Refine your search
Collections
Co-Authors
- Govindharaj Guru-Pirasanna-Pandi
- Jaipal Singh Choudhary
- Abel Chemura
- G. Basana-Gowda
- Mahendran Annamalai
- Naveenkumar Patil
- Prakash Chandra Rath
- Aashish Kumar Anant
- Soumya Bharati Babu
- M. Annamalai
- P. Panneerselvam
- Guru-Pirasanna-Pandi Govindharaj
- C. Parameswaran
- P. Paneerselvam
- Naveenkumar B. Patil
- G. Basana Gowda
- G. Guru Pirasanna Pandi
- Mahendiran Annamalai
- P. C. Rath
- Mayabini Jena
- P. D. Kamala Jayanthi
- P. Saravan Kumar
- G. GuruPirasanna-Pandi
- A. Annamalai
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Adak, Totan
- Predicting the Brown Planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) Potential Distribution Under Climatic Change Scenarios in India
Abstract Views :121 |
PDF Views:30
Authors
Govindharaj Guru-Pirasanna-Pandi
1,
Jaipal Singh Choudhary
2,
Abel Chemura
3,
G. Basana-Gowda
1,
Mahendran Annamalai
1,
Naveenkumar Patil
1,
Totan Adak
1,
Prakash Chandra Rath
4
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER, Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
3 Potsdam Institute for Climate Impact Research (PIK), A Member of the Leibniz Association, Potsdam, DE
4 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India, IN
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER, Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
3 Potsdam Institute for Climate Impact Research (PIK), A Member of the Leibniz Association, Potsdam, DE
4 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India, IN
Source
Current Science, Vol 121, No 12 (2021), Pagination: 1600-1609Abstract
The brown planthopper, Nilaparvata lugens (Stål) is the most serious pest of rice across the world. It is also known to transmit stunted viral disease; the insect alone or in combination with a virus causes the breakdown of rice vascular system, leading to economic losses in commercial rice production. Despite its immense economic importance, information on its potential distribution and factors governing the present and future distribution patterns is limited. Thus, in the present study we used maximum entropy modelling with bioclimatic variables to predict the present and future potential distribution of N. lugens in India as an indicator of risk. The predictions were mapped for spatio-temporal variation and area was analysed under suitability ranges. Jackknife analysis indicated that N. lugens geographic distribution was mostly influenced by temperature-based variables that explain up to 68.7% of the distribution, with precipitation factors explaining the rest. Among individual factors, the most important for distribution of N. lugens was annual mean temperature followed by precipitation of coldest quarter and precipitation seasonality. Our results highlight that the highly suitable areas under current climate conditions are 7.3%, whereas all projections show an increase under changing climatic conditions with time up to 2090, and with emission scenarios and a corresponding decrease in low-risk areas. We conclude that climate change increases the risk of N. lugens with increased temperature as it is likely to spread to the previously unsuitable areas in India, demanding adaptation strategies.Keywords
Climate Change, Maximum Entropy Modeling, Nilaparvata lugens, Potential Distribution, Rice.References
- Lobell, D. B. and Gourdji, S. M., The influence of climate change on global crop productivity. Plant Physiol., 2012, 160(4), 1686–1697.
- Liu, D., Mishra, A. K. and Ray, D. K., Sensitivity of global major crop yields to climate variables: a non-parametric elasticity analysis. Sci. Total Environ., 2020, 748, 141431.
- Ceglar, A., Zampieri, M., Toreti, A. and Dentener, F., Observed northward migration of agro‐climate zones in Europe will further accelerate under climate change. Earths Future, 2019, 7(9), 1088–1101.
- Taylor, R. A., Ryan, S. J., Lippi, C. A., Hall, D. G., Narouei‐ Khandan, H. A., Rohr, J. R. and Johnson, L. R., Predicting the fundamental thermal niche of crop pests and diseases in a changing world: a case study on citrus greening. J. Appl. Ecol., 2019, 56(8), 2057–2068.
- Juroszek, P., Racca, P., Link, S., Farhumand, J. and Kleinhenz, B., Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol., 2020, 69(2), 179–193.
- Yang, L., Huang, L. F., Wang, W. L., Chen, E. H., Chen, H. S. and Jiang, J. J., Effects of temperature on growth and development of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Environ. Entomol., 2021, 50(1), 1–11.
- Berzitis, E. A., Minigan, J. N., Hallett, R. H. and Newman, J. A., Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Global Change Biol., 2014, 20, 2778–2792.
- Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci., 2018, 114(8), 1767–1777.
- Rao, V. T., Nilaparvata lugens Stal (Fulgoridae: Homoptera) as a pest of paddy cultivation in North Madras and its control. Indian J. Entomol., 1950, 12, 241–248.
- Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89.
- Pandi, G. G. P., Chander, S. and Pal, M., Impact of elevated CO2 on brown planthopper, Nilaparvata lugens (Stal). Indian J. Entomol., 2017, 79(1), 82–85.
- Du, B., Chen, R., Guo, J. and He, J., Current understanding of the genomic, genetic, and molecular control of insect resistance in rice. Mol. Breed., 2020, 40, 24.
- Pandi, G. G. P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India Sect. B, 2016, 88(1), 57–64.
- Wu, S. F. et al., The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens Stål) of China in the period 2012–2016. Sci. Rep., 2018, 8(1), 1–11.
- Bale, J. S. B., Masters, G. J. and Hodkinson, I. D., Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol., 2002, 8, 1–16.
- Piyaphongkul, J., Pritchard, J. and Bale, J., Can tropical insects stand the heat? A case study with the brown planthopper Nilaparvata lugens (Stål). PLOS ONE, 2012, 7(1), e29409.
- Hallman, G. J. and Denlinger, D. L., Temperature Sensitivity in Insects and Application in Integrated Pest Management, CRC Press, New York, USA, 2019, pp. 6–47.
- Sujithra, M. and Chander, S., Simulation of rice brown planthopper, Nilaparvata lugens (Stal.) population and crop–pest interactions to assess climate change impact. Climatic Change, 2013, 121, 331–347.
- Bentlage, B., Peterson, A. T., Barve, N. and Cartwright, P., Plumbing the depths: extending ecological niche modelling and species distribution modelling in three dimensions. Global Ecol. Biogeogr., 2013, 22(8), 952–961.
- Kumar, S., Graham, J., West, A. M. and Evangelista, P. H., Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Comput. Electron. Agric., 2014, 103, 55–62.
- Evangelista, P. H., Kumar, S., Stohlgren, T. J. and Young, N. E., Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. For. Ecol. Manage., 2011, 262(3), 307–316.
- Choudhary, J. S., Kumari, M., Mali, S. S., Dhakar, M. K., Das, B., Singh, A. K. and Bhatt, B. P., Predicting impact of climate change on habitat suitability of guava fruit fly, Bactrocera correcta (Bezzi) using MaxEnt modeling in India. J. Agrometeorol., 2019, 21(1), 24–30.
- AICRIP, All India Co-ordianted Rice Improvement Programme progress report. Volume 2: entomology and plant pathology. ICAR-Indian Institute of Rice Research, Hyderabad, 2019, pp. 18–20.
- EPPO, Global database on insect pest distribution, European and Mediterranean Plant Protection Organization, 2020; https://gd.eppo.int/taxon/NILALU/distribution (accessed on 14 December 2020).
- CABI, Datasheet on invasive species compendium, Centre for Agriculture and Bioscience International, 2020; https://www.cabi.org/isc/datasheet/36301 (accessed on 14 December 2020).
- Guevara, L., Gerstner, B. E., Kass, J. M. and Anderson, R. P., Toward ecologically realistic predictions of species distributions: a cross-time example from tropical montane cloud forests. Global Change Biol., 2018, 24, 1511–1522.
- Fourcade, Y., Engler, J. O., Rödder, D. and Secondi, J., Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLOS ONE, 2014, 9(5), e97122.
- Hortal, J., Roura-Pascual, N., Sanders, N. J. and Rahbek, C., Understanding (insect) species distributions across spatial scales. Ecography, 2010, 33, 51–53.
- Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 2005, 25(15), 195–204.
- Moss, R. H. et al., The next generation of scenarios for climate change research and assessment. Nature, 2010, 463(7282), 747–756.
- Taylor, K. E., Stouffer, R. J. and Meehl, G. A., An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc., 2012, 93, 485–498.
- Gao, T., Xu, Q., Liu, Y., Zhao, J. and Shi, J., Predicting the potential geographic distribution of Sirex nitobei in China under climate change using maximum entropy model. Forests, 2021, 12, 151.
- Rajpoot, R. et al., Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecol. Conserv., 2020, 23, e01040.
- Wei, J., Zhang, H., Zhao, W. and Zhao, Q., Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change. PLOS ONE, 2017, 12(7), e0180913.
- Warren, D. L., Glor, R. E. and Turelli, M., ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 2010, 33(3), 607–611.
- Phillips, S. J., Anderson, R. P. and Schapire, R. E., Maximum entropy modeling of species geographic distributions. Ecol. Model., 2006, 190(3–4), 231–259.
- Elith, J., Graham, C. H., Anderson, R. P., Dudik, M. and Ferrier, S., Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 2006, 29, 129–151.
- Pearson, R. G., Raxworthy, C. J., Nakamura, M. and Peterson, A. T., Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr., 2007, 34, 102–117.
- Pearce, J. and Ferrier, S., An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol. Model., 2000, 128, 127–147.
- Qin, Y., Wang, C., Zhao, Z., Pan, X. and Li, Z., Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 2019, 155, 145–156.
- Chemura, A., Musundire, R. and Chiwona-Karltun, L., Modelling habitat and spatial distribution of the edible insect Henicus whellani Chop (Orthoptera: Stenopelmatidae) in south-eastern districts of Zimbabwe. J. Insects Food Feed, 2018, 4(4), 229–238.
- Liu, C., Newell, G. and White, M., The effect of sample size on the accuracy of species distribution models: considering both presences and pseudo‐absences or background sites. Ecography, 2019, 42(3), 535–548.
- Fois, M., Cuena-Lombraña, A., Fenu, G. and Bacchetta, G., Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol. Model., 2018, 385, 124–132.
- West, A. M., Kumar, S., Brownb, C. S., Stohlgren, T. J. and Bromberg, J., Field validation of an invasive species Maxent model. Ecol. Inform., 2016, 36, 126–134.
- Warren, D. L. and Seifert, S. N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl., 2011, 21, 335–342.
- Ali, M. P., Huang, D. and Nachman, G., Ahmed, N., Begum, M. A. and Rabbi, M. F., Will climate change affect outbreak patterns of planthoppers in Bangladesh? PLOS ONE, 2014, 9(3), 1–10.
- Hu, G. et al., Outbreaks of the brown planthopper Nilaparvata lugens (Stål) in the Yangtze River Delta: immigration or local reproduction? PLOS ONE, 2014, 9, e88973.
- Yadav, D. S., Chander, S. and Selvaraj, K., Agro-ecological zoning of brown planthopper Nilaparvata lugens (Stal) incidence on rice (Oryza sativa L.). J. Sci. Ind. Res., 2010, 69, 818–822.
- Thomson, L. J., Macfadyen, S. and Hoffmann, A. A., Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control, 2010, 52(3), 296–306.
- Pandi, G. G. P., Chander, S. and Soumia, P. S., Elevated CO2 reared brown plant hopper as prey on feeding potential of wolf spider Pardosa pseudoannulata. Indian J. Entomol., 2018, 80(1), 127–130.
- Molecular diversity of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) from India based on internal transcribed spacer 1 gene
Abstract Views :92 |
PDF Views:34
Authors
Govindharaj Guru-Pirasanna-Pandi
1,
Aashish Kumar Anant
1,
Jaipal Singh Choudhary
2,
Soumya Bharati Babu
1,
G. Basana-Gowda
1,
M. Annamalai
1,
Naveenkumar Patil
1,
Totan Adak
1,
P. Panneerselvam
1,
Prakash Chandra Rath
1
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 ICAR-RCER Farming System Research Centre for Hill and Plateau Region, Ranchi 834 010, IN
Source
Current Science, Vol 122, No 12 (2022), Pagination: 1392-1400Abstract
Brown planthopper, Nilaparvata lugens, is the major pest of rice in India and causes significant yield loss. It causes damage by sucking the plant sap leading to a characteristic symptom called ‘hopper burn’. The present study was undertaken to assess the genetic variability of N. lugens populations from different rice ecologies in India, to comprehend and assist in planning proper management strategies. We evaluated the molecular diversity in 17 N. lugens populations based on internal transcribed spacer 1 (ITSI) gene sequences. In all, 53 unique haplotypes were identified and their numbers varied from 1 to 10 in the sampled populations. Genetic diversity indices like nucleotide diversity, haplotype number, haplotype diversity and average number of nucleotide differences revealed low to high levels of genetic diversity among the populations. A highly significant negative relation of Fu’s F and Tajima’s D tests with insignificant sum of square deviation (SSD) values indicated possible recent expansion of N. lugens in different Indian regions with a population expansion time of 3.9 million years. A non-significant correlation in isolation pattern by distance indicated that geographic barriers present in India are inadequate to bring genetic differentiation among N. lugens from different migratory populations. In the present study, the ITSI gene sequence was used to analyse genetic structure among N. lugens in India.Keywords
Genetic Structure, Haplotypes, Molecular Diversity, Nilaparvata Lugens, RiceReferences
- Pandi, G. G. P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India, Sect. B, 2016, 88(1), 57–64.
- Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89.
- Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr.
- Sci., 2018, 114(8), 767–777.
- Li, S., Wang, H. and Zhoum, G. S., Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology, 2014, 104, 794–799.
- Bottrell, D. G. and Schoenly, K. G., Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical. J. Asia Pac. Entomol., 2012, 15(1), 122–140.
- Otuka, A., Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia. Front. Microbiol., 2013, 4, 309.
- Hu, G., Lu, M. H., Tuan, H. A. and Liu, W. C., Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bull. Entomol. Res., 2017, 107, 369–381.
- Anant, A. K. et al., Genetic dissection and identification of candidate genes for brown planthopper, Nilaparvata lugens (Delphacidae: Hemiptera) resistance in farmers’ varieties of rice in Odisha. Crop Prot., 2021, 144, 105600 9. Mahapatra, B. et al., Imidacloprid application changes microbial dynamics and enzymes in rice soil. Ecotoxicol. Environ. Saf., 2017, 144, 123–130.
- Sahu, M. et al., Dissipation of chlorantraniliprole in contrasting soil and its effect on soil microbes and enzymes. Ecotoxicol. Environ. Saf., 2019, 180, 288–294.
- Hu, J., Xiao, C. and He, Y., Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice, 2016, 9(1), 30.
- Matsumura, M., Takeuchi, H., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T. and Van, T. D., Species specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and Southeast Asia. Pest Manage. Sci., 2008, 64, 1115–1121.
- Matsumoto, Y., Matsumura, M., Sanada-Morimura, S., Hirai, Y., Sato, Y. and Noda, H., Mitochondrial COX sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bull. Entomol. Res., 2013, 103, 382–392.
- Naeemullah, M., Sharma, P. N., Tufail, M., Mori, N., Matsumura, M., Takeda, M. and Nakamura, C., Characterization of brown planthopper strains based on their differential responses to introgressed resistance genes and on mitochondrial DNA polymorphism. Appl. Entomol. Zool., 2009, 44, 475–483.
- Rollins, L. A., Woolnough, A. P., Sinclair, R., Mooney, N. J. and Sherwin, W. B., Mitochondrial DNA offers unique insights into invasion history of the common starling. Mol. Ecol., 2011, 20, 2307–2317.
- Wan, X., Liu, Y. and Zhang, B., Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLoS ONE, 2012, 7(5), e36176.
