure 4. Functional block diagram of PCDD-IAPI.

Similar to CDD-IAPI this algorithm finds the frequent
1-itemsets and 2-itemsets with count distribution
approach using parallel processors at each node. In this
approach local database of each node is partitioned in
to n non-overlapped horizontal partitions. The count of
distinct items from each partition is obtained by n Local
Processors (LP) simultaneously and sends them to the
Master Processor (MP) to calculate their total count.
Then MP of each node sends the local count of each item
to the server to identify the global frequent 1-itemsets
and server assigns separate node for each frequent item
to find their higher length itemsets. Master processors of
each node collects the assigned frequent item transactions
groups from all other nodes after removing the infrequent
2-itemsets and finds their higher length itemsets with IAPI
approach in parallel manner using their LPs. Algorithm
steps are given below.

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology8

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

3.3.1 CDD-PIAPI Algorithm
1. Partition the database at each node into n horizontal

partitions
2. For each local processor at each node do

 Read local partition and find local frequency flocal(i)
for each item i;

3. In master processor at each node do
Fnode (i) =∑ flocal(i) and send to server

4. In server do
•	 F1-itemset ={i | ∑ Fnode (i) ≥ Sh for each i}and assign

node(i) to find higher large itemsets
•	 Prepare co-occurring itemset list Cfi = {fi+1,fi+2...fm}

|count (fi+1,fi+2,….fm) ≥ count (fi)} for each fi & send to
Master Processor (i)

5. At each node
•	 Read each transaction and send to LP
•	 For each local processor do
•	 Collect transactions contain frequent item fi in to buf-

fer1 and remove items that are not in the Cfi list from
each transaction.

•	 Find the local frequency of each Cfi item in the select-
ed fi-transaction group and send to the master pro-
cessors of the assigned nodes.

6. Master processor calculates the global frequency of
each Cfi i tem in the assigned group and sends the
frequent item list to all nodes.

7. At each node LP removes the infrequent items in the
assigned transaction group and sends the compressed
transactions to the respective nodes.

8. Each node proceeds with the higher frequent itemset
generation procedures by assigning each LP to each
frequent n-itemsets transaction groups and whichev-
er node finishes the itemset generation send request
to the server for next frequent itemset generation.

9. Server sends request to all other nodes to send the
count of items in the (n+1)th transaction group to the
requested node.

10. If more than one node is requested for next frequent item-
set generation, assign the transaction groups on first come
first serve basis. If the requests arrived at the same in-
stant, then assign the transaction groups based on the
count of next frequent item (nodes which have more
count are assigned first).

11. Repeat the above steps till there is no higher frequent
itemset generation.

4. Proposed Fraud Detection
System

An intelligent Fraud Detection System (FDS) monitors

card transactions, collects data from the current and
previous transactions and processes this data to compute
a transaction score for the current transaction. In
every credit card transaction there are three stages of
verifications. At the first stage of verification the merchant
sends the card details and the amount of purchase to the
card issuing agency for the identity verification. After
passing the authenticity check, the merchant verifies the
transaction data to make sure that card owner is doing
the transaction. As a security measure the third stage
verification is done by the Fraud Detection System (FDS)
at the Bank. Transaction data stored in the bank database
contains the attributes such as credit card number,
account number, transaction amount, transaction
date, merchant and city. In this paper we consider six
transaction attributes such as transaction amount, time,
IP address of the machine from which the order is placed,
Card holder’s address, item purchased and delivery/
shipping address, which are relevant for identifying the
user spending behavior. Every credit card has a credit
limit, the transaction within the credit limit is considered
as valid transaction. The transaction time, IP address
of the order placing machine and the delivery address
are not restricted. The transaction time depends on the
card holder’s convenience, surroundings and lifestyle.
The spending behavior such as amount, item, city and
frequency of purchase may change over time.

4.1 Data Discretization
A credit cardholder makes different kinds of purchases of
different amounts over a period of time. Therefore these
raw data need to be classified into specific groups for
generating frequent patterns and association rules. In this
approach first phase converts these continuous parameters
into categorical parameters using efficient clustering and
classification techniques. In the second phase frequent
patterns and association rules are generated using Parallel
and distributed IAPI algorithms.

The purchase time is categorized into two slots,
namely, morning (MR) and evening (EV).The second
attribute the transaction amount be quantized into three
different levels - Low (CL), Medium (CM) and High (CH)
for convenience, using K-means clustering algorithm.
Each individual transaction amount usually depends
on the corresponding type of item purchased. Based on
the spending habit of individual card holders purchase
amount ranges can be determined dynamically using
K-Means clustering algorithm on their past transactions.

