Refine your search
Co-Authors
- P. Chandran
- S. K. Ray
- D. K. Pal
- C. Mandal
- D. K. Mandal
- D. G. Padekar
- P. D. Deshmukh
- P. Tiwary
- S. K. Gangopadhyay
- Dipak Sarkar
- Abhijit S. Ambekar
- D. N. Sridhar
- S. G. Anantwar
- V. T. Sahu
- M. S. Gaikwad
- D. Sarkar
- J. Prasad
- G. S. Sidhu
- K. M. Nair
- A. K. Sahoo
- T. H. Das
- R. S. Singh
- R. Srivastava
- T. K. Sen
- S. Chatterji
- N. G. Patil
- G. P. Obireddy
- S. K. Mahapatra
- K. S. Anil Kumar
- K. Das
- A. K. Singh
- S. K. Reza
- D. Dutta
- S. Srinivas
- K. Karthikeyan
- M. V. Venugopalan
- K. Velmourougane
- A. Srivastava
- Mausumi Raychaudhuri
- D. K. Kundu
- K. G. Mandal
- G. Kar
- S. L. Durge
- G. K. Kamble
- A. M. Nimkar
- S. V. Bobade
- S. Patil
- K. M. Gaikwad
- H. Bhondwe
- S. S. Dohtre
- S. Gharami
- S. G. Khapekar
- A. Koyal
- Sujatha
- B. M. N. Reddy
- P. Sreekumar
- D. P. Dutta
- L. Gogoi
- V. N. Parhad
- A. S. Halder
- R. Basu
- R. Singh
- B. L. Jat
- D. L. Oad
- N. R. Ola
- K. Wadhai
- M. Lokhande
- V. T. Dongare
- A. Hukare
- N. Bansod
- A. Kolhe
- J. Khuspure
- H. Kuchankar
- D. Balbuddhe
- S. Sheikh
- B. P. Sunitha
- B. Mohanty
- D. Hazarika
- S. Majumdar
- R. S. Garhwal
- A. Sahu
- S. Mahapatra
- S. Puspamitra
- A. Kumar
- N. Gautam
- B. A. Telpande
- A. M. Nimje
- C. Likhar
- S. Thakre
- A. P. Nagar
- J. A. Dijkshoorn
- N. H. Batjes
- P. S. Bindraban
- S. V. Patil
- K. Sujatha
- A. H. Kolhe
- M. Raychaudhuri
- Ashwani Kumar
- S. Raychaudhuri
- S. K. Singh
- Jagdish Prasad
- Alok Kumar Srivastava
- Kulandaivelu Velmourougane
- Ashutosh Kumar
- K. K. Bandhopadhyay
- K. K. Mandal
- K. R. Reddy
- N. G. Bansod
- D. Dasgupta
- Dipanwita Dasgupta
- B. Telpande
- Suhas P. Wani
- K. L. Sahrawat
- S. Pillai
- A. Nimje
- Swati Chaudhury
- Ankush Nimje
- Deepak Padekar
- Deepak G. Padekar
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Bhattacharyya, T.
- Distribution of Zeolitic Soils in India
Abstract Views :190 |
PDF Views:76
Authors
Affiliations
1 National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
1 National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
Source
Current Science, Vol 109, No 7 (2015), Pagination: 1305-1313Abstract
Calcium-rich zeolites control naturally occurring chemical degradation in the black soils (Vertisols and their intergrades). With the help of modern tools such as remote sensing, geographic information system, soil database, geological information, topography and other related datasets, an attempt was made to update the distribution of zeolitic soils in India. To ascertain the presence of Ca-rich zeolites in soils, mineralogical information was generated using X-ray diffraction techniques for the selected soils from the Indo-Gangetic Plains and the black soil region (BSR). The zeolitic soils are mostly confined in the pediments (sloping regions of the upland) of the Deccan plateau in BSR, although a few are also found along the valley floor. The IGP, on the other hand, hosts the zeolitic black soils along the drainage channels in the valley floor where the basaltic alluvium deposited the smectite and clay-rich sediments. The study indicates Ca-rich zeolitic soils in India to occupy an area of ~2.8 m ha, of which BSR and IGP constitute ~92% and ~8% respectively. The zeolites are mostly concentrated in the drier tracts of the country and help in maintaining soil health against natural soil degradation. While the occurrence of Ca-rich black soils in BSR was known, those in the IGP are new findings. With the help of the available information, we have generated state-of-art information approximation map on the distribution of Ca-rich zeolites in Indian soils.Keywords
Black Soils, Calcium-rich Zeolites, Mineralogical Information, Soil Map.- Is Irrigation Water Causing Degradation in Black Soils?