- Choudhary, J. S., Naaz, N., Prabhakar, C. S and Lemtur, M., Genetic analysis of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) populations based on mitochondrial COX1 and NAD1 gene sequences from India and other Asian countries. Genetica, 2016, 144, 611–623.
- Choudhary, J. S., Naaz, N., Lemtur, M., Das, B., Singh, A. K., Bhatt, B. P. and Prabhakar, C. S., Genetic analysis of Bactrocera zonata (Diptera: Tephritidae) populations from India based on COX1 and NAD1 gene sequences. Mitochondrial DNA A, 2018, 29(5), 727–736.
- Giantsis, I. A., Chaskopoulou, A. and Claude, B. M., Direct multiplex PCR (dmPCR) for the identification of six phlebotomine sand fly species (Diptera: Psychodidae), including major Leishmania vectors of the Mediterranean. J. Econ. Entomol., 2017, 110, 245–249.
- Watanabe, S. and Melzer, M. J., A multiplex PCR assay for differentiating coconut rhinoceros beetle (Coleoptera: Scarabaeidae) from oriental flower beetle (Coleoptera: Scarabaeidae) in early life stages and excrement. J. Econ. Entomol., 2017, 110, 678–682.
- Noda, H., How can planthopper genomics be useful for planthopper management? In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia (eds Heong, K. L. and Hardy, B.), International Rice Research Institute, Los Banos, Philippines, 2009, pp. 429–446.
- Roderick, G. K. and Navajas, M., Genes in new environments: genetics and evolution in biological control. Nature Rev. Genet., 2003, 4, 889–899.
- Wilson, M. R. and Claridge, M. F., In Handbook for the Identification of Leafhoppers and Planthoppers of Rice, CAB International, London, UK, 1991, pp. 1–143; ISBN: 0-85198-692-7.
- Mun, J. H., Song, Y. H., Heong, K. L. and Roderick, G. K. Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): mitochondrial DNA sequences. Bull. Entomol. Res., 1999, 89, 245–253.
- Liu, S. et al., Identification of Nilaparvata lugens and its two sibling species (N. bakeri and N. muiri) by direct multiplex PCR J. Econ. Entomol., 2018, 111(6), 2869–2875.
- Huang, X. and Madan, A., CAP3: a DNA sequence assembly program. Genome Res., 1999, 9, 868–877.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2003, 30, 2725–2729.
- Librado, P. and Rozas, J., DnaSP V5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11), 1451–1452.
- Excoffier, L. and Lischer, H. E. L., Arlequin suite ver. 3.5, a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, 10(3), 564–567.
- Bandelt, H., Forster, P. and Roehl, A., Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 1999, 16(1), 37–48.
- Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3), 585–595.
- Fu, Y. X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147, 915–925.
- Rogers, A. R. and Harpending, H., Population growth makes waves in the distribution of pairwise differences. Mol. Biol. Evol., 1992, 9, 552–569.
- Mantel, N., The detection of disease and a generalized regression approach. Cancer Res., 1967, 27, 209–220.
- Miller, M. P., Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered., 2005, 96(6), 722–724.
- Rosetti, N. and Remis, M. I., Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. PLoS ONE, 2012, 7(7), e40807.
- Nei, M. and Li, W. H., Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 1979, 76(10), 5269–5273.
- Grant, W. S. and Bowen, B. W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 1998, 89, 415–426.
- AICRIP, All-India Co-ordinated Rice Improvement Programme progress report, volume 2: entomology and plant pathology. ICAR-Indian Institute of Rice Research, 2018, pp. 19–20.
- Anant, A. et al., Evaluation of brown planthopper, Nilaparvata
- lugens (Stal.) resistance. Indian J. Entomol., 2021, 83(2), 223– 225; doi:10.5958/0974-8172.2021.00065.1.
- Suarez, A. V. and Tsutsui, N. D., The evolutionary consequences of biological invasions. Mol. Ecol., 2008, 17, 351–360.
- Shi, W., Kerdelhue, C. and Ye, H., Genetic structure and inferences on potential source areas for Bactrocera dorsalis (Hendel) based on mitochondrial and microsatellite markers. PLoS ONE, 2012, 7(5), e37083.
- Grapputo, A., Bisazza, A. and Pilastro, A., Invasion success despite reduction of genetic diversity in the European populations of eastern mosquito fish (Gambusia holbrooki). Ital. J. Zool., 2006, 73, 67–73.
- Hoshizaki, S., Detection of isozyme polymorphism and estimation of geographic variation in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Bull. Entomol. Res., 1994, 84, 502–508.
- Wan, X., Nardi, F., Zhang, B. and Liu, Y., The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS ONE, 2011, 6(10), e25238
- Slatkin, M. and Hudson, R. R., Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 1991, 129, 555–562.
- Hereward, J. P., Cai, X., Matias, A. M. A., Walter, G. H., Xu, C. and Wang, Y., Migration dynamics of important rice pest: the brown planthopper (Nilaparvata lugens) across Asia – insights from population genomics. Evol. Appl., 2020, 13(9), 2449–2459.
- Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R. and Sherry, S. T., Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA, 1998, 95, 1691–1697.
- Slatkin, M., Gene flow in natural populations. Annu. Rev. Ecol. Syst., 1985, 16, 393–430.
- Population genetic structure and migration pattern of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) populations in India based on mitochondrial COI gene sequences
Abstract Views :76 |
PDF Views:27
Authors
Guru-Pirasanna-Pandi Govindharaj
1,
Jaipal Singh Choudhary
2,
Aashish Kumar Anant
3,
C. Parameswaran
3,
G. Basana-Gowda
3,
Totan Adak
3,
P. Paneerselvam
3,
M. Annamalai
3,
Naveenkumar Patil
3,
Prakash Chandra Rath
3
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
2 ICAR-Reseach Complex for Eastern Region, Farming Systems Research Centre for Hill and Plateau Region, Ranchi 834 010, India
3 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
2 ICAR-Reseach Complex for Eastern Region, Farming Systems Research Centre for Hill and Plateau Region, Ranchi 834 010, India
3 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, India
Source
Current Science, Vol 123, No 3 (2022), Pagination: 461-470Abstract
Despite the economic and ecological impact of the brown planthopper, Nilaparvata lugens infestation associated with rice cultivation in India, studies on its genetic structure are lacking. Hence, the present study was conducted to assess the genetic variability of N. lugens in India. The study evaluated the diversity in N. lugens populations using mitochondrial cytochrome oxidase subunit I gene sequences from India, and compared them with the Bangladesh, China and Japan populations. In all, 47 unique haplotypes were identified and the haplotype number varied from 6 to 18 in the sampled populations. Genetic diversity indices like nucleotide diversity (0.004), average number of nucleotide differences (1.98), haplotype diversity (0.667) and haplotype number (47) of N. lugens populations from India revealed a low level of genetic diversity. A highly significant negative correlation of the demographic history of N. lugens populations along with no significant sum of square deviations indicated possible recent expansion of the brown planthopper in India. A non-significant correlation in isolation pattern by distance results indicated that geographic barriers present in the country are not sufficient for genetic differentiation among N. lugens from different migratory populations. In this study, the genetic diversity of N. lugens populations from India is compared with other Asian populationsReferences
- Pandi, G.G.P., Chander, S., Pal, M. and Pathak, H., Impact of elevated CO2 and temperature on brown planthopper population in rice ecosystem. Proc. Natl. Acad. Sci. India, Sect. B, 2016, 88(1), 57–64; doi:10.1007/s40011-016-0727-x.
- Jena, M. et al., Paradigm shift of insect pests in rice ecosystem and their management strategy. Oryza, 2018, 55, 82–89; doi:10.5958/2249-5266.2018.00010.3.
- Pandi, G. G. P., Chander, S., Pal, M. and Soumia, P. S., Impact of elevated CO2 on Oryza sativa phenology and brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae) population. Curr. Sci., 2018, 114(8), 1767–1777; doi:10.18520/cs/v114/i08/1767-1777.
- Li, S., Wang, H. and Zhoum, G. S., Synergism between Southern rice black-streaked dwarf virus and Rice ragged stunt virus enhances their insect vector acquisition. Phytopathology, 2014, 104(7), 794–799; doi:10.1094/PHYTO-11-13-0319-R. PMID: 24915431.