K. K. Sherly and R. Nedunchezhian

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology 9

The third attribute IP address of order placing machine
is also an important parameter which can assist fraud
detection easily. Classify them into two category local/
small group (SG) and dynamic/large group (LG). The
fourth attribute shipping address is categorized into two
groups, user address (UA) and other address (OA). The
fifth attribute item purchased can be categorized into five
groups such as Groceries (Gr), Electronic items (EI), Gold
(Gl), Medical (MD) and Miscellaneous (Mi) purchases.
Some merchant may sell variety items, the item purchased
from these merchants may consider as miscellaneous for
convenience. Categorization of the items purchased can
be done by referring the merchant profile database and
applying If-THEN classification technique.

4.2 Two Stage IAPI Enabled Fraud Detection
System

Figure 5 shows the structure of the Fraud Detection
System (FDS) proposed to implement at the banking
sector. This has two sections; first part is to generate
frequent transaction patterns of each card holder
from their legal transaction history using parallel IAPI
algorithm also to generate frequent fraud patterns from
the fraudulent transaction history of all participating
bank using CD-IAPI algorithm. Second part verifies the
newly arrived transactions with the frequent legal and
fraud patterns and distinguishes fraudulent transaction
from legal transactions. Second section has two stages,
the first stage identifies the anomalous behavior and the
second stage confirms the misuse.

Figure 5. Structure of proposed FDS.

This model checks the similarity of the incoming
transactions with the profiled legal frequent transaction
patterns of the card holder and high score transactions
are considered as genuine transactions. Low scored
transactions have suspected anomalies and the second

stage confirms whether the detected anomalies were
due to fraudulent transaction or short term behavioral
changes by comparing with the fraud patterns generated.
If the similarity score with fraud patterns is high, the
transaction is highly suspicious; then alarm is generated
and locks the transaction. Low scored transaction may be
a new type of attack; to reduce the detection cost alarm will
be generated only when the transaction amount is higher
than a certain threshold value and an alert message is sent
to the user for low amount transaction. After getting the
confirmation from the user the transactions are recorded
in the respective history database and further protection
should be performed for the detected fraud.

5. Experimental Setup and
Performance Analysis

Functionalities and effectiveness of the proposed IAPI
algorithms were tested with market basket datasets
T10I4D100K prepared by IBM Almaden Quest research
group and a Synthetic dataset. This algorithm is developed
and tested using programming language Java and MySQL
Server 4.1 on Xeon 6 core processor with GPU as server
and 10 to 30 nodes with Intel dual core processor systems
having Debian 7.0 OS. Execution time and memory
utilization are compared for different number of nodes
with various support threshold values and different sized
partitions as well as with different number of partitions in
both datasets.

Experimental results show that execution time is
directly proportional to the size of the dataset when the
minimum support value remains constant (Figure 6).
CDD-IAPI algorithm designed in this research work has
less communication overhead compared to CD-IAPI
approach. Thus time required to generate frequent pattern
in CDD-IAPI is less compared with CD-IAPI. The speed
of pattern generation of CDD-IAPI is further improved
by using CDD-Parallel IAPI algorithm. Updating of
the frequent sets on addition of new data and deletion
of old data requires less time compared with the initial
pattern creation time. From the test results it is observed
that updating time is related with the heterogeneity of
the data, i.e. if new frequent 1-itemset generated, then it
requires entire database scan, else previous information
can be used and require less time (5%-30% of the initial
pattern creation time) depends on the number of frequent
itemsets (Figure 8). It is also observed that, when the

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology10

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

support threshold reduces, the number of frequent items
increases, thus execution time required is more. Due to
heterogeneity of dataset there are chances of reducing the
number of frequent items, even though the dataset size
increases. The test results illustrate that the execution time
and the memory requirement of all IAPIs directly depend
on the number of frequent items in the dataset. Figure
7. shows that the execution time gets reduced when the
number of nodes increases.

Figure 6. Execution time comparison of the proposed
algorithms.

Figure 7. Execution time comparison with variable
number of nodes.

Figure 8. Pattern update time comparison.

5.1 Performance Comparison
Performance of CD-IAPI Algorithm, CDD-IAPI
Algorithm and Parallel CD-IAPI Algorithm are
compared with three parallel algorithms Parallel FP- tree,
Parallel-IMBT and parallel-Apriori using T10I4D100K
dataset and a synthetic dataset. Experimental results
shown in Figure 9. illustrates that IAPI algorithms
generate frequent itemsets in less time and requires less
memory compared with Parallel-IMBT and Parallel-
Apriori. IAPI algorithms requires only two database scan
for frequent itemset generation where as Apriori has to
read the entire database in every pass. FP-growth shows
an outstanding improvement over Apriori; but it has to
generate conditional pattern bases and sub- conditional
pattern tree recursively. Thus initial pattern creation time
of IAPI is less compared with Apriori and FP tree. It is
observed that IMBT tree requires more time to create and
more memory to store the entire tree. Thus it may not
be suitable for datasets having more number of distinct
items. In FP-Tree addition of new transactions may
require reconstruction of the tree. Apriori also doesn’t
support incremental mining. Since IAPI algorithms use
a range of values for minimum support: lower minimum
support Sl and upper minimum support Sh, addition
and deletion of dataset doesn’t introduces much time to
update the frequent patterns. IBT approach doesn’t need
to predetermine the minimum support threshold and
scans the database only once. Thus IMBT requires less
time to update the frequent sets on addition and deletion
of data than other algorithms.

