Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Prasad, Veena
- Reversibility Of Functional Uterine Haemorrhage Caused By Intra-Uterine Contraceptive Device
Abstract Views :245 |
PDF Views:0
Authors
Affiliations
1 M. G. M. Medical College, Jamshedpur, Singbhum, Bihar, IN
1 M. G. M. Medical College, Jamshedpur, Singbhum, Bihar, IN
Source
The Indian Practitioner, Vol 28, No 3 (1975), Pagination: 177-182Abstract
No AbstractKeywords
No Keywords- Large Losses in Glacier Area and Water Availability by the End of Twenty-First Century under High Emission Scenario, Satluj Basin, Himalaya
Abstract Views :363 |
PDF Views:138
Authors
Veena Prasad
1,
Anil V. Kulkarni
1,
S. Pradeep
1,
S. Pratibha
1,
Sayli A. Tawde
2,
Tejal Shirsat
1,
A. R. Arya
1,
Andrew Orr
3,
Daniel Bannister
3
Affiliations
1 Divecha Centre for Climate Change, IN
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
3 British Antarctic Survey, Cambridge, CB3 0ET, GB
1 Divecha Centre for Climate Change, IN
2 Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru 560 012, IN
3 British Antarctic Survey, Cambridge, CB3 0ET, GB
Source
Current Science, Vol 116, No 10 (2019), Pagination: 1721-1730Abstract
Glaciers in the Satluj river basin are likely to lose 53% and 81% of area by the end of the century, if climate change followed RCP 8.5 scenario of CNRMCM5 and GFDL-CM3 models respectively. The large variability in area loss can be due to difference in temperature and precipitation projections. Presently, Satluj basin has approximately 2000 glaciers, 1426 sq. km glacier area and 62.3 Gt glacier stored water. The current mean specific mass balance is –0.40 m.w.e. a–1. This will change to –0.42 and – 1.1 m.w.e. a–1 by 2090, if climate data of CNRM-CM5 and GFDL-CM3 are used respectively. We have used an extreme scenario of GFDL-CM3 model to assess the changes in the contribution of glacier melt to the Bhakra reservoir. Mass balance model suggests that glaciers are contributing 2 km3 a–1 out of 14 km3 of water. This will increase to 2.2 km3 a–1 by 2050, and then reduce to 1.5 km3 a–1 by the end of the century. In addition, loss in glacier area by the end of century, will also increase the vulnerability of mountain communities, suggesting need for better adaptation and water management practices.Keywords
Climate Change, Glacier, Glacier Melt Runoff, Himalaya, Mass Balance, Satluj Basin, Water Availability.References
- Food and Agricultural Organization, Irrigation in Southern and Eastern Asia in figures AQUASTAT Survey-2011, 2012. FAO Water Report no. 37, 2012, pp. 129–138.
- Immerzeel, W. W., van Beek, L. P. H., Marc, F. P. and Bierkens, M. F. P., Climate change will affect the Asian water towers. Science, 2010, 328, 1382–1385.
- Bhakra Beas Management Board (BBMB) Report, 2016; http://bbmb.gov.in/writereaddata/Portal/Reports/15_1_BBMB-ANNUAL-REPORT-2015-16-E.pdf.
- Dharmadhikary, S., Unravelling Bhakra. Econ. Polit. Wkly., 2005, 41(3), 1–10.
- Pal, I., Lall, U., Robertson, A. W., Cane, M. A. and Bansal, R., Predictability of Western Himalayan river flow: melt seasonal inflow into Bhakra Reservoir in northern India. Hydrol. Earth Syst. Sci., 2013, 17(6), 2131–2146.
- SANDRP, 2013; https://sandrp.files.wordpress.com/2018/03/hep_performance_in_sutlej_river_basin_june2013.pdf (accessed on 29 May 2018).
- Singh, D., Gupta, R. D. and Jain, S. K., Study of long-term trend in river discharge of Sutlej river (N–W Himalayan region 2014). Geogr. Environ. Sustain., 2014, 7(3), 87–96.
- Singh, P. and Jain, S. K., Snow and glacier melt in the Satluj River at Bhakra Dam in the Western Himalayan region. Hydrol. Sci. J., 2002, 47(1), 93–106.