Abstract Views :202 |
PDF Views:79
Authors
Affiliations
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 030, IN
2 Dr Panjabrao Deshmukh Krishi Vidyapeeth, Krishi Nagar, Akola 444 104, IN
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 030, IN
2 Dr Panjabrao Deshmukh Krishi Vidyapeeth, Krishi Nagar, Akola 444 104, IN
Source
Current Science, Vol 106, No 11 (2014), Pagination: 1487-1489Abstract
No Abstract.- Hydromorphic Soils of Tripura: Their Pedogenesis and Characteristics
Abstract Views :170 |
PDF Views:73
Authors
Affiliations
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Regional Centre, Kolkata 700 091, IN
2 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 033, IN
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Regional Centre, Kolkata 700 091, IN
2 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 033, IN
Source
Current Science, Vol 108, No 5 (2015), Pagination: 984-993Abstract
Hydromorphic soils that have developed on gently to very gently sloping flood plain areas of Tripura, North East India under humid tropical climate, were studied for characterization with reference to the degree of hydromorphism. The soils are characterized by the redoximorphic features, viz. mottling, gley with chroma 2 or less, and have a typical gley colour from the surface to subsoil, mostly influenced by the high groundwater level. These soils support the granary of the state. The degree of hydromorphism in these soils has been determined by the extent and distribution of mottles and gley in the profiles, which reflects the effect of the fluctuating groundwater table and depth of the permanent water table. The soils are deep to very deep with varying texture and drainage classes and have some common characters during pedogenesis under impeded drainage condition. Soils are acidic, medium to high in organic carbon, low in cation exchange capacity (CEC) and medium to high in base status. The low value of 1N KCl extractable Al+3 corroborates relatively high proportion of hydroxyinterlayered vermiculitic clay mineral present in the soil. Soil texture is found to be the key factor in developing hydromorphism as well as soil organic carbon stock in the hydromorphic soils of Tripura. Translocation of clay and free iron oxide (Fed) is generally prominent in the soils with medium to coarse texture. Based on the physical and chemical properties and the hydromorphic index, the soils can be arranged as Nayanpur > Dukli II > Dharaichherra > Dukli I > Goachand to indicate the degrees of hydromorphism.Keywords
Gley, Hydromorphic Soils, Mottles, Soil Organic Carbon.- Probable Source of Rocks for Millstones and Cannon Balls of Goa, India
Abstract Views :158 |
PDF Views:77
Authors
Abhijit S. Ambekar
1,
D. N. Sridhar
2,
S. K. Ray
3,
T. Bhattacharyya
3,
S. G. Anantwar
3,
V. T. Sahu
3,
M. S. Gaikwad
3
Affiliations
1 Archaeological Survey of India, Goa Circle, Goa 403 402, IN
2 Ella Cidade, Old Goa 403 402, IN
3 Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur 440 033, IN
1 Archaeological Survey of India, Goa Circle, Goa 403 402, IN
2 Ella Cidade, Old Goa 403 402, IN
3 Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur 440 033, IN
Source
Current Science, Vol 108, No 2 (2015), Pagination: 273-282Abstract
The Europeans started to come to India at the beginning of the 16th century for trade. The Portuguese were the first group of Europeans to reach the southwestern coast of India in 1498 and establish their colonies. They were also the last group of the Europeans to leave the Indian territory after ruling a part of the country for about 450 years. With their arrival, new technology and warfare tactics were introduced in the region. Associated with their artillery, preparation of gunpowder as a new technology was introduced in Goa. Gigantic sized millstones were used for the production of gunpowder in Casa de Polvora, Panelim, Goa. In 2007, when real estate developers commenced their construction work at Casa de Polvora, the Archaeological Survey of India salvaged the endangered millstones from Panelim. The aim of the present communication is to analyse the samples and to find out whether the stone used was quarried from Dharavi (Uttan; which was a part of Bassein territory of the Portuguese) from where the Portuguese acquired stones on a large scale for the decoration of churches in Goa. To achieve this, archaeological, petrographic, mineralogical and geochemical studies have been carried out on samples of millstones and the quarried site at Dharavi (Uttan). In addition sample was also collected from cannon ball found at Arsenal (Old Goa) to find out whether stone from Dharavi (Uttan) was used. The analytical results suggest that the millstones are made of limestone, the Dharavi (Uttan) stone is more siliceous - and the cannon balls are made from basalt.Keywords
Cannon Balls, Gunpowder, Millstones, Rock Source.- Georeferenced Soil Information System: Assessment of Database
Abstract Views :215 |
PDF Views:106
Authors
T. Bhattacharyya
1,
D. Sarkar
1,
S. K. Ray
1,
P. Chandran
1,
D. K. Pal
2,
D. K. Mandal
1,
J. Prasad
1,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
C. Mandal
1,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
N. G. Patil
1,
G. P. Obireddy
1,
S. K. Mahapatra
3,
K. S. Anil Kumar
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
S. Srinivas
4,
P. Tiwary
1,
K. Karthikeyan
1,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
V. T. Sahu
1,
K. M. Gaikwad
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1,
A. P. Nagar
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1400-1419Abstract
Land-use planning is a decision-making process that facilitates the allocation of land to different uses that provide optimal and sustainable benefit. As land-use is shaped by society-nature interaction, in land-use planning different components/facets play a significant role involving soil, water, climate, animal (ruminant/ non-ruminant) and others, including forestry and the environment needed for survival of mankind. At times these components are moderated by human interference. Thus land-use planning being a dynamic phenomenon is not guided by a single factor, but by a complex system working simultaneously,which largely affects the sustainability. To address such issues a National Agricultural Innovation Project (NAIP) on 'Georeferenced soil information system for land-use planning and monitoring soil and land quality for agriculture' was undertaken to develop threshold values of land quality parameters for land-use planning through quantitative land evaluation and crop modelling for dominant cropping systems in major agro-ecological sub-regions (AESRs) representing rice-wheat cropping system in the Indo-Gangetic Plains (IGP) and deep-ischolar_mained crops in the black soil regions (BSR). To assess the impact of landuse change, threshold land quality indicator values are used. A modified AESR map for agricultural landuse planning is generated for effective land-use planning.Keywords
