Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Balachandar, V.
- Dielectric Properties of Composites of Polypropylene with Zno-TiO2 Core-Shell Nanoparticles
Abstract Views :280 |
PDF Views:2
Authors
Affiliations
1 Department of Physics, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu, IN
1 Department of Physics, Sathyabama Institute of Science and Technology, Chennai - 600119, Tamil Nadu, IN
Source
Journal of Surface Science and Technology, Vol 34, No 3-4 (2018), Pagination: 121-128Abstract
Composites of polypropylene with different weight percentages of ZnO-TiO2 core-shell nanoparticles were prepared by the combination of solution and mixture melting methods. Dielectric properties of polypropylene composite films were studied at frequencies ranging from 50 Hz to 5 MHz at four different temperatures (313, 333, 353, and 373 K). It is observed that the dielectric constant reduces quickly in the low-frequency range followed by a near frequency independent behavior above 1 KHz. The dielectric properties of composites at low frequency can be explained by interfacial polarization or Maxwell-Wagner-Sillars effect. It is also observed that the dielectric constant reaches the maximum value at 3 wt% of ZnO-TiO2, which is the percolation threshold of nanocomposite. As the weight percentage of ZnO-TiO2 increases beyond the percolation threshold up to 7%, the dielectric constant of the nanocomposites decreases. The dielectric loss of the composites follows the similar trend with frequency as the dielectric constant. A sharp increase in the dielectric loss of the nanocomposite observed near the percolation threshold is due to leakage current produced by the formation of conductive network by ZnO-TiO2 core-shell nanoparticles. Further, peaks in the loss tangent observed for the nanocomposite systems indicating the appearance of a relaxation process. These relaxations peaks were shifted to higher frequencies as the particle content increased, since relaxation processes were influenced by the interfacial polarization effect which generated electric charge accumulation around the ZnO-TiO2 core-shell nanoparticles.Keywords
Dielectric Properties, Film Capacitor Application, Nanocomposites, Percolation Threshold, Polypropylene Matrix, ZnO-TiO2 Core-Shell Nanoparticles.References
- C. S. Reddy and C. K. Das, J. Appl. Polymer Sci.,102, 2117 (2006). https://doi.org/10.1002/app.24131
- G. Z. Papageorgiou, D. S. Achilias, D. N. Bikiaris and G. P. Karayannidis, Thermochim. Acta., 247, 117, (2005). https:// doi.org/10.1016/j.tca.2004.09.001
- O. H. Lin, H. M. Akil and Z. A. M. Ishak, Polymer. Compos., 30, 1693 (2009). https://doi.org/10.1002/pc.20744
- P. B.Leng, H. M. Akil and O. H. Lin, J. Reinforc. Plast. Compos. 26, 761 (2007). https://doi.org/10.1177/0731684407076711
- O. H. Lin, Z. A. M. Ishak and H. M. Akil,Mater. Des., 30/3, 748 (2009). https://doi.org/10.1016/j.matdes.2008.05.007
- J.Jordan, K. I. Jacob, R. Tannenbaum, M. A. Sharaf and I. Jasiuk, Mater. Sci. Eng.,393, 1 (2005). https://doi.org/10.1016/j.msea.2004.09.044
- M. Avella, F. Bondioli, V. Cannillo, Emilia Di Pace, M. E. Errico, A. M. Ferrari, B. Focher and M. Malinconico, Comp. Science and Tech., 66, 886 (2006).
- J. Vera-Agullo, G. Gloria-Pereira, H. Varela-Riz, J. L. Gonzalez and I. Martin-Gullon, Comp. Science and Tech., 69, 1521 (2009). https://doi.org/10.1016/j.compscitech.2008.11.032
- H. Bao, Z. Guo and J. Yu, Chin. J. Polymer Sci., 27, 393 (2009). https://doi.org/10.1142/S0256767909004059
- H. Xia, Q. Wang, K. Li and G. H. Hu, J. Appl. Polymer Sci, 93, 378 (2004). https://doi.org/10.1002/app.20435
- K. Prashantha, J. Soulestin, M. F. Lacrampe, M. Claes, G. Dupin and P. Krawczak, eXPRESS Polym. Lett., 2, 35 (2008).