- Singh, P. and Jain, S. K., Modelling of streamflow and its components for a large Himalayan basin with predominant snowmelt yield. Hydrol. Sci. J., 2003, 48(2), 257–276.
- Oerlemans, J., Quantifying global warming from the retreat of glaciers. Science, 1994, 264(5156), 243–245.
- Kulkarni, A. V., Rathore, B. P., Mahajan, S. and Mathur, P., Alarming retreat of Parbati glacier, Beas basin, Himachal Pradesh. Curr. Sci., 2005, 88(11), 1844–1850.
- Chaturvedi, R. K., Kulkarni, A. V., Karyakarte, Y. and Bala, G., Glacial mass balance changes in the Karakoram and Himalaya based on CMIP5 multi-model climate projections. Climatic Change, 2014, 123(2), 315–328.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., An estimate of glacier mass balance for the Chandra basin, western Himalaya, for the period 1984–2012. Ann. Glaciol., 2017, 55(75), 99–109.
- Dimri, A. P. and Dash, S. K., Wintertime climatic trends in the western Himalaya. Climatic Change, 2012, 111(3), 775–800.
- Allen et al., IPCC, 2014: Annex II: Glossary (eds Mach, K. J., Planton, S. and von Stechow, C.). In Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. K. and Meyer, L. A.,), IPCC, Geneva, Switzerland, 2014, pp. 117–130.
- Negi, H. S., Kanda, N., Shekha, M. S. and Ganju, A., Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci., 2018, 114(4), 760–770.
- Bolch, T. et al., The state and fate of Himalayan glaciers. Science, 2012, 336(6079), 310–314.
- Kulkarni, A. V. and Karyakarte, Y., Observed changes in Himalaya glaciers. Curr. Sci., 2014, 106(2), 237–244.
- Kääb, A., Chiarle, M., Raup, B. and Schneider, C., Climate change impacts on mountain glaciers and permafrost. Global Planet. Change, 2007, 56(1), 7–9.
- Cogley, J. C., The future of Asia’s glaciers. Nature, 2017, 549, 166–167.
- Gardelle, J., Berthier, E., Arnaud, Y. and Kaab, A., Region-wide glacier mass balances over the Pamir Karakoram-Himalaya during 1999–2011. Cryosphere, 2013, 7(6), 1885–1886.
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Linda, A. and Singh, V. B., Reconstruction of the annual mass balance of Chhota Shigri Glacier (Western Himalaya, India) since 1969. Ann. Glaciol., 2014, 55, 69–80.
- Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, A. L., Favier, V., Mandal, A. and Pottakka, G., Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements. Cryosphere, 2014, 8, 2195–2217.
- Singh, M., Mishra, V. D., Thakur, N. K., Kulkarni, A. V. and Singh, M., Impact of climatic parameters on statistical stream flow sensitivity analysis for hydro power. J. Indian Soc. Remote Sens., 2009, 37(4), 601–614.
- Kaser, G., Großhauser, M. and Marzeion, B., Contribution potential of glaciers to water availability in different climate regimes. Proc. Natl. Acad. Sci., 2010, 107(47), 20223–20227.
- Moors, et al., Adaptation to changing water resources in the Ganges basin, northern India. Environ. Sci. Policy, 2011, 14(7), 758–769.
- Gantayat, P., Kulkarni, A. V. and Srinivasan, J., Estimation of ice thickness using surface velocities and slope: case study at Gangotri Glacier, India. J. Glaciol., 2014, 60(220), 277–282.
- Bahr, D. B., Meier, M. F. and Peckham, S. D., The physical basis of glacier volume–area scaling. J. Geophys. Res., 1997, 102, 20355–20362.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., Estimation of glacier mass balance on a basin scale: an approach based on satellitederived snowlines and a temperature index model. Curr. Sci., 2016, 111(12), 1977–1989.
- Marzeion, B., Jarosch, A. H. and Hofer, M., Past and future sealevel change from the surface mass balance of glaciers. Cryosphere, 2012, 6, 1295–1322.
- Cuffey, K. and Paterson, W. S. B., The flow of ice masses. In. The Physics of Glaciers, Elsevier, Oxford, UK, 2010, pp. 285–398.