Agriculture, Georeferenced Soil Information System, Land-Use Planning, Spatial Database.- Development of Soil and Terrain Digital Database for Major Food-Growing Regions of India for Resource Planning
Abstract Views :201 |
PDF Views:75
Authors
P. Chandran
1,
P. Tiwary
1,
T. Bhattacharyya
1,
C. Mandal
1,
J. Prasad
1,
S. K. Ray
1,
D. Sarkar
1,
D. K. Pal
2,
D. K. Mandal
1,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
N. G. Patil
1,
G. P. Obireddy
1,
S. K. Mahapatra
3,
K. S. Anil Kumar
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
S. Srinivas
4,
K. Karthikeyan
1,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
J. A. Dijkshoorn
11,
N. H. Batjes
11,
P. S. Bindraban
11,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. V. Patil
1,
K. M. Gaikwad
1,
V. T. Sahu
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
K. Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. H. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi, 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
11 ISRIC, Wageningen, NL
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi, 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
11 ISRIC, Wageningen, NL
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1420-1430Abstract
Soil information system in SOTER (soil and terrain digital database) framework is developed for the Indo- Gangetic Plains (IGP) and black soil regions (BSR) of India with the help of information from 842 georeferenced soil profiles including morphological, physical and chemical properties of soils in addition to the site characteristics and climatic information. The database has information from 82 climatic stations that can be linked with the other datasets. The information from this organized database can be easily retrieved for use and is compatible with the global database. The database can be updated with recent and relevant data as and when they are available. The database has many applications such as inputs for refinement of agroecological regions and sub-regions, studies on carbon sequestration, land evaluation and land (crop) planning, soil erosion, soil quality, carbon and crop modelling and other climate change related research. This warehouse of information in a structured framework can be used as a data bank for posterity.Keywords
Black Soil Region, Database, Indo-Gangetic Plains, SOTER.- Soil Information System: Use and Potentials in Humid and Semi-Arid Tropics
Abstract Views :188 |
PDF Views:88
Authors
T. Bhattacharyya
1,
D. Sarkar
1,
S. K. Ray
1,
P. Chandran
1,
D. K. Pal
1,
D. K. Mandal
1,
J. Prasad
1,
G. S. Sidhu
2,
K. M. Nair
3,
A. K. Sahoo
4,
T. H. Das
4,
R. S. Singh
5,
C. Mandal
1,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
N. G. Patil
1,
G. P. Obireddy
1,
S. K. Mahapatra
2,
K. S. Anil Kumar
3,
K. Das
4,
A. K. Singh
5,
S. K. Reza
6,
D. Dutta
7,
S. Srinivas
3,
P. Tiwary
1,
K. Karthikeyan
1,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
V. T. Sahu
1,
K. M. Gaikwad
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
3,
Sujatha
3,
B. M. N. Reddy
3,
P. Sreekumar
3,
D. P. Dutta
6,
L. Gogoi
6,
V. N. Parhad
1,
A. S. Halder
4,
R. Basu
4,
R. Singh
5,
B. L. Jat
5,
D. L. Oad
5,
N. R. Ola
5,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
3,
B. Mohanty
2,
D. Hazarika
6,
S. Majumdar
4,
R. S. Garhwal
5,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1550-1564Abstract
The articles presented in this special section emanated from the researches of consortium members of the National Agricultural Innovative Project (NAIP, Component 4) of the Indian Council of Agricultural Research (ICAR), New Delhi. These researches have helped develop a soil information system (SIS). In view of the changing scenario all over the world, the need of the hour is to get assistance from a host of researchers specialized in soils, crops, geology, geography and information technology to make proper use of the datasets. Equipped with the essential knowledge of data storage and retrieval for management recommendations, these experts should be able to address the issues of land degradation, biodiversity, food security, climate change and ultimately arrive at an appropriate agricultural land-use planning. Moreover, as the natural resource information is an essential prerequisite for monitoring and predicting global environmental change with special reference to climate and land use options, the SIS needs to be a dynamic exercise to accommodate temporal datasets, so that subsequently it should result in the evolution of the soil information technology. The database developed through this NAIP would serve as an example of the usefulness of the Consortium and the research initiative of ICAR involving experts from different fields to find out the potentials of the soils of humid and semi-arid bioclimatic systems of the country.Keywords
Agricultural Land-Use Planning, Humid and Semi-Arid Tropics, Soil Information System, Soil Information Technology, Temporal Datasets.- Pedotransfer Functions: A Tool for Estimating Hydraulic Properties of Two Major Soil Types of India
Abstract Views :190 |
PDF Views:68
Authors
P. Tiwary
1,
N. G. Patil
1,
T. Bhattacharyya
1,
P. Chandran
1,
S. K. Ray
1,
K. Karthikeyan
1,
D. Sarkar
1,
D. K. Pal
2,
J. Prasad
1,
C. Mandal
1,
D. K. Mandal
1,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
G. P. Obireddy
1,
S. K. Mahapatra
3,
K. S. Anil Kumar
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
S. Srinivas
4,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
M. Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
K. M. Gaikwad
1,
V. T. Sahu
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
K. Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. H. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1431-1439Abstract