- Yong Tang, Yuan Hu, Lei Song, RuowenZong, ZhouGui, Zuyao Chen and Weicheng Fan, Polymer Degrad Stabil, 82, 127 (2003). https://doi.org/10.1016/S01413910(03)00173-3
- P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa and A. Usuki, Macromolecules, 35, 2042 (2002). https://doi.org/10.1021/ma010852z
- D. J. Sharmila, J. Brijitta and R. Sampathkumar, J. Surface Sci. Technol. 33, 115 (2017). https://doi.org/10.18311/ jsst/2017/16187
- P. Vlazan, D. H. Ursu, C. Irina-Moisescu, P. Sfirloaga and E. Rusu, Mater. Char., 101, 153 (2015). https://doi.org/10.1016/j.matchar.2015.01.017
- V. Manthina, J. P. Correa Baena, G. Liu, and A. G. Agrios, J. Phys. Chem, 116, 23864 (2012). https://doi.org/10.1021/ jp304622d
- A. Rakesh and S. Balakumar, J. Nanosci. Nanotech., 13, 370 (2013). https://doi.org/10.1166/jnn.2013.6730
- Y. Dang, Y. Wang, Y. Deng, M. LI, Y. Zhang and Z. Zhang, Prog. in Nat. Science: Mat. International, 21, 216, (2011).
- C. C. Ku and R. Liepins, ‘Electrical Properties of Polymers’, Hanserp (1987).
- Z.‐M. Dang, L. Wang, Y. Yin, Q. Zhang and Q.‐Q. Lei. Adv. Mater., 19, 852 (2007). https://doi.org/10.1002/ adma.200600703
- A. Patsidis, G. C. Psarras. eXPRESS Polym. Lett., 2, 718 (2008).
- G. C. Psarras, E. Manolakaki, and G. M. Tsangaris, Compos. Appl. Sci. Manuf., 12, 1187 (2003). https://doi.org/10.1016/j.compositesa.2003.08.002
- C. W. Nan, Y. Shen and J. Ma, Annu. Rev. Mater. Res., 40, 131 (2010). https://doi.org/10.1146/annurevmatsci070909-104529
- S. Singha, and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 12 (2008). https://doi.org/10.1109/TDEI.2008.4446731
- Y. Deng, Y. Zhang, Y. Xiang, G. Wang and H. Xu, J. Mater. Chem., 19, 2058 (2009). https://doi.org/10.1039/b812652f
- G. Tsangaris, N. Kouloumbi and S. Kyvelidis, Mater. Chem. Phys., 44, 245 (1996). https://doi.org/10.1016/02540584(96)80063-0
- Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri and C. Courtois. Process. and Apply. Ceramics, 10, 125 (2016). https://doi.org/10.2298/PAC1603125C 28. N. Shukla, V. Kumar and D. K. Dwivedi, J. of Non-oxide Glasses, 8, 47 (2016).
- Dielectric Relaxation Studies on the Hydration Dynamics of Ionic, Non-Ionic and Zwitterionic Surfactants in Aqueous Acetate Buffer Solution
Abstract Views :254 |
PDF Views:2
Authors
Affiliations
1 Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, IN
1 Department of Physics, Sathyabama Institute of Science and Technology, Chennai – 600119, Tamil Nadu, IN
Source
Journal of Surface Science and Technology, Vol 37, No 3-4 (2021), Pagination: 117-129Abstract
Dielectric relaxation studies of acetate buffer solutions of Sodium Dodecyl Sulphate (SDS- anionic), Cetyl Trimethyl Ammonium Bromide (CTAB- cationic), Tween 80 (TW-80-non-ionic), Betaine Anhydrous (BA- zwitterionic) surfactants have been examined in the frequency region between 1GHz and 25GHz for various concentrations of surfactants at the temperatures of 283, 288, 293 and 298K using time domain dielectric spectroscopy. The obtained corrected loss spectra of all the amphiphiles except betaine anhydrous in acetate buffer solution depicted peaks near 1-2GHz and 15GHz, respectively. For betaine anhydrous, expected peak was not observed in the 1-2GHz frequency region. The peak ascertained near 15GHz, and another peak about 1-2GHz was accorded to free water relaxation and bound water reorientation of the surfactant micelles, and has acquired the reliance of temperature with concentration in detail. Single Debye and Cole-Cole function was employed to compute the relaxation times of free water and bound water, respectively. The Arrhenius plot was used to calculate the enthalpy and entropy for the micelle forming surfactants.Keywords
Cole-Cole Plot, Complex Permittivity, Dielectric Relaxation, Hydration, Micelles, Surfactants, Time Domain Reflectometry, Thermodynamic Parameters.References
- L. John Finney. Faraday Discuss., 103, 1 (1996). https://doi.org/10.1039/fd9960300001. PMid:9136634.