- Bottrell, D. G. and Schoenly, K. G., Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical. J. Asia-Pac. Entomol., 2012, 15(1), 122–140; https://doi.org/10.1016/j.aspen.2011.09.004.
- Otuka, A., Migration of rice planthoppers and their vectored reemerging and novel rice viruses in East Asia. Front. Microbiol., 2013, 4, 309; doi:10.3389/fmicb.2013.00309.
- Hu, G., Lu, M. H., Tuan, H. A. and Liu, W. C., Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China. Bull. Entomol. Res., 2017, 107, 369–381; https://doi.org/10.1017/S0007485316001024.
- EPPO, European and Mediterranean Plant Protection Organization global database, 2021; https://gd.eppo.int/taxon/NILALU/distribution (accessed on 20 December 2021).
- Anant, A. K. et al., Genetic dissection and identification of candidate genes for brown planthopper, Nilaparvata lugens (Delphacidae: Hemiptera) resistance in farmers’ varieties of rice in Odisha. Crop Prot., 2021, 144, 105600; https://doi.org/10.1016/j.cropro.2021.105600.
- Matsumura, M., Takeuchi, H., Satoh, M., Sanada-Morimura, S., Otuka, A., Watanabe, T. and Van, T. D., Species specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and South-east Asia. Pest Manage. Sci., 2008, 64(11), 1115–1121; doi:10.1002/ps.1641. PMID: 18803329.
- Matsumoto, Y., Matsumura, M., Sanada-Morimura, S., Hirai, Y., Sato, Y. and Noda, H., Mitochondrial COX sequences of Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae): low specificity among Asian planthopper populations. Bull. Entomol. Res., 2013, 103(4), 382–392; doi:10.1017/S000748531200082X. PMID: 23537548.
- Naeemullah, M., Sharma, P. N., Tufail, M., Mori, N., Matsumura, M., Takeda, M. and Nakamura, C., Characterization of brown planthopper strains based on their differential responses to introgressed resistance genes and on mitochondrial DNA polymorphism. Appl. Entomol. Zool., 2009, 44, 475–483; https://doi.org/10.1303/aez.2009.475.
- Rollins, L. A., Woolnough, A. P., Sinclair, R., Mooney, N. J. and Sherwin, W. B., Mitochondrial DNA offers unique insights into invasion history of the common starling. Mol. Ecol., 2011, 20(11), 2307–2317; doi:10.1111/j.1365-294X.2011.05101.x. PMID: 21507095.
- Wan, X., Liu, Y. and Zhang, B., Invasion history of the oriental fruit fly, Bactrocera dorsalis, in the Pacific-Asia region: two main invasion routes. PLOS ONE, 2012, 7(5), e36176; https://doi.org/10.1371/journal.pone.0036176.
- Choudhary, J. S., Naaz, N., Prabhakar, C. S. and Lemtur, M., Genetic analysis of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) populations based on mitochondrial COX 1 and NAD 1 gene sequences from India and other Asian countries. Genetica, 2016, 144, 611–623; doi:10.1007/s10709-016-9929-7. PMID: 27699519.
- Choudhary, J. S., Naaz, N., Lemtur, M., Das, B., Singh, A.K., Bhatt, B. P. and Prabhakar, C. S., Genetic analysis of Bactrocera zonata (Diptera: Tephritidae) populations from India based on COX 1 and NAD 1 gene sequences. Mitochondrial DNA A, 2018, 29(5), 727–736; https://doi.org/10.1080/24701394.2017.1350952.
- Pandi, G. G. P. et al., Molecular diversity of Nilaparvata lugens (Stål.) (Hemiptera: Delphacidae) from India based on internal transcribed spacer 1 (ITSI) gene. Curr. Sci., 2022, 122(12), 1392–1400.
- Watanabe, S. and Melzer, M. J., A multiplex PCR assay for differentiating coconut rhinoceros beetle (Coleoptera: Scarabaeidae) from oriental flower beetle (Coleoptera: Scarabaeidae) in early life stages and excrement. J. Econ. Entomol., 2017, 110, 678–682; doi:10.1093/jee/tow299. PMID: 28115497.
- Noda, H., How can planthopper genomics be useful for planthopper management? In Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia (eds Heong, K. L. and Hardy, B.), International Rice Research Institute, Philippines, 2009, pp. 429–446.
- Roderick, G. K. and Navajas, M., Genes in new environments: genetics and evolution in biological control. Nature Rev. Genet., 2003, 4, 889–899; https://doi.org/10.1038/nrg1201.
- Wilson, M. R. and Claridge, M. F., Handbook for the Identification of Leafhoppers and Planthoppers of Rice, CAB International, London, UK, 1991, p. 143; ISBN 0-85198-692-7.
- Mun, J. H., Song, Y. H., Heong, K. L. and Roderick, G. K., Genetic variation among Asian populations of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): mitochondrial DNA sequences. Bull. Entomol. Res., 1999, 89, 245–253; doi:10.1017/S000748539900036X.
- Huang, X. and Madan, A., CAP3: a DNA sequence assembly program. Genome Res., 1999, 9(9), 868–877; doi:10.1101/gr.9.9.868. PMID: 10508846.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S., MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30(12), 2725–2729; doi:10.1093/molbev/mst197. Epub 2013 Oct 16. PMID: 24132122.
- Librado, P. and Rozas, J., DnaSP V5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11), 1451–1452; https://doi.org/10.1093/bioinformatics/btp187.
- Excoffier, L. and Lischer, H. E. L., Arlequin suite ver. 3.5, a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour., 2010, 10(3), 564–567; doi:10.1111/j.1755-0998.2010.02847.x. PMID: 21565059.
- Bandelt, H., Forster, P. and Roehl, A., Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol., 1999, 16(1), 37–48; doi:10.1093/oxfordjournals.molbev.a026036. PMID: 10331250.
- Dupanloup, I., Schneider, S. and Excoffier, L., A simulated annealing approach to define the genetic structure of populations. Mol. Ecol., 2002, 11, 2571e2581; doi:10.1046/j.1365-294x.2002.01650.x. PMID: 12453240.
- Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 1989, 123(3), 585–595; doi:10.1093/genetics/123.3.585. PMID: 2513255.
- Fu, Y. X., Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 1997, 147, 915–925; doi:10.1093/genetics/147.2.915. PMID: 9335623.
- Rogers, A. R. and Harpending, H., Population growth makes waves in the distribution of pairwise differences. Mol. Biol. Evol., 1992, 9(3), 552–569; doi:10.1093/oxfordjournals.molbev.a040727.
- Mantel, N., The detection of disease and a generalized regression approach. Cancer Res., 1967, 27, 209–220. PMID: 6018555.
- Miller, M. P., Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered., 2005, 96(6), 722–724; https://doi.org/10.1093/jhered/esi119.
- Beerli, P. and Felsenstein, J., Maximum-likelihood estimation of a migration matrix and effective population sizes in subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. USA, 2001, 98(8), 4563–4568; https://doi.org/10.1073/pnas.081068098.
- Rosetti, N. and Remis, M. I., Spatial genetic structure and mitochondrial DNA phylogeography of argentinean populations of the grasshopper Dichroplus elongatus. PLoS ONE, 2012, 7(7), e40807; https://doi.org/10.1371/journal.pone.0040807.
- Grant, W. S. and Bowen, B. W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J. Hered., 1998, 89, 415–426; https://doi.org/10.1093/jhered/89.5.415.
- Suarez, A. V. and Tsutsui, N. D., The evolutionary consequences of biological invasions. Mol. Ecol., 2008, 17(1), 351–360; doi: 10.1111/j.1365-294X.2007.03456.x. PMID: 18173507.
- Grapputo, A., Bisazza, A. and Pilastro, A., Invasion success despite reduction of genetic diversity in the European populations of eastern mosquito fish (Gambusia holbrooki). Ital. J. Zool., 2006, 73, 67–73; https://doi.org/10.1080/11250000500502111.