In recent years, georeferenced soil information system has gained significance in agricultural land-use planning and monitoring the changes in soil properties/ soil quality induced by land-use changes. The spatiotemporal information on saturated hydraulic conductivity (sHC) and soil water retention-release behaviour is essential for proper crop and land-use planning. The sHC greatly influences the drainage process and soil water retention-release behaviour, ultimately affecting the crop growth and yield. However, sHC and water retention are not measured in a routine soil survey and are generally estimated from easily measurable soil parameters through pedotransfer functions (PTFs). In the present study, PTFs for sHC and water retention were developed separately for the soils of two food-growing zones of India (the Indo-Gangetic Plains (IGP) and the black soil region (BSR)). For the IGP soils, sHC is affected by the increased subsoil bulk density due to intensive cultivation. In BSR, presence of Na+ and Mg++ ions affects the drainage and water retention of the soils. Therefore, these soil parameters were considered while developing the PTFs using stepwise regression technique in SPSS. The validation of PTFs was found to be satisfactory with low RMSE values and high model efficiency.Keywords
Model Efficiency, Pedotransfer Functions, Regression Analysis, Saturated Hydraulic Conductivity, Water Retention.- Natural Resources of the Indo-Gangetic Plains: A Land-Use Planning Perspective
Abstract Views :151 |
PDF Views:77
Authors
N. G. Patil
1,
P. Tiwary
1,
T. Bhattacharyya
1,
P. Chandran
1,
D. Sarkar
1,
D. K. Pal
2,
D. K. Mandal
1,
J. Prasad
1,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
C. Mandal
1,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
S. K. Ray
1,
G. P. Obireddy
1,
S. K. Mahapatra
3,
K. S. Anil Kumar
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
S. Srinivas
4,
K. Karthikeyan
4,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
M. Raychaudhuri
10,
D. K. Kundu
11,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
K. M. Gaikwad
1,
V. T. Sahu
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
K. Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. H. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 440 010, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
11 Directorate of Water Management, Bhubaneswar 751 023
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 440 010, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
11 Directorate of Water Management, Bhubaneswar 751 023
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1537-1549Abstract
Current status of land/soil resources of the Indo- Gangetic Plains (IGP) is analysed to highlight the issues that need to be tackled in near future for sustained agricultural productivity. There are intraregional variations in soil properties, cropping systems; status of land usage, groundwater utilization and irrigation development which vary across the subregions besides demographies. Framework for land use policy is suggested that includes acquisition of farm-level data, detailing capability of each unit to support a chosen land use, assess infrastructural support required to meet the projected challenges and finally develop skilled manpower to effectively monitor the dynamics of land use changes.Keywords
Agricultural Productivity, Land Use Planning, Natural Resources, Soil Properties and Soil Management.- Soil Physical Quality of the Indo-Gangetic Plains and Black Soil Region
Abstract Views :241 |
PDF Views:116
Authors
Mausumi Raychaudhuri
1,
D. K. Kundu
1,
Ashwani Kumar
1,
K. G. Mandal
1,
S. Raychaudhuri
1,
G. Kar
1,
T. Bhattacharyya
2,
D. Sarkar
3,
D. K. Pal
4,
D. K. Mandal
3,
J. Prasad
3,
G. S. Sidhu
5,
K. M. Nair
6,
A. K. Sahoo
7,
T. H. Das
7,
R. S. Singh
8,
C. Mandal
3,
R. Srivastava
3,
T. K. Sen
3,
S. Chatterji
3,
P. Chandran
3,
S. K. Ray
3,
N. G. Patil
3,
G. P. Obireddy
3,
S. K. Mahapatra
5,
K. S. Anil Kumar
6,
K. Das
5,
A. K. Singh
8,
S. K. Reza
9,
D. Dutta
7,
S. Srinivas
6,
P. Tiwary
3,
K. Karthikeyan
3,
M. V. Venugopalan
9,
K. Velmourougane
9,
A. Srivastava
10,
S. L. Durge
3,
S. Puspamitra
1,
S. Mahapatra
1,
G. K. Kamble
3,
M. S. Gaikwad
3,
A. M. Nimkar
3,
S. V. Bobade
3,
S. G. Anantwar
3,
S. Patil
3,
K. M. Gaikwad
3,
V. T. Sahu
3,
H. Bhondwe
3,
S. S. Dohtre
3,
S. Gharami
3,
S. G. Khapekar
3,
A. Koyal
5,
Sujatha
5,
B. M. N. Reddy
5,
P. Sreekumar
5,
D. P. Dutta
9,
L. Gogoi
9,
V. N. Parhad
1,
A. S. Halder
7,
R. Basu
7,
R. Singh
7,
B. L. Jat
7,
D. L. Oad
7,
N. R. Ola
7,
K. Wadhai
3,
M. Lokhande
3,
V. T. Dongare
3,
A. Hukare
3,
N. Bansod
3,
A. Kolhe
3,
J. Khuspure
3,
H. Kuchankar
3,
D. Balbuddhe
3,
S. Sheikh
3,
B. P. Sunitha
6,
B. Mohanty
5,
D. Hazarika
9,
S. Majumdar
7,
R. S. Garhwal
8,
A. Sahu
11,
A. Kumar
10,
N. Gautam
3,
B. A. Telpande
3,
A. M. Nimje
3,
C. Likhar
3,
S. Thakre
3
Affiliations
1 Directorate of Water Management, Bhubaneswar, Odisha 751 023, IN
2 2Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Central Institute for Cotton Research, Nagpur 440 010, IN
1 Directorate of Water Management, Bhubaneswar, Odisha 751 023, IN
2 2Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Central Institute for Cotton Research, Nagpur 440 010, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1440-1451Abstract
Understanding the physical quality of soil that influences its hydraulic behaviour helps in formulating appropriate water management strategies for sustainable crop production. Saturated hydraulic conductivity (Ks) is a key factor governing the hydraulic properties of soils. Ks can be estimated through various techniques. In the present article we have developed and validated the regression models to predict Ks of the soils of the Indo- Gangetic Plains (IGP) and the black soil regions (BSR) under different bioclimatic systems. While particle size distribution was found to be a key factor to predict Ks of the BSR soils, organic carbon was found useful for the IGP soils. Moreover, the models for Ks of both soils were strengthened by putting in CaCO3 and exchangeable sodium percentage content. It seems there is ample scope to study the interaction process for revising Ks to desired levels through management practices in these two important food-growing zones. An index of soil physical quality, derived from the inflection points of the soil moisture characteristic curves could well explain the impact of management practices on soil physical quality.Keywords
Index, Management, Saturated Hydraulic Conductivity, Soil Physical Quality.- Impacts of Bioclimates, Cropping Systems, Land Use and Management on the Cultural Microbial Population in Black Soil Regions of India
Abstract Views :195 |
PDF Views:55
Authors
K. Velmourougane
1,
M. V. Venugopalan
1,
T. Bhattacharyya
2,
D. Sarkar
2,
S. K. Ray
2,
P. Chandran
2,
D. K. Pal
3,
D. K. Mandal
2,
J. Prasad
2,
G. S. Sidhu
4,
K. M. Nair
5,
A. K. Sahoo
6,
K. S. Anil Kumar
5,
A. Srivastava
7,
T. H. Das
6,
R. S. Singh
8,
C. Mandal
2,
R. Srivastava
2,
T. K. Sen
2,
S. Chatterji
2,
N. G. Patil
2,
G. P. Obireddy
2,
S. K. Mahapatra
4,
K. Das
6,
S. K. Singh
6,
S. K. Reza
9,
D. Dutta
6,
S. Srinivas
5,
P. Tiwary
2,
K. Karthikeyan
2,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