- Leprince, S., Barbot, S., Ayoub, F. and Avouac, J.-P., Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens., 2007, 45(6), 1529–1558.
- Titarov, P. S., Evaluation of CARTOSAT 1 geometric potential. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Vol. XXXVII, Part B1, Beijing, 2008.
- Nuth, C. and Kääb, A., Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere, 2011, 5(1), 271–290.
- Pieczonka, T., Bolch, T., Junfeng, W. and Shiyin, L., Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ., 2013, 130, 233–244.
- Kääb, A., Berthier, E., Nuth, C., Gardelle, J. and Arnaud, Y., Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature, 2012, 488, 495–498.
- Pratibha, S. and Kulkarni, A. V., Decadal change in supraglacial debris cover in Baspa basin, Western Himalaya. Curr. Sci., 2018, 114(4), 792–799.
- Huss, M., Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere, 2013, 7, 877– 887.
- Pieczonka, T. and Bolch, T., Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using 861 Hexagon KH-9 imagery. Global Planet. Change, 2013, 128, 862.
- Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498; doi:10.1175/BAMS-D-11-00094.1.
- Palazzi, E., von Hardenberg, J. and Terzago, S., Precipitation in the Karakoram-Himalaya: a CMIP5 view. Clim. Dynam., 2015, 45, 21–45.
- Anandhi, A., Frei, A., Pierson, D. C., Schneiderman, E. M., Zion, M. S., Lounsbury, D. and Matonse, A. H., Examination of change factor methodologies for climate change impact assessment. Water Resour. Res., 2013, 47(3), 1–10.
- Johannesson, T., Raymond, C. and Waddington, E., Time-scale for adjustment of glaciers to changes in mass balance. J. Glaciol., 1989, 35, 355–369.
- Huss, M. and Hock, R., Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change, 2018, 8(2), 135.
- Maanya, U. S., Kulkarni, A. V., Tiwari, A., Bhar, E. D. and Srinivasan, J., Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers, Indian Himalaya. Curr. Sci., 2016, 111(3), 553–560.
- Pfeffer, W. T. et al., The Randolph glacier inventory: a globally complete inventory of glaciers. J. Glaciol., 2014, 60(221), 537– 552.
- Taylor, J. R., An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, California, USA, 1997, 2nd edn.
- Gardner, A. S. et al., Reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 2013, 340(6134), 852– 857.
- Zhao, L., Ding, R. and Moore, J. C., The high Mountain Asia glacier contribution to sea-level rise from 2000 to 2050. Ann. Glaciol., 2016, 57(71), 223–231.
- Lutz, A. F., Immerzeel, W. W., Shrestha, A. B. and Bierkens, M. F. P., Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat. Clim. Change, 2014, 4, 587– 592.
- Differential Loss of Glacier Stored Water in the Indus River Basin
Abstract Views :225 |
PDF Views:148
Authors
Ashutosh Kulkarni
1,
Veena Prasad
2,
A. R. Arya
2,
Rajiv K. Chaturvedi
1,
Sushil K. Singh
3,
Sandip Oza
3
Affiliations
1 Birla Institute of Technology and Science, Pilani, Goa Campus, Goa 403 726, IN
2 DST Centre for Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, IN
1 Birla Institute of Technology and Science, Pilani, Goa Campus, Goa 403 726, IN
2 DST Centre for Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, IN
Source
Current Science, Vol 124, No 4 (2023), Pagination: 478-484Abstract
In this study, we assessed the glacier stored water (1,620 ± 340 Gt) using a combination of ice dynamics modelling and volume–area scaling method and estimated glacier mass loss (6.4%) from 2001 to 2013 for the Indus River basin. Results indicate that the impact of climate change is not uniform across the basin, especially the stark difference between the Western Himalayan region where the glaciers are losing mass at the rate of –0.56 ± 0.27 m.w.e. per annum and the Upper Indus where the loss is at –0.18 ± 0.11 m.w.e. per annum.Keywords
Climate Change, Glacier Stored Water, Improved Accumulation Area Ratio, Mass Balance, River Basin.References
- Wester, P., Mishra, A., Mukherji, A. and Shrestha, A. B., The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, Springer Nature, Switzerland, 2019, chapter 1, table 1.2, p. 5.