- Slatkin, M. and Hudson, R. R., Pairwise comparison of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 1991, 129(2), 555–562; doi:10.1093/genetics/129.2.555.
- Hereward, J. P., Cai, X., Matias, A. M. A., Walter, G. H., Xu, C. and Wang, Y., Migration dynamics of important rice pest: the brown planthopper (Nilaparvata lugens) across Asia-insights from population genomics. Evol. Appl., 2020, 13(9), 2449–2459; https://doi.org/10.1111/eva.13047.
- Harpending, H. C., Batzer, M. A., Gurven, M., Jorde, L. B., Rogers, A. R. and Sherry, S. T., Genetic traces of ancient demography. Proc. Natl. Acad. Sci. USA, 1998, 95, 1691–1697; https://doi.org/10.1073/pnas.95.4.1961.
- Slatkin, M., Gene flow in natural populations. Annu. Rev. Evol. Syst., 1985, 16, 393–430; https://doi.org/10.1146/annurev.es.16.110185.002141.
- Schneider, S. and Excoffier, L., Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 1999, 152(3), 1079–1089.
- Wan, X., Nardi, F., Zhang, B. and Liu, Y., The oriental fruit fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS ONE, 2011, 6(10), e25238; https://doi.org/10.1371/journal.pone.0025238.
- Wei, S. J., Genetic structure and demographic history reveal migration of the diamondback moth Plutellaxylostella (Lepidoptera: Plutellidae) from the southern to northern regions of China. PLoS ONE, 2013, 8, e59654; https://doi.org/10.1371/journal.pone.0059654.
- Irwin, D. E., Phylogeographic breaks without geographic barriers to gene flow. Evolution, 2002, 56(12), 2383–2394; https://doi.org/10.1554/0014-3820(2002)056[2383:PBWGBT]2.0.CO;2.
- Repellency of Plant Essential Oils to Key Coleopteran Stored Grain Insects of Rice
Abstract Views :32 |
PDF Views:13
Authors
Naveenkumar B. Patil
1,
G. Basana Gowda
1,
Totan Adak
1,
G. Guru Pirasanna Pandi
1,
Mahendiran Annamalai
1,
P. C. Rath
1,
Mayabini Jena
1
Affiliations
1 Crop Protection Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, IN
1 Crop Protection Division, ICAR-National Rice Research Institute, Cuttack 753006, Odisha, IN
Source
Indian Journal of Entomology, Vol 84, No 3 (2022), Pagination: 567-572Abstract
Laboratory studies were conducted to assess the repellant effects of three essential oils from plants viz., orange, eucalyptus and cinnamon oils against four major coleopteran stored grain insect pests of rice viz., Sitophilus oryzae, Oryzaephilus surinamensis, Rhyzopertha dominica, and Tribolium castaneum. The % repellency (PR) and index of repellency (RI) were observed to range from 10 to 100% and 0.00 to 0.90, respectively. Eucalyptus oil @ 5% showed maximum repellent action against Tribolium castaneum, registering PR and RI values of 93.33 (F=0.921), 100 (F=1.66), 100 (F=3.772) and 0.07, 0.00 and 0.00, respectively at 3, 6 and 12 hrs after treatment and were found significantly superior over rest of the treatments. Chemical profiling of tested oils through GCMS showed presence of 2- 3 chemical constituents amounting to >90 % of total composition of oil. The results highlight the repellency effects of the essential oils and indicate that these can be ecofriendly ones for the post-harvest protection of rice.Keywords
Orange, eucalyptus, cinnamon oils, Sitophilus oryzae, Oryzaephilus surinamensis, Rhyzopertha dominica, Tribolium castaneum, rice, index of repellency, % repellency, GCMSReferences
- Abubakar M S, Abdulrahman E M, Haruna A K. 2000. The repellent and antifeedant properties of Cyperus articulatus against T. castaneum. Phytotherapy Research 14(4): 281-283.
- Ahmed A, Sultana P, Ahmed A. 1980. Comparative efficacy of some indigenous plant materials as repellents against Sitophilus oryzae Linn. Bangladesh Journal of Agricultural Research (5)2: 31-35.
- Arthur F H.1996. Grain Protectants: current status and prospects for the future. Journal of Stored Product Research 32: 293-302.
- Bakkali F, Averbeck S, Averbeck D, Idaomar M. 2008. Biological effects of essential oils - A review. Food and Chemical Toxicology 46: 446-475.
- Benhalima H, Chaudhry M Q, Mills K A, Price N R. 2004. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. Journal of Stored Product Research 40: 241-249.
- Collins P J, Daglish G J, Pavic H, Kopittke K A. 2005. Response of mixed-age cultures of phosphine-resistant and susceptible strains of the lesser grain borer, Rhyzopertha dominica, to phosphine at arrange of concentrations and exposure periods. Journal of Stored Product Research 41(4): 373-385.
- Desmarchelier J M. 1994. Grain protectants: trends and developments. In: Highley E, Wright E J, Banks H J, Champ B R (Eds.), Stored Product Protection. Vol. 2. CAB International, Wallingford, UK, pp. 722-728.
- Dhingra D. 2016. Evolution and trends in food grain storage in India. In: Navarro S, Jayas D S, Alagusundaram K, (Eds.) Proceedings. 10th International conference on controlled atmosphere and fumigation in stored products (CAF 2016), CAF Permanent Committee Secretariat, Winninpeg, Canada. pp. 47-52.
- Dong Z J, Cheng D Q, Dong S D, Zhou Y H. 2004. Botanical pesticide research and application in tobacco pest control. Acta Tabacaria Sinica 10: 42-47.
- Golob P, Moss C, Dales M, Fidgen A, Evans J. 1999. The use of spices and medicinals as bioactive protectants for grains. FAO Agricultural Services Bulletin 137.
- Haririmoghadam F, Moharramipour S, Sefidkon F. 2011. Repellent activity and persistence of essential oil from (Eucalyptus salmonophloia F. Muell) and (Eucalyptus kingsmillii (Mauden) Maiden & Blakely) on two spotted spider mite, (Tetranychus urticae Koch). Iranian Journal of Medicinal and Aromatic Plants 27(3): 54-65.
- Hill J M, Schoonhoven A V. 1981. The use of vegetable oils in controlling insect infestations in stored grains and pulses. Recent Advances in Food Science and Technology 1: 473-481.
- Isman M B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51: 45-66.
- Isman M B, Miresmailli S, Machial C. 2011. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemicals Review 10: 197-204.
- Jilani G, Saxena R C. 1990. Repellent and feeding deterrent effects of turmeric oil, sweet flag oil, neem oil and a neem based insecticide against lesser grain borer. Journal of Economic Entomology 83: 629-634.
- Kestenholz C, Stevenson P C, Belmain S R. 2007. Comparative study of field and laboratory evaluations of the ethnobotanical Cassia sophera L. (Leguminosae) for bioactivity against the storage pests Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) and Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Journal of Stored Product Research 43: 79-86.
- Khemira S, Mediouni-Ben Jemâa J, Haouel S, Khouja M L. 2012. Repellent activity of essential oil of Eucalyptus astringens against Rhyzopertha dominica and Oryzaephilus surinamensis. Acta Horticulturae 997: 207-213.
- Konstantopoulou L L, Vassilopoulou L, Mavragani-Tsipidou P, Scouras Z G. 1992. Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia 48: 616-619.
- Koul O. 2004. Biological activity of volatile di-n-propyl disulfide from seeds of neem, Azadirachta indica (Meliaceae), to two species of stored grain pests, Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). Journal of Economic Entomology 97: 1142-1147.
- Lee B H, Annis P C, Tumaalii F, Lee S E. 2004. Fumigant toxicity of Eucalyptus blakelyi and Melaleuca fulgens essential oils and 1, 8-cineole against different development stages of the rice weevil Sitophilus oryzae. Phytoparasitica 32: 498-506.
- Li Y S, Zou H Y. 2001. Insecticidal activity of extracts from Eupatorium adenophorum against four stored grain insects. Entomological Knowledge 38: 214-216.