- N. Nandi, K. Bhattacharyya and B. Bagchi. Chem. Rev., 100, 2013 (2000). https://doi.org/10.1021/cr980127v. PMid:11749282.
- D.O. Shah, M.-E. Micelles, Monolayers. Science and Technology: Marcel Dekker, New York/Basel/Hong Kong (1998).
- W.M. Gelbart, A. Ben-Shaul, D. Roux. Micelles, Membranes, Micro-emulsions, and Monolayers: Springer-Verlag, New York (1994). https://doi.org/10.1007/978-1-4613-8389-5.
- D. Fennell Evans, H. Wennestrom. The Colloidal Domain where Physics, Chemistry, Biology, and Technology Meet: VHC Publishers, New York/Weinheim/Cambridge (1994).
- C. Baar, R. Buchner, W. Kunz. J. Phys. Chem. B, 105, 2906 (2001). https://doi.org/10.1021/jp002884e, https://doi. org/10.1021/jp004450p.
- C. Baar, R. Buchner, W. Kunz. J. Phys. Chem. B, 105, 2914 (2001). https://doi.org/10.1021/jp002884e, https://doi. org/10.1021/jp004450p.
- T. Shikata, S. Imai. Langmuir, 14, 6804 (1998). https://doi.org/10.1021/la980421i.
- S. Imai, M. Shiokawa, T. Shikata. J. Phys. Chem. B, 105, 4495 (2001). https://doi.org/10.1021/jp0038409, https://doi.org/10.1021/jp002348m.
- S. Itani, T. Shikata. Langmuir, 17, 6841 (2001). https://doi.org/10.1021/la010551i.
- P. Fernandez, S. Schrödle, R. Buchner, W. Kunz. Phys Chem Chem Phys., 4, 1065 (2003). https://doi.org/10.1002/cphc.200300725. PMid:14596003.
- F.S. Lima, H. Chaimovich, I.M. Cuccovia, R. Buchner. Langmuir, 29, 10037 (2013). https://doi.org/10.1021/la401728g. PMid:23899188.
- T. Tadros. (2013) Surfactant Molecule. In: Tadros T. (eds) Encyclopaedia of Colloid and Interface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20665-8.
- A. Ruth. Y.N. Livingstone, Mischa Bonn, H.G.B. Ellen. J. Am. Chem. Soc., 137, 14912 (2015). https://doi.org/10.1021/jacs.5b07845. PMid:26544087.
- D.E. Gragson, B.M. McCarty, G.L. Richmond. J. Am. Chem. Soc., 119, (1997) 6144. https://doi.org/10.1021/ja962277y.
- X.K. Chen, W. Hua, Z.S. Huang, H.C. Allen. J. Am. Chem. Soc., 132, 11336 (2010). https://doi.org/10.1021/ja1048237. PMid:20698700.
- C.E. Shannon. Proc. IRE, 37, 10 (1949). https://doi.org/10.1109/JRPROC.1949.232969.
- H.A. Samulon. Proc. IRE, 39, 175 (1951). https://doi.org/10.1109/JRPROC.1951.231438.
- R.H. Cole, J.G. Berberian, S. Mashimo, G. Chryssikos, A. Burns, E. Tombari. J. Appl. Phys., 66, 793 (1989). https://doi.org/10.1063/1.343499.
- A.C. Kumbharkhane, S.M. Puranik, S.C. Mehrotra. J. Chem. Soc. Faraday Trans., 87, 1569 (1991). https://doi.org/10.1039/FT9918701569.
- D.V. Jahagirdar, B.R. Arbad, M.P. Lokhande, S.C. Mehrotra. Indian J. Chem.A, 34, 462 (1995).
- M. Bester-Rogac, A. Stoppa, J. Hunger, G. Hefter, R. Buchner. Phys. Chem. Chem. Phys., 13, 17588 (2011). https://doi.org/10.1039/c1cp21371g. PMid:21892477.