Figure 9. Performance comparison of popular FPM.

Transaction history of customers is required to analyze
the spending behavior. No credit card companies are ready
to share their data for testing the efficiency of the system.
Thus experiments are conducted on synthetic dataset and
past few years’ real world card transaction data of few

K. K. Sherly and R. Nedunchezhian

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology 11

credit card holders, who belong to three spending groups:
low, medium and high. The relevant attributes are selected
and categorized into specific category. Preprocessing of
the transaction amount is done using K-Means clustering
algorithm and frequent transaction sets are identified
using Parallel IAPI and CD-IAPI algorithms.

The performance of the proposed model is tested and
compared with the model developed by Jianyun et al. 15
and Chiu and Tsai 19 using synthetically generated data
of different category spending behavior and minimum
support, with the help of a transaction simulator
developed by us. Frequent itemsets generated with low
minimum support value can profile a user’s behavior
more accurately. The execution time of proposed IAPI
algorithms directly depend on the number of frequent
1-itemsets generated whereas FP growth algorithm used
by Jianyun et al. requires more time to construct FP tree for
small support values. Apriori algorithm used to generate
fraud pattern in Chiu and Tsai model also requires more
time due to multiple database scan.

The accuracy of the model is tested with a test set of
both real-life and synthetic data that were not used to
generate association rule with different support values
and calculated the percentage of test set tuples that are
correctly detected by the model. Standard performance
metrics: True Positive (TP) and False Positive (FP) are
used to analyze the effectiveness of the system. Percentage
of fraudulent transaction identified as fraud is TP and
percentage of genuine transactions identified as fraud is
FP. It is found that the accuracy of the system is dependent
on the minimum support percentage. TP reduces with
low support values and FP increases with high support
percentages. In our approach we are able to get 90% and
above TP and up to 10% FP with moderate support values.
Variation in TP & FP with different minimum support
values observed with the proposed method is shown in
Figure 10.

By comparing the results reported in the literature
survey we found that Maes et al. 14 have achieved 70%
TP, 15% FP by applying neural network and 74% TP,
15% FP by applying Bayesian belief network. Abhinav
Srivastava et al. 24 have achieved an overall accuracy of
80% even under large input condition variations which
is much higher than the method proposed by Stolfo et
al. 20. Aleskerov et al. 18 obtained a fraud detection rate of
85%. Depending on the mode of implementation and the
selected operating point for fraud detection Ghosh and

Reilly 16 brought about a fraud loss reduction from 20% to
40%. Amlan Kundu et al. 23 have achieved about 85% TP
and up to 5% FP with moderate profile size. But it is not
much effective for very large profile size.

Figure10. Variation of TP-FP with different Support.

6. Conclusion

The hybrid of the anomaly and misuse detection models
can improve the efficiency of fraud detection systems.
Credit card transaction database of bank customers is
utilized to conduct experiments. Most of the frequent
pattern mining algorithms have complex structures and
requires more time to generate frequent patterns. This
approach uses three distributed frequent set generation
algorithms, which incrementally generate frequent
patterns and identifies the anomalies with less time and
space complexity resulting in speedy decisions irrespective
of the data set size with no complex calculations or data
structures. The most attractive feature of IAPI algorithms
is that the user can interactively adjust the support
values with less time to update the frequent patterns.
To eliminate the drawbacks of both count and data
distribution approaches CDD-IAPI algorithm adopts
a hybrid approach which distributes the compressed
data only once; hence communication overhead is less
compared with other DD algorithms. Thus the proposed
method can prepare more accurate user spending
profile with low minimum support in short time period.
Experimental results show that proposed algorithms are
capable to efficiently generate frequent patterns from very
large sized dynamically growing distributed database with
less communication overhead and good load balancing
feature.

Vol 8 (18) | August 2015 | www.indjst.org Indian Journal of Science and Technology12

Improved Incremental and Interactive Frequent Pattern Mining Techniques for Market Basket Analysis and Fraud Detection in
Distributed and Parallel Systems

7. References
1. Agrawal R, Srikant R. Fast Algorithms for Mining Associ-

ation Rules. Proceedings of International Conference Very
Large Data bases. 1994; 487–99.