- Mazzonetto F. 2002. Efeito de genótipos de feijoeiro e de pós origem vegetal sobre Zabrotes subfasciatus (Boh.) e Acanthoscelides obtectus (Say) (Col. Bruchidae). Tesis Doctor en Ciencias. Universidad de Sao Paulo, Piracicaba, Sao Paulo, Brasil. 134 pp.
- Nerio L S, Olivero-Verbal J, Stashenko E E. 2009. Repellent activities of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). Journal of Stored Product Research 45: 212-214.
- Nerio L S, Olivero-Verbel J, Stashenko E. 2010. Repellent activity of essential oils: a review. Bioresource Technology 101: 372-378.
- Obeng-ofori D, Reichmuth C H, Bekele A J, Hassanali A. 1998. Toxicity and protectant potential of camphor, a major component of essential oil of Ocimum kilimandscharicum, against four stored product beetles. International Journal of Pest Management 44: 203-209.
- Ogendo J O, Kostyukovski M, Ravid U, Matasyoh J C, Deng A L, Omolo E O, Kariuki S T, Shaaya E. 2008. Bioactivity of Ocimum gratissimum L. oil and two of its constituents against five insect pest attacking stored food products. Journal of Stored Product Research 44: 328-334.
- Olivero-Verbel J, Nerio L S, Stashenko E E. 2010. Bioactivity against Tribolium castaneum Herbst (Coleoptera:Tenebrionidae) of Cymbopogon citratus and Eucalyptus citriodora essential oils grown in Colombia. Pest Management Science 66: 664-665.
- Owsu E O. 2001. Effect of some Ghanian plant components on control of two stored product insect pests of cereals. Journal of stored Product Research 37(1): 85-91.
- Papachristos D P, Stamopoulos D C. 2002. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthosecelides obtectus (Say). Journal of Stored Product Research 38: 117-128.
- Pascual-Villalobos M J. 1999. Anti-insect activity of plant extracts from the wild flora in Southeastern Spain. Biochemical Systematics and Ecology 27 (1): 1-10.
- Procopio S O, Vendramim J D, Ribeiro Júnior J I, Santos J B. 2003. Bioatividade de diversos pós de origem vegetal em relação à Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Ciencia e Agrotecnologia 27: 1231-1236.
- Regnault-Roger C, Vincent C, Arnasson J T. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology 57: 405-425.
- Salvadores Y U, Silva G A, Tapia M V, Hepp R G. 2007. Spices powders for the control of maize weevil, Sitophilus zeamais Motschulsky in stored wheat. Chilean Journal of Agricultural Research 67: 147-154 Shaaya E, Kostjukovski M, Eilberg J, Sukprakarn C. 1997. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Product Research 33: 7-15.
- Tapondjou A L, Adler C, Fontem D A, Bouda H, Reichmut C. 2005. Bioactivities of cymol and essential oils of Cupressuss empervirens and Eucalyptus saligna against Sitophilus zeamais (Motschulsky) and Tribolium confusum (du Val). Journal of Stored Product Research 41: 91-102.
- Thanigaivel A, Vasantha Srinivasan P, Senthil Nathan S, Edwin E, Ponsankar A, Chellappandian M, Selin Rani S, Lija Escaline J, Kalaivani K. 2017. Impact of Terminalia chebula Retz. against Aedes aegypti L. and non-target aquatic predatory insects. Ecotoxicology Environmental Safety. 137: 210-217.
- Tong F, Coats J R. 2010. Effects of monoterpenoid insecticides on (3H)-TBOB binding in house fly GABA receptor and 36 Cl- uptake in American cockroach ventral nerve cord. Pesticide Biochemistry and Physiology 98 (3): 317-324.
- Tripathi A K, Prajapati V, Aggarwal K K, Khanuja S P S, Kumar S. 2000. Repellency and toxicity of oil from Artemisia annua to certain stored product beetles. Journal of Economic Entomology 93 (1): 43-47.
- Waliwitiya R, Isman M B, Vernon R S, Riseman A. 2005. Insecticidal activity of selected monoterpenoids and rosemary oil to Agriotes obscurus. (Coleoptera: Elateridae). Journal of Economic Entomology 98(5): 1560-1565.
- Zandi Sohani N, Hojjati M, Carbonell Barrachina. 2013. Insecticidal and repellent activities of the essential oil of Callistemon citrinus (Myrtaceae) against pulse beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Neotropical Entomology 42 (1): 89-94.
- Volatile Cues from Corcyra cephalonica Larva Elicit Behavioural Responses in Parasitoid, Habrobracon hebetor
Abstract Views :28 |
PDF Views:15
Authors
G. Basana Gowda
1,
Totan Adak
1,
P. D. Kamala Jayanthi
2,
P. Saravan Kumar
2,
G. GuruPirasanna-Pandi
1,
Naveenkumar B. Patil
1,
A. Annamalai
1,
P. C. Rath
1
Affiliations
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, IN
1 Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753 006, IN
2 Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru 560 089, IN
Source
Current Science, Vol 125, No 2 (2023), Pagination: 183-190Abstract
The rice moth, Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae), is a serious pest of grains in storage systems resulting in immense losses but is also widely used as a factitious host for mass rearing of many important natural enemies of crop pests. Given the role of kairomones, the aim of this study was to isolate and identify potential cues from the larval body wash of C. cephalonica, which could attract its gregarious ecto-parasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Gas chromatography with electroantennography (GC-EAG) and olfactory assays were used to demonstrate the attraction of female H. hebetor to different larval body volatiles. A total of 15 EAG-active compounds were discovered in the body wash of C. cephalonica larvae that triggered a response in female H. hebetor. Among them, four compounds (p-xylene, naphthalene, n-eicosane and n-tricosane) were bioassayed for the behavioural response of parasitoids and found that n-eicosane significantly attracted a higher number of parasitoids than others. Our work establishes the attraction of H. hebetor to volatile kairomone cues emanating from the factitious host larval body, which offers an opportunity for its parasitoid, H. hebetor to improve the mass rearing efficiencyKeywords
Behavioural Assays, GC-EAG, GC-MS, Larval Volatiles, Olfactometer.References
- Hagstrum, D. and Subramanyam, B., Fundamentals of Stored-Product Entomology, St Paul. Woodhead Publishing and AACC International Press, 2006.
- Anukiruthika, T., Jian, F. and Jayas, D. S., Movement and behavioral response of stored product insects under stored grain environments-A review. J. Stored Prod. Res., 2021, 90, 101752; https://doi.org/10.1016/j.jspr.2020.101752.
- Coelho, M. B., Marangoni, S. and Macedo, M. L. R., Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae). Comp. Biochem. Physiol. Part C, 2007, 146(3), 406–414; https://doi.org/10.1016/j.cbpc.2007.05.001.
- Rani, A., Chand, S., Thakur, N. and Nath, A. K., Alpha-amylase inhibitor from local common bean selection: effect on growth and development of Corcyra cephalonica. J. Stored Prod. Res., 2018, 75, 35–37; https://doi.org/10.1016/j.jspr.2017.10.009.
- Allotey, J. and Azalekor, W., Some aspects of the biology and control using botanicals of the rice moth, Corcyra cephalonica (Stainton), on some pulses. J. Stored Prod. Res., 2000, 36(3), 235–243; https://doi.org/10.1016/S0022-474X(99)00045-4.
- Gowda, G. B. et al., Insecticide-induced hormesis in a factitious host, Corcyra cephalonica, stimulates the development of its gregarious ecto-parasitoid, Habrobracon hebetor. Biol. Control, 2021, 160, 104680; https://doi.org/10.1016/j.biocontrol.2021.104680.
- Hashem, M. Y., Ahmed, A. A., Ahmed, S. S., Mahmoud, Y. A. and Khalil, S. S., Impact of modified atmospheres on respiration of last instar larvae of the rice moth, Corcyra cephalonica (Lepidoptera: Pyralidae). Arch. Phytopathol. Plant Prot., 2018, 51(19–20), 1090–1105; https://doi.org/10.1080/03235408.2018.1560022.