- W. Wachter, G. Trimmel, R. Buchner, O. Glatter. Soft Matter, 7, 1409 (2011). https://doi.org/10.1039/C0SM00681E
- R. Buchner, G. Hefter. Phys. Chem. Chem. Phys., 11, 8984 (2009). https://doi.org/10.1039/b906555p. PMid:19812816.
- M. Luksic, R. Buchner, B. Hribarlee, V. Vlachy. Macromolecules, 42, 4337 (2009). https://doi.org/10.1021/ma900097c.
- R. Buchner. Pure Appl. Chem., 80, 1239 (2008). https://doi.org/10.1351/pac200880061239.
- P. Debye. Polar Molecules, Dover Publications Inc. New York (1929).
- N. Shinyashiki, W. Yamamoto, W. Yokoyama, T. Yoshinari, S. Yagihara, R. Kita, K.L. Ngai, S. Capaccioli. J. Phys. Chem. B. 113, 14448 (2009). https://doi.org/10.1021/jp905511w. PMid:19799444.
- S. Khodadadi, S. Pawlus, A.P. Sokolov. J. Phys. Chem. B. 112, 14273 (2008). https://doi.org/10.1021/jp8059807. PMid:18942780.
- K.S. Cole, R.H. Cole. J. Chem. Phys. 9, 341 (1941). https://doi.org/10.1063/1.1750906.
- D. Gopalakrishnan, A.C. Kumbharkhane, R. Sampathkumar. Macromol. Symp., 376, 1700003 (2017). https://doi.org/10.1002/masy.201700003.
- A. Knocks, H. Weingartner. J. Phys. Chem. B, 105, 3635 (2001). https://doi.org/10.1021/jp003700z.
- A. Oleinikova, P. Sasisanker, H. Weingaertner. J. Phys. Chem. B, 108, 8467 (2004). https://doi.org/10.1021/jp047953u, https://doi.org/10.1021/jp049618b.
- M. Wolf, R. Gulich, P. Lunkenheimer, A. Loidl. Biochim Biophys Acta Proteins Proteom, 1824, 723 (2012). https://doi.org/10.1016/j.bbapap.2012.02.008. PMid:22406314.
- J.P. Perl, H.E. Bussey, D.T. Wasan. J. Colloid Interface Sci., 108, 528 (1985). https://doi.org/10.1016/0021-9797(85)90292-9.
- D. Gopalakrishnan, R. Sampathkumar. IJPAP, 56, 315 (2018).
- R. Sampathkumar, D. Gopalakrishnan, A.C. Kumbharkhane. Int. J. Biol. Macromol., 118, 1811 (2018). https://doi.org/10.1016/j.ijbiomac.2018.07.020. PMid:30006009.
- D. Stigter. J. Phys. Chem. A, 68, 3603 (1964). https://doi.org/10.1021/j100794a028.
- U. Kaatze, C.H. Limberg, R. Pottel. Ber. Bunsenges. Phys. Chem., 78, 555 (1974).
- L. Lanzi, M. Carlà, C.M.C. Gambi. J. Colloid Interface Sci., 330, 156 (2009). https://doi.org/10.1016/j.jcis.2008.10.039. PMid:19004453.
- R. Buchner, C. Baar, C. Fernandez, S. Schrfdle, W. Kunz. J. Mol. Liq., 118, 179 (2005). https://doi.org/10.1016/j.molliq.2004.07.035.
- A. Amani, P. York, Hans de Waard, J. Anwar. Soft Matter, 7, 2900 (2011). https://doi.org/10.1039/c0sm00965b.
- Toshiyuki Shikata, Rintaro Takahashi, Aiko Sakamoto, J. Phys. Chem. B, 110, 8941 (2006). https://doi.org/10.1021/jp060356i. PMid:16671699.
- Yousuke Ono, Toshiyuki Shikata, J. Phys. Chem. B, 109, 7412 (2005). https://doi.org/10.1021/jp044237j. PMid:16851849.
- B. Bagchi. Chem. Rev., 105, 3179 (2005). https://doi.org/10.1021/cr020661+. PMid:16159150.
- S. Glasstone, K.J. Laidler, H. Eyring. Theory of Rate Processes. McGraw Hill, New York (1941).
- C. Rose, A.B. Mandal. Int. J. Biol. Macromol., 18, 41 (1996). https://doi.org/10.1016/0141-8130(95)01054-8.