2,
G. K. Kamble
2,
M. S. Gaikwad
2,
A. M. Nimkar
2,
S. V. Bobade
2,
S. G. Anantwar
2,
S. Patil
2,
M. S. Gaikwad
2,
V. T. Sahu
2,
H. Bhondwe
2,
S. S. Dohtre
2,
S. Gharami
2,
S. G. Khapekar
2,
A. Koyal
5,
Sujatha
5,
B. M. N. Reddy
5,
P. Sreekumar
5,
D. P. Dutta
9,
L. Gogoi
9,
V. N. Parhad
2,
A. S. Halder
6,
R. Basu
6,
R. Singh
8,
B. L. Jat
8,
D. L. Oad
8,
N. R. Ola
8,
A. Sahu
2,
K. Wadhai
2,
M. Lokhande
2,
V. T. Dongare
2,
A. Hukare
2,
N. Bansod
2,
A. Kolhe
2,
J. Khuspure
2,
H. Kuchankar
2,
D. Balbuddhe
2,
S. Sheikh
2,
B. P. Sunitha
5,
B. Mohanty
4,
D. Hazarika
9,
S. Majumdar
6,
R. S. Garhwal
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
7,
N. Gautam
2,
B. A. Telpande
2,
A. M. Nimje
2,
C. Likhar
2,
S. Thakre
2
Affiliations
1 Central Institute for Cotton Research, Nagpur 440 010, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
7 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Central Institute for Cotton Research, Nagpur 440 010, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
7 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1452-1463Abstract
The present study documents the biological properties of the black soil region (BSR) of India in terms of culturable microbial population. Besides surface microbial population, subsurface population of individual soil horizons is described to improve the soil information system. An effort has been made to study the depth-wise distribution and factors (bioclimates, cropping systems, land use, management practices and soil properties) influencing the microbial population in the soils of the selected benchmark spots representing different agro-ecological sub-regions of BSR. The microbial population declined with depth and maximum activity was recorded within 0-30 cm soil depth. The average microbial population (log10 cfu g-1) in different bioclimates is in decreasing order of SHm > SHd > Sad > arid. Within cropping systems, legumebased system recorded higher microbial population (6.12 log10 cfu g-1) followed by cereal-based system (6.09 log10 cfu g-1). The mean microbial population in different cropping systems in decreasing order is legume > cereal > sugarcane > cotton. Significantly higher (P < 0.05) microbial population has been recorded in high management (6.20 log10 cfu g-1) and irrigated agrosystems (6.33 log10 cfu g-1) compared to low management (6.12 log10 cfu g-1) and rainfed agrosystems (6.17 log10 cfu g-1). The pooled analysis of data inclusive of bioclimates, cropping systems, land use, management practices, and edaphic factors indicates that microbial population is positively influenced by clay, fine clay, water content, electrical conductivity, organic carbon, cation exchange capacity and base saturation, whereas bulk density, pH, calcium carbonate and exchangeable magnesium percentage have a negative effect on the microbial population.Keywords
Agro-Ecological Sub-Regions, Benchmark Spots, Black Soil Regions, Principal Component Analysis, Soil Microbial Population.- Revisiting Agro-Ecological Sub-Regions of India - A Case Study of Two Major Food Production Zones
Abstract Views :169 |
PDF Views:82
Authors
C. Mandal
1,
D. K. Mandal
1,
T. Bhattacharyya
2,
D. Sarkar
2,
D. K. Pal
2,
Jagdish Prasad
2,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
6,
R. S. Singh
7,
R. Srivastava
2,
T. K. Sen
2,
S. Chatterji
2,
P. Chandran
2,
S. K. Ray
2,
N. G. Patil
2,
G. P. Obireddy
2,
S. K. Mahapatra
6,
K. S. Anil Kumar
4,
K. Das
6,
A. K. Singh
7,
S. K. Reza
8,
D. Dutta
6,
S. Srinivas
4,
P. Tiwary
2,
K. Karthikeyan
2,
M. V. Venugopalan
9,
A. Srivastava
10,
Mausumi Raychaudhuri
11,
D. K. Kundu
11,
K. G. Mandal
11,
G. Kar
11,
S. L. Durge
2,
G. K. Kamble
2,
M. S. Gaikwad
2,
A. M. Nimkar
2,
S. V. Bobade
2,
S. G. Anantwar
2,
S. Patil
2,
K. M. Gaikwad
2,
A. M. Nimkar
2,
S. V. Bobade
2,
S. G. Anantwar
2,
S. Patil
2,
K. M. Gaikwad
2,
V. T. Sahu
2,
H. Bhondwe
2,
S. S. Dohtre
2,
S. Gharami
2,
S. G. Khapekar
2,
A. Koyal
4,
Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
8,
L. Gogoi
12,
V. N. Parhad
2,
A. S. Halder
6,
R. Basu
6,
R. Singh
7,
B. L. Jat
13,
D. L. Oad
7,
N. R. Ola
7,
K. Wadhai
2,
M. Lokhande
2,
V. T. Dongare
2,
A. Hukare
2,
N. Bansod
2,
A. Kolhe
2,
J. Khuspure
2,
H. Kuchankar
2,
D. Balbuddhe
2,
S. Sheikh
2,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
8,
S. Majumdar
6,
R. S. Garhwal
7,
A. Sahu
9,
S. Mahapatra
11,
S. Puspamitra
11,
A. Kumar
10,
N. Gautam
2,
B. A. Telpande
2,
A. M. Nimje
2,
C. Likhar
2,
S. Thakre
2
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 03, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
8 National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat 785 004, IN
9 Central Institute for Cotton Research, Nagpur 440 010, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
12 National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat 785 004
13 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 03, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
8 National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat 785 004, IN
9 Central Institute for Cotton Research, Nagpur 440 010, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
12 National Bureau of Soil Survey and Land Use Planning, Regional Centre, Jorhat 785 004
13 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1519-1536Abstract
The sustenance of food and nutritional security are the major challenges of the 21st century. The domestic food production needs to increase per annum at the rate of 2% for cereals and 0.6% for oilseeds and pulses to meet the demand by 2030. The Indo-Gangetic Plains (IGP) and the black soil regions (BSR) are the two major food production zones of the country. Since irrigation potential is limited and expansion of irrigated area is tardy, rainfed agriculture holds promise to satisfy future food needs. Frontline demonstrations of these two regions have shown that there is a large gap at the farmers' and achievable levels of yields. This gap can be filled by adopting scientific approach of managing the natural resources. There is tremendous pressure of biotic and abiotic stresses hindering the crop production and that warrants for a systematic appraisal of natural resources. The National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) under the Indian Council of Agricultural Research (ICAR) divided the country into 60 agro-ecological sub-regions (AESRs) in 1994 by superimposing maps on natural resources like soils, climate and length of growing period (LGP) for crops and other associated parameters. With the passage of nearly two decades and the advent of modern facilities of database management and improved knowledge base on natural resources, a need was felt to revise the existing AESR map to reach near the ground reality of crop performance. The new database stored in soil and terrain digital database (SOTER) has helped in modifying the AESR delineations of the BSR (76.4 m ha) and the IGP (52.01 m ha). The estimated available water content, saturated hydraulic conductivity and use of pedo-transfer functions in assessing the drainage conditions and soil quality have helped in computing with improved precision the LGP, and revise the earlier AESRs in BSR and IGP areas. This innovative exercise will be useful for the future AESR-based agricultural land use planning.Keywords