- Osman, N. (ed.), Assessment of damage by the rice moth Corcyra cephalonica (St.) on different grains at four levels of moisture content. In Proceedings of 7th ASEAN Tech Seminar on Grain Post Harvest Technology, 1984.
- Champ, B. and Dyte, C., FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Prot. Bull., 1977, 25(2), 49–67.
- Adarkwah, C. et al., Effectiveness of the egg parasitoid Trichogramma evanescens preventing rice moth from infesting stored bagged commodities. J. Stored Prod. Res., 2015, 61, 102–107; https://doi.org/10.1016/j.jspr.2015.01.002.
- Adarkwah, C., Obeng‐Ofori, D., Opuni‐Frimpong, E., Ulrichs, C. and Schöller, M., Predator–parasitoid–host interaction: biological control of Rhyzopertha dominica and Sitophilus oryzae by a combination of Xylocoris flavipes and Theocolax elegans in stored cereals. Entomol. Exp. Appl., 2019, 167(2), 118–128; https://doi.org/10.1111/eea.12760.
- Stejskal, V., Kosina, P. and Kanyomeka, L., Arthropod pests and their natural enemies in stored crops in northern Namibia. J. Pest Sci., 2006, 79(1), 51–55; https://doi.org/10.1007/s10340-005-0109-2.
- Vincent, A., Singh, D. and Mathew, I. L., Corcyra cephalonica: a serious pest of stored products or a factitious host of biocontrol agents? J. Stored Prod. Res., 2021, 1(94), 101876.
- Akinkurolere, R., Boyer, S., Chen, H. and Zhang, H., Parasitism and host-location preference in Habrobracon hebetor (Hymenoptera: Braconidae): role of refuge, choice and host instar. J. Econ. Entomol., 2009, 102(2), 610–615; https://doi.org/10.1603/029.102.0219.
- Mbata, G. N., Eason, J., Payton, M. and Davis, M., Putative host volatiles used by Habrobracon hebetor (Hymenoptera: Braconidae) to locate larvae of Plodia interpunctella (Lepidoptera: Pyralidae). J. Insect Behav., 2017, 30(3), 287–299; https://doi.org/10.1007/s10905-017-9619-z.
- Ghimire, M. N. and Phillips, T. W., Mass rearing of Habrobracon hebetor Say (Hymenoptera: Braconidae) on larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae): effects of host density, parasitoid density, and rearing containers. J. Stored Prod. Res., 2010, 46(4), 214–220; https://doi.org/10.1016/j.jspr.2010.05.003.
- Antolin, M. F., Ode, P. J. and Strand, M. R., Variable sex ratios and ovicide in an outbreeding parasitic wasp. Anim. Behav., 1995, 49(3), 589–600; https://doi.org/10.1016/0003-3472(95)80192-8.
- Cox, P., Potential for using semiochemicals to protect stored products from insect infestation. J. Stored Prod. Res., 2004, 40(1), 1–25; https://doi.org/10.1016/S0022-474X(02)00078-4.
- Sharma, A., Sandhi, R. K. and Reddy, G. V., A review of interactions between insect biological control agents and semiochemicals. Insects, 2019, 10(12), 439; https://doi.org/10.3390/insects10120439.
- Lockey, K. and Metcalfe, N., Cuticular hydrocarbons of adult Himatismus species and a comparison with 21 other species of adult Tenebrionid beetle using multivariate analysis. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol., 1988, 91(2), 371–382; https://doi.org/10.1016/0305-0491(88)90156-3.
- Tumlinson, J. H., Lewis, W. J. and Vet, L. E., How parasitic wasps find their hosts. Sci. Am., 1993, 268(3), 100–106; https://www.jstor.org/stable/24941408.
- Darwish, E., El-Shazly, M. and El-Sherif, H., The choice of probing sites by Bracon hebetor Say (Hymenoptera: Braconidae) foraging for Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Stored Prod. Res., 2003, 39(3), 265–276; https://doi.org/10.1016/S0022-474X(02)00078-4.
- Lewis, W., Jones, R. L., Nordlund, D. A. and Gross, H., Kairomones and their use for management of entomophagous insects: II. mechanisms causing increase in rate of parasitization by Trichogramma spp. J. Chem. Ecol., 1975, 1(3), 349–360.
- Tilden, R. and Ferkovich, S., Kairomonal stimulation of oviposition into an artificial substrate by the endoparasitoid Microplitis croceipes (Hymenoptera: Braconidae). Ann. Entomol. Soc. Am., 1988, 81(1), 152–156; https://doi.org/10.1093/aesa/81.1.152.
- Lalitha, Y. and Ballal, C. R., Influence of seasons and inoculum dosages on the production efficiency of Corcyra cephalonica Stainton. J. Biol. Control, 2015, 29(1), 25–30.
- Chaudhuri, N. and Senapati, S., Development and reproductive performance of rice moth Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) in different rearing media. J. Saudi. Soc. Agric. Sci., 2017, 16(4), 337–343; https://doi.org/10.1016/j.jssas.2015.11.004.
- Gadratagi, B. G. et al., Performance of Trichogramma japonicum under field conditions as a function of the factitious host species used for mass rearing. PLoS ONE, 2021, 16(8), e0256246; https://doi.org/10.1371/journal.pone.0256246.
- Hagstrum, D. W. and Smittle, B. J., Host-finding ability of Bracon hebetor and its influence upon adult parasite survival and fecundity. Environ. Entomol., 1977, 6(3), 437–439; https://doi.org/10.1093/ee/6.3.437.
- Basana Gowda, G. et al., Insecticide-induced hormesis in a factitious host, Corcyra cephalonica, stimulates the development of its gregarious ecto-parasitoid, Habrobracon hebetor. Biol. Control, 2021, 160, 104680; https://doi.org/10.1016/j.biocontrol.2021.104680.
- Venugopal, U., Jayanthi, P. D. K., Kumar, P., Jagadeesh, K. and Mohan, K. M., Host larval body odours AID host location of Apanteles machaeralis, a braconid larval endoparasitoid of cucumber moth Diaphania Indica. Indian J. Entomol., 2021, 83(3), 315–320; http://dx.doi.org/10.5958/0974-8172.2021.00107.3.
- Subramani, V. et al., Volatile chemical signals underlying the host plant preferences of Tuta absoluta. Entomol. Exp. Appl., 2021, 169(11), 997–1007; https://doi.org/10.1111/eea.13099.
- Das, S., Koner, A. and Barik, A., A beetle biocontrol agent of rice-field weeds recognizes its host plants by surface wax long-chain alkanes and free fatty acids. Chemoecology, 2019, 29(4), 155–170; https://doi.org/10.1007/s00049-019-00285-1.
- Mitra, S., Sarkar, N. and Barik, A., Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as shortrange attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae). Bull. Entomol. Res., 2017, 107(3), 391–400; https://doi.org/10.1017/S0007485316001012.
- Kamala Jayanthi, P. D. et al., Specific volatile compounds from mango elicit oviposition in gravid Bactrocera dorsalis females. J. Chem. Ecol., 2014, 40(3), 259–266; https://doi.org/10.1007/s10886-014-0403-7.
- Bertschy, C., Turlings, T. C. J., Bellotti, A. C. and Dorn, S., Chemically-mediated attraction of three parasitoid species to mealybug-infested cassava leaves. Fla. Entomol., 1997, 80(3), 1–14.
- Murali-Baskaran, R. K. et al., Role of kairomone in biological control of crop pests – a review. Physiol. Mol. Plant Pathol., 2018, 101, 3–15; https://doi.org/10.1016/j.pmpp.2017.07.004.
- Rani, P. U., Sambangi, P. and Sandhyarani, K., Impact of plant phenolics as semiochemicals on the performance of Trichogramma chilonis Ishii. J. Insect Behav., 2017, 30(1), 16–31; https://doi.org/10.1007/s10905-016-9595-8.