- Pritchard, H. D., Asia’s shrinking glaciers protect large populations from drought stress. Nature, 2019, 569(7758), 649–654.
- Mujumdar, P. P. and Tiwari, V. M., Water Futures of India: Status of Science and Technology, Indian National Science Academy, New Delhi, 2019.
- Abdullah, T., Romshoo, S. A. and Rashid, I., The satellite observed glacier mass changes over the Upper Indus Basin during 2000–12. Sci. Rep., 2020, 10(1), 1–9.
- Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A. and Osmanoglu, B., A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci., 2020, 7, 363.
- Hugonnet, R. et al., Accelerated global glacier mass loss in the early twenty-first century. Nature, 2021, 592(7856), 726–731.
- Zemp, M. et al., Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 2019, 568(7752), 382–386.
- Muhammad, S., Tian, L. and Khan, A., Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. J. Hydrol., 2019, 574, 467–475.
- Brun, F., Berthier, E., Wagnon, P., Kääb, A. and Treichler, D., A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016. Nature Geosci., 2017, 10(9), 668–673.
- Maurer, J. M., Schaefer, J. M., Rupper, S. and Corley, A., Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 2019, 5(6), eaav7266.
- Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. and Dehecq, A., Manifestations and mechanisms of the Karakoram glacier anomaly. Nature Geosci., 2020, 13(1), 8–16.
- Kumar, P., Md Saharwardi, Banerjee, A., Mohd Azam, Dubey, A. K. and Murtugudde, R., Snowfall variability dictates glacier mass balance variability in Himalaya–Karakoram. Sci. Rep., 2019, 9(1), 1–9.
- Wang, R., Liu, S., Shangguan, D., Radić, V. and Zhang, Y., Spatial heterogeneity in glacier mass-balance sensitivity across high mountain Asia. Water, 2019, 11(4), 776.
- Negi, H. S., Kumar, A., Kanda, N., Thakur, N. K. and Singh, K. K., Status of glaciers and climate change of East Karakoram in early twenty-first century. Sci. Total Environ., 2021, 753, 141914.
- Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F. and Kraaijenbrink, P. D. A., Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. J. Geophys. Res.: Earth Surf., 2019, 124(6), 1331–1345.
- Singh, G., Nela, B. R., Bandyopadhyay, D., Mohanty, S. and Kulkarni, A. V., Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR. Remote Sensing Environ., 2020, 246; https://doi.org/10.1016/j.rse.2020.111885.
- Singh, G., Bandyopadhyay, D., Nela, B. R., Mohanty, S., Malik, R. and Kulkarni, A. V., Anomalous glacier thinning due to climate feedback mechanism in the Himalaya and evidences in other mountain ranges. Remote Sensing Appl.: Soc. Environ., 2021, 22; https://doi.org/10.1016/j.rsase.2021.100512.
- Huss, M. and Hock, R., Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 2018, 8(2), 135–140.
- Immerzeel, W. W. et al., Importance and vulnerability of the world’s water towers. Nature, 2020, 577(7790), 364–369.
- Negi, H. S., Kanda, N., Shekhar, M. S. and Ganju, A., Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci., 2018, 114(4), 760–770.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., Estimation of glacier mass balance on a basin scale: an approach based on satellite-derived snowlines and a temperature index model. Curr. Sci., 2016, 111(12), 1977–1989.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., An estimate of glacier mass balance for the Chandra basin, Western Himalaya, for the period 1984–2012. Ann. Glaciol., 2017, 58(75pt2), 99–109.
- Marzeion, B., Jarosch, A. H. and Hofer, M., Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 2012, 6(6), 1295–1322.
- Kulkarni, A., Prasad, V., Shirsat, T., Chaturvedi, R. K. and Bahuguna, I. M., Impact of climate change on the glaciers of Spiti River basin, Himachal Pradesh, India. J. Indian Soc. Remote Sensing, 2021, 49(8), 1951–1963.
- Prasad, V. et al., Large losses in glacier area and water availability by the end of twenty-first century under high emission scenario, Satluj basin, Himalaya. Curr. Sci., 2019, 116(10), 1721–1730.