Agro-Ecological Sub-Regions, Food Production Zones, Land-Use Planning, Length of Growing Period.- Impacts of Agro-Climates and Land Use Systems on Culturable Microbial Population in Soils of the Indo-Gangetic Plains, India
Abstract Views :200 |
PDF Views:73
Authors
Alok Kumar Srivastava
1,
Kulandaivelu Velmourougane
2,
T. Bhattacharyya
3,
D. Sarkar
3,
D. K. Pal
4,
J. Prasad
4,
G. S. Sidhu
5,
K. M. Nair
6,
A. K. Sahoo
7,
T. H. Das
7,
R. S. Singh
8,
R. Srivastava
3,
T. K. Sen
3,
S. Chatterji
3,
P. Chandran
3,
S. K. Ray
3,
N. G. Patil
3,
G. P. Obireddy
3,
S. K. Mahapatra
5,
K. S. Anil Kumar
6,
K. Das
7,
A. K. Singh
8,
S. K. Reza
3,
D. Dutta
7,
C. Mandal
3,
D. K. Mandal
3,
S. Srinivas
3,
P. Tiwary
3,
K. Karthikeyan
3,
M. V. Venugopalan
2,
Mausumi Raychaudhuri
9,
D. K. Kundu
9,
K. G. Mandal
9,
Ashutosh Kumar
1,
G. Kar
9,
S. L. Durge
3,
G. K. Kamble
3,
M. S. Gaikwad
3,
A. M. Nimkar
3,
S. V. Bobade
3,
S. G. Anantwar
3,
S. Patil
3,
K. M. Gaikwad
3,
V. T. Sahu
3,
H. Bhondwe
3,
S. S. Dohtre
3,
S. Gharami
3,
S. G. Khapekar
3,
A. Koyal
6,
Sujatha
6,
B. M. N. Reddy
6,
P. Sreekumar
6,
D. P. Dutta
10,
L. Gogoi
10,
V. N. Parhad
3,
A. S. Halder
7,
R. Basu
7,
R. Singh
8,
B. L. Jat
8,
D. L. Oad
8,
N. R. Ola
8,
K. Wadhai
3,
M. Lokhande
3,
V. T. Dongare
3,
A. Hukare
3,
N. Bansod
3,
A. Kolhe
3,
J. Khuspure
3,
H. Kuchankar
3,
D. Balbuddhe
3,
S. Sheikh
3,
B. P. Sunitha
6,
B. Mohanty
5,
D. Hazarika
9,
S. Majumdar
7,
R. S. Garhwal
8,
A. Sahu
2,
S. Mahapatra
10,
S. Puspamitra
10,
N. Gautam
3,
B. A. Telpande
3,
A. M. Nimje
3,
C. Likhar
3,
S. Thakre
3
Affiliations
1 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
2 Central Institute for Cotton Research, Nagpur 440 010, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Directorate of Water Management, Bhubaneswar 751 023, IN
10 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
1 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
2 Central Institute for Cotton Research, Nagpur 440 010, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Directorate of Water Management, Bhubaneswar 751 023, IN
10 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1464-1469Abstract
Comprehensive reports on land-use changes and their impact on soil biological properties, specifically microbial population in the Indo-Gangetic Plains (IGP) of India, are lacking. Since IGP is the most fertile land, data on microbial population of IGP may contribute towards the evaluation of various soil quality parameters, disease suppression, organic matter decomposition, plant growth promotion and soil management pattern. To enhance our knowledge on culturable microbial populations in different soil horizons of the agro-ecological sub-regions (AESRs) in the IGP, a study has been undertaken to collect soil samples from the established benchmark (BM) spots of these plains with an objective to investigate the impacts of bioclimates, soil depth, cropping systems, land use systems and management practices on the distribution of culturable microbial population. Bacterial : fungal ratios are significantly different across the land use types. The bacterial and fungal populations are strongly and negatively correlated with soil depth and maximum microbial population (40%) exists in the surface horizon (0-30 cm) than in the subsurface horizon (121-150 cm). Generally, bacterial populations are higher than actinomycetes and fungal populations in all soil profiles of the IGP. Approximately 10% decrease in Shannon diversity index has been observed with increase of 30 cm depth and 89% fall between surface and subsurface profiles. Non-significant difference in microbial population (P < 0.05) is noticed across the management and land use systems. Sub-humid (moist) bioclimatic system recorded higher microbial population than sub-humid (dry) and semi-arid bioclimatic systems. Legume-based cropping system has higher microbial population than cereal or vegetable-based cropping.Keywords
Agro-Ecosystems, Microbial Population, Land Use Type, Soil Depth.- InfoCrop-Cotton Simulation Model - Its Application in Land Quality Assessment for Cotton Cultivation
Abstract Views :190 |
PDF Views:71
Authors
M. V. Venugopalan
1,
P. Tiwary
2,
S. K. Ray
2,
S. Chatterji
2,
K. Velmourougane
1,
T. Bhattacharyya
2,
K. K. Bandhopadhyay
3,
D. Sarkar
2,
P. Chandran
2,
D. K. Pal
4,
D. K. Mandal
2,
J. Prasad
2,
G. S. Sidhu
5,
K. M. Nair
6,
A. K. Sahoo
7,
K. S. Anil Kumar
6,
A. Srivastava
8,
T. H. Das
7,
R. S. Singh
9,
C. Mandal
2,
R. Srivastava
2,
T. K. Sen
2,
N. G. Patil
2,
G. P. Obireddy
2,
S. K. Mahapatra
5,
K. Das
7,
S. K. Singh
7,
S. K. Reza
10,
D. Dutta
7,
S. Srinivas
6,
K. Karthikeyan
2,
Mausumi Raychaudhuri
11,
D. K. Kundu
11,
K. K. Mandal
11,
G. Kar
11,
S. L. Durge
2,
G. K. Kamble
2,
M. S. Gaikwad
2,
A. M. Nimkar
2,
S. V. Bobade
2,
S. G. Anantwar
2,
S. Patil
12,
M. S. Gaikwad
2,
V. T. Sahu
2,
H. Bhondwe
2,
S. S. Dohtre
2,
S. Gharami
2,
S. G. Khapekar
2,
A. Koyal
6,
Sujatha
6,
B. M. N. Reddy
6,
P. Sreekumar
6,
D. P. Dutta
10,
L. Gogoi
10,
V. N. Parhad
2,
A. S. Halder
13,
R. Basu
7,
R. Singh
9,
B. L. Jat
9,
D. L. Oad
9,
N. R. Ola
9,
A. Sahu
1,
K. Wadhai
2,
M. Lokhande
2,
V. T. Dongare
2,
A. Hukare
2,
N. Bansod
2,
A. Kolhe
2,
J. Khuspure
2,
H. Kuchankar
2,
D. Balbuddhe
2,
S. Sheikh
2,
B. P. Sunitha
6,
B. Mohanty
5,
D. Hazarika
10,
S. Majumdar
7,
R. S. Garhwal
9,
S. Mahapatra
11,
S. Puspamitra
11,
A. Kumar
8,
N. Gautam
2,
B. A. Telpande
2,
A. M. Nimje
2,
C. Likhar
2,
S. Thakre
2
Affiliations
1 Central Institute for Cotton Research, Nagpur 440 010, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Indian Agricultural Research Institute, New Delhi 110 012, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 National Bureau of Agriculturally Important Microorganisms, Mau 275 103, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
10 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
12 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033
13 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