- Dweck, H. K., Svensson, G. P., Gündüz, E. A. and Anderbrant, O., Kairomonal response of the parasitoid, Bracon hebetor Say, to the male-produced sex pheromone of its host, the greater waxmoth, Galleria mellonella (L.). J. Chem. Ecol., 2010, 36(2), 171–178; https://doi.org/10.1007/s10886-010-9746-x.
- Ram, A., Tiwari, L. D., Dass, R. and Mehrotra, K. N., Evidence for the presence of a kairomone in Corcyra cephalonica Staint. larvae for Bracon brevicornis Wesm. (Hymen., Braconidae). J. Appl. Entomol., 1982, 93(1–5), 338–341.
- Strand, M. R., Williams, H. J., Vinson, S. B. and Mudd, A., Kairomonal activities of 2-acylcyclohexane-1,3 diones produced by Ephestia kuehniella Zeller in eliciting searching behavior by the parasitoid Bracon hebetor (Say). J. Chem. Ecol., 1989, 15, 1491–1500.
- Shonouda, M. L. and Nasr, F. N., Impact of larval‐extract (kairomone) of Ephestia kuehniella Zell. (Lep., Pyralidae), on the behaviour of the parasitoid Bracon hebetor Say. (Hym., Braconidae). J. Appl. Entomol., 1998, 122(1–5), 33–35.
- Zhu, G. et al., Chemical investigations of volatile kairomones produced by Hyphantria cunea (Drury), a host of the parasitoid Chouioia cunea Yang. Bull. Entomol. Res., 2017, 107(2), 234–240; https://doi.org/10.1017/S0007485316000833.
- Mohanasundaram, A. et al., Electroantennography and behavioral studies of Eublemma amabilis [Moore] and Pseudohypatopa pulverea [Meyr] in relation to volatiles of lac insect (Kerria lacca Kerr.) and its associated products. Int. J. Trop. Insect Sci., 2022, 42(3), 2313–2324; https://doi.org/10.1007/s42690-022-00754-1.
- Paul, A., Madhu, S. and Singh, D. B., Kairomonal effects of different host body washings on parasitism by Trichogramma brasiliensis and T. japonicum. Int. J. Trop. Insect Sci., 1997, 17(3–4), 373–377; https://doi.org/10.1017/S1742758400019214.
- Trang, T. T. and Dey, D., Electroantennogram responses of Chelonus blackburni Cameron, egg-larval parasitoid of spotted boll worm Earias vitella to infochemicals on cotton ecosystem. Omonrice, 2013, 19, 118–130.
- Xiu, C.-L. et al., Perception of and behavioral responses to host plant volatiles for three Adelphocoris species. J. Chem. Ecol., 2019, 45(9), 779–788; https://doi.org/10.1007/s10886-019-01102-3.
- Li, M., Xia, S., Zhang, T., Williams III, L., Xiao, H. and Lu, Y., Volatiles from cotton plants infested by Agrotis segetum (Lep.: Noctuidae) attract the larval parasitoid Microplitis mediator (Hym.: Braconidae). Plants, 2022, 11(7), 863; https://doi.org/10.3390/plants11070863.
- Chi, D., Li, X., Yu, J., Xie, X. and Wang, G., The EAG response and behavior of the Saperda populnea L. to volatiles from poplar branches. Acta Ecol. Sin., 2011, 31(6), 334–340; https://doi.org/10.1016/j.chnaes.2011.09.003.
- Guleria, N., Nebapure, S. M., Jayanthi, P. K., Suby, S. and Kumar, P. S., Identification of male-specific active host plant volatiles for maize stem borer, Chilo partellus Swinhoe. Curr. Sci., 2021, 121(4), 578.
- Barth, R., Bau und Funktion der Flugel drusen einiger Mikrolepidopteren. Untersuhungen an den Pyraliden: Aphomia gularis, Galleria mellonella, Plodia interpunctella, Ephestia elutella und E. kuehniella. Z. Wiss Zool., 1937, 150, 1–37.
- Roller, H., Bieman, K., Bjerke, J. S., Norgard, D. W. and Mcshan, W. H., Sex pheromone of pyralid moth. I. Isolation and identification of the sex-attractant of Galleria mellonella L. (Greater wax moth). Acta Entomol. Bohemoslo., 1968, 65, 208–211.
- Dweck, H. K., Svensson, G. P., Gündüz, E. A. and Anderbrant, O., Kairomonal response of the parasitoid, Bracon hebetor Say, to the male-produced sex pheromone of its host, the greater waxmoth, Galleria mellonella (L.). J. Chem. Ecol., 2010, 36, 171–178.
- Silberbush, A., Tsurim, I., Margalith, Y. and Blaustein, L., Interactive effects of salinity and a predator on mosquito oviposition and larval performance. Oecologia, 2014, 175(2), 565–575; https://doi.org/10.1007/s00442-014-2930-x.
- Nakashima, Y., Birkett, M. A., Pye, B. J., Pickett, J. A. and Powell, W., The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. J. Chem. Ecol., 2004, 30(6), 1103–1116; https://doi.org/10.1023/B:JOEC.0000030266.81665.19.
- Parthiban, P., Chinniah, C., Kalyanasundarm, M. and Baskaran, R., Kairomonal effect of acetone extracts of groundnut on foraging activities of Trichogramma chilonis (Ishii) and Chrysoperla zastrowi sillemi (Esben-Peterson). Legume Res., 2017, 40(2), 393–396; http://10.0.73.117/lr.v0iOF.11191.
- Nakashima, Y., Birkett, M. A., Pye, B. J. and Powell, W., Chemically mediated intraguild predator avoidance by aphid parasitoids: interspecific variability in sensitivity to semiochemical trails of ladybird predators. J. Chem. Ecol., 2006, 32(9), 1989–1998; https://doi.org/10.1007/s10886-006-9123-y.
- Hung, K. Y., McElfresh, J. S., Zou, Y., Wayadande, A. and Gerry, A. C., Identification of volatiles from plants infested with honeydew-producing insects, and attraction of house flies (Diptera: Muscidae) to these volatiles. J. Med. Entomol., 2020, 57(3), 667–676; https://doi.org/10.1093/jme/tjz232.
- Yasukawa, S., Kato, H., Yamaoka, R., Tanaka, H., Arai, H. and Kawano, S., Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae): I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Spec. Biol., 1992, 7, 121.
- Sarkar, N., Mukherjee, A. and Barik, A., Long-chain alkanes: allelochemicals for host location by the insect pest, Epilachna dodecastigma (Coleoptera: Coccinellidae). Appl. Entomol. Zool., 2013, 48(2), 171–179; https://doi.org/10.1007/s13355-013-0168-4.
- Schoonhoven, L. M., Van Loon, J. J. and Dicke, M., Insect-Plant Biology, Oxford University Press on Demand, 2005.
- Giunti, G. et al., Parasitoid learning: current knowledge and implications for biological control. Biol. Control, 2015, 90, 208–219; https://doi.org/10.1016/j.biocontrol.2015.06.007.
- Kruidhof, H. M., Kostenko, O., Smid, H. M. and Vet, L. E., Integrating parasitoid olfactory conditioning in augmentative biological control: potential impact, possibilities, and challenges. Front Ecol. Evol., 2019, 7, 84; https://doi.org/10.3389/fevo.2019.00084.
- Ayelo, P. M., Pirk, C. W., Yusuf, A. A., Chailleux, A., Mohamed, S. A. and Deletre, E., Exploring the kairomone-based foraging behaviour of natural enemies to enhance biological control: a review. Front. Ecol. Evol., 2021, 9, 641974; https://doi.org/10.3389/fevo. 2021.641974.
- Randlkofer, B., Obermaier, E., Hilker, M. and Meiners, T., Vegetation complexity – the influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic Appl. Ecol., 2010, 11(5), 383–395; https://doi.org/10.1016/j.baae. 2010.03.003.
- Rodriguez-Saona, C. R. and Stelinski, L. L., Behavior-modifying strategies in IPM: theory and practice. In Integrated pest management: Innovation-Development Process, Springer, Berlin, Germany, 2009, pp. 263–315.