2. Han J, Pei J, Yin Y. Mining frequent patterns without ca-
nidate generation. Proceedings of ACM SIGMOD Interna-
tional Conference on Management of Data. 2000; 1–12.

3. Park J, Chen M, Yu P. An effective hash-based algorithm
for mining association rules. PYOC ACM-SIGMOD Inter-
national Conference Management of Data. 1995; 175–86.

4. Cheung D, Ng T, Fu A, Fu Y. Efficient mining of associa-
tion rules in distributed databases. IEEE Transactions on
Knowledge and Data Engineering. 1996; 8(6):911–22.

5. Hidber C. Online association rule mining. Proceedings of
the ACM SIGMOD International Conference on Manage-
ment of Data. 1999; 145–56.

6. Leung C, Khan Q, Quamrul I, Li Z, Hoque T. CanTree: A
canonical-order tree for incremental frequent-pattern min-
ing. Knowledge and Information Systems. 2007; 11(3):287–
311.

7. Yang C, Yang D. IMBT-a binary tree for efficient support
counting of incremental data mining. International Con-
ference on Computational Science and Engineering; IEEE
Computer Society. 2009; 324–9.

8. Sherly K, Nedunchezhian R, Rajalakshmi M. IAPI
Quad-Filter: An interactive and adaptive partitioned ap-
proach for incremental frequent pattern mining. Journal
of Theoretical and Applied Information Technology. 2014;
63(1):147–57.

9. Park J, Chen M, Yu P. Efficient parallel data mining for as-
sociation rules. Proceedings of International Conference
Information and Knowledge Management. 1995.

10. Chen D, Lai C, Hu W, Chen W, Zhang W, Zhen W. Tree
partition based parallel frequent pattern mining on shared
memory systems. Proceedings of 20th International con-
ference on Parallel and Distributed Processing Symposium.
2006.

11. Li N, Zeng L, He Q, Shi Z. Parallel implementation of apri-
ori algorithm based on mapreduce. International Journal of
Networked and Distributed Computing. 2013; 1(2):89–96.

12. Pramudiono I, Kitsuregawa M. Parallel FP-growth on PC
cluster. Proceedings of the 7th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining. 2003;

467–73.
13. Bhadane C, Shah K, Vispute P. An efficient parallel ap-

proach for frequent itemset mining of incremental data. In-
ternational Journal of Scientific and Engineering Research.
2012; 3(2):1–5.

14. Xu J, Sung AH, Liu O. Behavior mining for fraud detection.
Journal of Research and Practice in Information Technolo-
gy. 2007; 39(1).

15. Ghosh S, Reilly DL. Credit card fraud detection with a Neu-
ral-Network. Proceedings of International Conference on
System Science. 1994; 621–30.

16. Syeda M, Zhang YQ, Pan Y. Parallel granular neural net-
works for fast credit card fraud detection. Proceedings of
IEEE International Conference on Fuzzy Systems. 2002;
572 –7.

17. Aleskerov, Freisleben B, Rao B. CARDWATCH: A Neu-
ral Network based database mining system for credit card
fraud detection. Proceedings of IEEE/IAFE Conference on
Computational Intelligence for Financial Engineering (CI-
FEr). 1997; 220–6.

18. Chiu C, Tsai C. A web services based collaborative scheme
for credit card fraud detection. Proceedings of IEEE Inter-
national Conference on e-Technology, e-Commerce and
e-Service. 2004; 177–81.

19. Stolfo SJ, Fan DW, Lee W, Prodronidis AL, Chan PK. Credit
card fraud detection using meta-learning: issues and ini-
tial results. Proceedings of AAAI Workshop AI Methods in
Fraud and Risk Management. 1997; 83–90.

20. Fan W, Wang H, Philip S. YuSalvatore J. Stolfo. A fully dis-
tributed framework for cost-sensitive data mining. Pro-
ceedings of the 22nd International Conference on Distrib-
uted Computing Systems (ICDCS’02). 2002.

21. Chun Wei Clifton Phua. Investigative data mining in fraud
detection. A thesis submitted. 2003; 1–126.

22. Kundu A, Sural S. BLAST-SSAHA hybridization for cred-
it card fraud detection. IEEE Transactions on Dependable
and secure Computing. 2009; 6(4):309–15.

23. Srivastava A, Majumdar AK. Credit card fraud detection
using Hidden Markov Model. IEEE Transactions on De-
pendable and Secure Computing. 2008; 5(1):37–48.

24. Renuga Devi T, Rabiyathul Basariya A, Kamaladevi M.
Fraud detection in card not present transactions based on
behavioral pattern. Journal of Theoretical and Applied In-
formation Technology. 2014; 61(3):447–55.