1 Central Institute for Cotton Research, Nagpur 440 010, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 Indian Agricultural Research Institute, New Delhi 110 012, IN
4 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 National Bureau of Agriculturally Important Microorganisms, Mau 275 103, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
10 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
12 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033
13 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1512-1518Abstract
Crop simulation models have emerged as powerful tools for estimating yield gaps, forecasting production of agricultural crops and analysing the impact of climate change. In this study, the genetic coefficients for Bt hybrids established from field experiments were used in the InfoCrop-cotton model, which was calibrated and validated earlier to simulate the cotton production under different agro-climatic conditions. The model simulated results for Bt hybrids were satisfactory with an R2 value of 0.55 (n = 22), d value of 0.85 and a ischolar_main mean square error of 277 kg ha-1, which was 11.2% of the mean observed. Relative yield index (RYI) defined as the ratio between simulated rainfed (water-limited) yield to potential yield, was identified as a robust land quality index for rainfed cotton. RYI was derived for 16 representative benchmark (BM) locations of the black soil region from long-term simulation results of InfoCrop-cotton model (based on 11-40 years of weather data). The model could satisfactorily capture subtle differences in soil variables and weather patterns prevalent in the BM locations spread over 16 agro-ecological sub-regions (AESRs) resulting in a wide range of mean simulated rainfed cotton yields (482-4393 kg ha-1). The BM soils were ranked for their suitability for cotton cultivation based on RYI. The RYI of black soils (vertisols) ranged from 0.07 in Nimone to 0.80 in Panjari representing AESR (6.1) and AESR (10.2) respectively, suggesting that Panjri soils are better suited for rainfed cotton.Keywords
Bt Cotton, Land Quality, Relative Yield Index, Simulation Model.- Soil and Land Quality Indicators of the Indo-Gangetic Plains of India
Abstract Views :203 |
PDF Views:74
Authors
S. K. Ray
1,
T. Bhattacharyya
1,
K. R. Reddy
2,
D. K. Pal
3,
P. Chandran
1,
P. Tiwary
1,
D. K. Mandal
1,
C. Mandal
1,
J. Prasad
1,
D. Sarkar
1,
M. V. Venugopalan
4,
K. Velmourougane
4,
G. S. Sidhu
5,
K. M. Nair
6,
A. K. Sahoo
7,
T. H. Das
7,
R. S. Singh
8,
R. Srivastava
1,
T. K. Sen
1,
S. Chatterji
1,
N. G. Patil
1,
G. P. Obireddy
1,
S. K. Mahapatra
5,
K. S. Anil Kumar
6,
K. Das
7,
S. K. Reza
9,
D. Dutta
9,
S. Srinivas
6,
K. Karthikeyan
1,
A. Srivastava
10,
M. Raychaudhuri
11,
D. K. Kundu
11,
V. T. Dongare
1,
D. Balbuddhe
1,
N. G. Bansod
1,
K. Wadhai
1,
M. Lokhande
1,
A. Kolhe
1,
H. Kuchankar
1,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
V. T. Sahu
1,
S. Sheikh
1,
D. Dasgupta
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1,
K. G. Mandal
10,
G. Kar
10,
K. M. Gaikwad
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
A. Hukare
1,
J. Khuspure
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
11,
S. Puspamitra
11,
A. Kumar
9,
N. Gautam
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 Institute of Food and Agricultural Sciences, Soil and Water Science Department, University of Florida, Gainesville, Florida, US
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Central Institute for Cotton Research, Nagpur 440 010, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 Institute of Food and Agricultural Sciences, Soil and Water Science Department, University of Florida, Gainesville, Florida, US
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Central Institute for Cotton Research, Nagpur 440 010, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
8 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
9 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
10 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
11 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1470-1486Abstract
Sustaining soil and land quality under intensive land use and fast economic development is a major challenge for improving crop productivity in the developing world. Assessment of soil and land quality indicators is necessary to evaluate the degradation status and changing trends of different land use and management interventions. During the last four decades, the Indo-Gangetic Plains (IGP) which covers an area of about 52.01 m ha has been the major food producing region of the country. However at present, the yield of crops in IGP has stagnated; one of the major reasons being deterioration of soil and land quality. The present article deals with the estimation of soil and land quality indicators of IGP, so that, proper soil and land management measures can be taken up to restore and improve the soil health. Use of principal component analysis is detailed to derive the minimum dataset or indicators for soil quality. The article also describes spatial distribution of soil and land quality with respect to major crops of IGP.Keywords
Land Quality Index, Principal Component Analysis, Soil Quality and Health.- Land Evaluation for Major Crops in the Indo-Gangetic Plains and Black Soil Regions Using Fuzzy Model
Abstract Views :191 |
PDF Views:55
Authors
S. Chatterji
1,
P. Tiwary
1,
T. K. Sen
1,
J. Prasad
1,
T. Bhattacharyya
1,
D. Sarkar
1,
D. K. Pal
2,
D. K. Mandal
1,
G. S. Sidhu
3,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
C. Mandal
1,
R. Srivastava
1,
P. Chandran
1,
S. K. Ray
1,
N. G. Patil
1,
G. P. Obireddy
1,
S. K. Mahapatra
3,
S. Srinivas
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
K. S. Anil Kumar
4,
K. Karthikeyan
1,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
1,
G. K. Kamble
1,
M. S. Gaikwad
1,
A. M. Nimkar
1,
S. V. Bobade
1,
S. G. Anantwar
1,
S. Patil
1,
K. M. Gaikwad
1,
V. T. Sahu
1,
H. Bhondwe
1,
S. S. Dohtre
1,
S. Gharami
1,
S. G. Khapekar
1,
A. Koyal
4,
Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
4,
L. Gogoi
7,
V. N. Parhad
1,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
1,
M. Lokhande
1,
V. T. Dongare
1,
A. Hukare
1,
N. Bansod
1,
A. Kolhe
1,
J. Khuspure
1,
H. Kuchankar
1,
D. Balbuddhe
1,
S. Sheikh
1,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
1,
B. A. Telpande
1,
A. M. Nimje
1,
C. Likhar
1,
S. Thakre
1
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1502-1511Abstract