- Nuimura, T. et al., The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere, 2015, 9(3), 849–864.
- RGI Consortium, Randolph glacier inventory – a dataset of global glacier outlines, version 6. Technical report, National Snow and Ice Data Center, Boulder, Colorado, USA, 2017.
- Indus water treaty. 1960; https://mea.gov.in/bilateral-documents. htm?dtl/6439/Indus (accessed on 26 September 2022).
- Bolch, T. et al., The state and fate of Himalayan glaciers. Science, 2012, 336(6079), 310–314.
- Archer, D. R. and Fowler, H. J., Spatial and temporal variations in precipitation in the Upper Indus basin, global teleconnections and hydrological implications. Hydrol. Earth Sys. Sci., 2004, 8(1), 47–61.
- Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A. and Kabat, P., An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ., 2016, 548, 289–306.
- Hewitt, K., Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus basin. Mt. Res. Dev., 2011, 31(3), 188–200.
- Shabeh ul Hasson, Pascale, S., Lucarini, V. and Böhner, J., Seasonal cycle of precipitation over major river basins in South and South-east Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res., 2016, 180, 42–63.
- Bookhagen, B. and Burbank, D. W., Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 2006, 33(8).
- Pareta, K. and Pareta, U., Climate change impact on land and natural resource in Chamba tehsil of Himachal Pradesh State, India. Int. J. Sci. Technol., 2014, 2(4), 38.
- Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A. and Chakraborty, S., Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India, Springer Nature, 2020.
- Frey, H. et al., Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 2014, 8(6), 2313–2333.
- Chen, J. and Ohmura, A., Estimation of alpine glacier water resources and their change since the 1870s. Hydrology in Mountainous Regions. I-Hydrological Measurements; the Water cycle. In Proceedings of Two Lausanne Symposia, IAHS Publ. No. 193, August 1990, pp. 127–135.
- Bahr, D. B., Meier, M. F. and Peckham, S. D., The physical basis of glacier volume–area scaling. J. Geophys. Res.: Solid Earth, 1997, 102(B9), 20355–20362.
- Chaohai, L., Sharmal, C. K., Mayor-Mora, R., Xing, H., Sanbao, W. and Shengteng, Z., Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) River basins, Xizang (Tibet), China. Sino-Nepalese investigation of glacier lake outburst floods in the Himalayas. Technical report, Lanzhou Institute of Glaciology and Geocryology, China, Water and Energy Commission Authority, Nepal Electrical Authority, 1988.
- Groos, A. R., Mayer, C., Smiraglia, C., Diolaiuti, G. and Lambrecht, A., A first attempt to model region-wide glacier surface mass balances in the Karakoram: findings and future challenges. Geogr. Fis. e Din. Quat., 2017, 40(2), 10.4461/GFDQ2017.40.10.
- Hersbach, H. et al., ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018.
- Bolch, T., Past and future glacier changes in the Indus River basin. Indus River Basin, Elsevier Inc., USA, 2019; https://doi.org/10.1016/B978-0-12-812782-7.00004-7.
- Patel, A., Goswami, A., Dharpure, J. K., Meloth, T., Sharma, P., Kulkarni, A. V. and Oulkar, S., Estimation of mass and energy balance of glaciers using a distributed energy balance model over the Chandra River Basin (Western Himalaya). Hydrol. Proc., 2021, 35(2), e14058.
- Gardelle, J., Berthier, E., Arnaud, Y. and Kääb, A., Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 2013, 7(4), 1263–1286.
- Garg, S., Shukla, A., Garg, P. K., Yousuf, B., Shukla, U. K. and Lotus, S., Revisiting the 24 year (1994–2018) record of glacier mass budget in the Suru sub-basin, Western Himalaya: overall response and controlling factors. Sci. Total Environ., 2021, 800, 149533.
- Li, L. et al., Twenty-first-century glacio-hydrological changes in the Himalayan headwater Beas River basin. Hydrol. Earth Syst. Sci., 2019, 23(3), 1483–1503.
- Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K. and Kargel, J. S., Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol., 2018, 64(243), 61–74.
- Zhou, Y., Li, Z. and Li, J., Slight glacier mass loss in the karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol., 2017, 63(238), 331–342.