Land evaluation is carried out to assess the suitability of land for a specific use. Land evaluation procedures focus increasingly on the use of quantitative procedures to enhance the qualitative interpretation of land resource surveys. Conventional Boolean retrieval of soil survey data and logical models for assessing land suitability, treat both spatial units and attribute value ranges as exactly specifiable quantities. They ignore the continuous nature of soil and landscape variation and uncertainties in measurement, which may result in the failure to correctly classify sites that just fail to match strictly defined requirements. The objective of this article is to apply fuzzy model to land suitability evaluation for major crops in the 15 benchmark sites of the Indo- Gangetic Plains (IGP) and 17 benchmark sites of the black soil regions (BSR). Minimum datasets of land characteristics considered relevant to rice and wheat in the IGP and cotton and soybean in the BSR were identified to enhance pragmatic value of land evaluation. The use of fuzzy model is intuitive, robust and helpful for land suitability evaluation and classification, especially in applications in which subtle differences in land characteristics are of a major interest, such as development of threshold values of land characteristics.Keywords
Benchmark Sites, Fuzzy Model, Land Evaluation, Minimum Datasets.- Impact of Management Levels and Land-Use Changes on Soil Properties in Rice-Wheat Cropping System of the Indo-Gangetic Plains
Abstract Views :192 |
PDF Views:61
Authors
G. S. Sidhu
1,
T. Bhattacharyya
2,
D. Sarkar
2,
S. K. Ray
2,
P. Chandran
2,
D. K. Pal
3,
D. K. Mandal
2,
J. Prasad
2,
K. M. Nair
4,
A. K. Sahoo
5,
T. H. Das
5,
R. S. Singh
6,
C. Mandal
2,
R. Srivastava
2,
T. K. Sen
2,
S. Chatterji
2,
N. G. Patil
2,
G. P. Obireddy
2,
S. K. Mahapatra
3,
K. S. Anil Kumar
4,
K. Das
5,
A. K. Singh
6,
S. K. Reza
7,
D. Dutta
5,
S. Srinivas
4,
P. Tiwary
2,
K. Karthikeyan
2,
M. V. Venugopalan
8,
K. Velmourougane
8,
A. Srivastava
9,
Mausumi Raychaudhuri
10,
D. K. Kundu
10,
K. G. Mandal
10,
G. Kar
10,
S. L. Durge
2,
G. K. Kamble
2,
M. S. Gaikwad
2,
A. M. Nimkar
2,
S. V. Bobade
2,
S. G. Anantwar
2,
S. Patil
2,
V. T. Sahu
2,
K. M. Gaikwad
2,
H. Bhondwe
2,
S. S. Dohtre
2,
S. Gharami
2,
S. G. Khapekar
2,
A. Koyal
4,
Sujatha
4,
B. M. N. Reddy
4,
P. Sreekumar
4,
D. P. Dutta
7,
L. Gogoi
7,
V. N. Parhad
2,
A. S. Halder
5,
R. Basu
5,
R. Singh
6,
B. L. Jat
6,
D. L. Oad
6,
N. R. Ola
6,
K. Wadhai
2,
M. Lokhande
2,
V. T. Dongare
2,
A. Hukare
2,
N. Bansod
2,
A. Kolhe
2,
J. Khuspure
2,
H. Kuchankar
2,
D. Balbuddhe
2,
S. Sheikh
2,
B. P. Sunitha
4,
B. Mohanty
3,
D. Hazarika
7,
S. Majumdar
5,
R. S. Garhwal
6,
A. Sahu
8,
S. Mahapatra
10,
S. Puspamitra
10,
A. Kumar
9,
N. Gautam
2,
B. A. Telpande
2,
A. M. Nimje
2,
C. Likhar
2,
S. Thakre
2
Affiliations
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
1 Regional Centre, National Bureau of Soil Survey and Land Use Planning, New Delhi 110 012, IN
2 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Nagpur 440 033, IN
3 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
4 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Bangalore 560 024, IN
5 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Kolkata 700 091, IN
6 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Udaipur 313 001, IN
7 Regional Centre, National Bureau of Soil Survey and Land Use Planning, Jorhat 785 004, IN
8 Central Institute for Cotton Research, Nagpur 440 010, IN
9 National Bureau of Agriculturally Important Microorganisms, Mau 275 101, IN
10 Directorate of Water Management, Bhubaneswar 751 023, IN
Source
Current Science, Vol 107, No 9 (2014), Pagination: 1487-1501Abstract
Five benchmark soils, namely Fatehpur (Punjab) and Haldi (Uttarakhand) non-sodic soils, Zarifa Viran (Haryana), Sakit and Itwa sodic soils (Uttar Pradesh) representing Trans, Upper, Middle and Central Indo- Gangetic Plains (IGP) were revisited for studying the morphological, physical and chemical properties of soils at low and high management levels to monitor changes in soil properties due to the impact of landuse as well as management levels. The results indicate an increase in bulk density (BD) below the plough layer, and build up of organic carbon (OC) and decline in pH in surface layers of Zarifa Viran, Sakit and Itwa sodic soils under high management. The concentration of carbonates and bicarbonates in sodic soils decreased due to adaptation of rice-wheat system. The build-up of OC and decrease of pH in surface soils under rice- wheat system enhanced the soil health. Increase in BD in subsurface soils, however, is a cause of concern for sustaining rice-wheat cropping system. Soil management interventions such as tillage, conservation agriculture and alternate cropping system have been suggested for improved soil health and productivity.Keywords
Benchmark Soil, Bulk Density, Land-Use Changes, Rice–Wheat System, Soil Properties.- Pedometric Mapping of Soil Organic Carbon Loss Using Soil Erosion Maps of Tripura
Abstract Views :211 |
PDF Views:78
Authors
Affiliations
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 033, IN
2 ICRISAT Development Centre, ICRISAT, Patancheru 502 324, IN
3 National Atlas and Thematic Mapping Organization (DST), CGO Complex, 7th Floor, DF Block, Salt Lake, Kolkata 700 064, IN
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 033, IN
2 ICRISAT Development Centre, ICRISAT, Patancheru 502 324, IN
3 National Atlas and Thematic Mapping Organization (DST), CGO Complex, 7th Floor, DF Block, Salt Lake, Kolkata 700 064, IN
Source
Current Science, Vol 108, No 7 (2015), Pagination: 1326-1339Abstract
Importance of soil organic carbon (SOC) in maintaining soil productivity and natural ecosystem has been a major concern throughout the globe. SOC in the humid tropical climate becomes more important in view of undulating hilly terrain in the northeastern region of India. The major concern in such landscape is soil erosion and the necessary conservation practices. In the present study, we discuss the technique of pedometric mapping to link SOC and soil loss. The best-fit semi-variogram model for SOC was found to be exponential model (R2 = 0.90). The best fit semivariogram models for soil and SOC losses are spherical (R2 = 0.95) and exponential (R2 = 0.77) respectively. The spatial distribution of SOC, soil and SOC loss was found to be related with topography and different land-use types and showed moderate spatial dependence. With the help of 196 grid observations, the present study shows a threshold limit of 150 kg ha-1 year-1 SOC loss above which the areas are to be considered as susceptible demanding immediate conservation measures. Pedometric mapping using SOC and soil loss can, thus, be a tool to prioritize areas in humid tropical climate for conservation agriculture.Keywords
Conservation Agriculture, Pedometric Mapping, Soil Erosion, Soil Organic Carbon.- ICRISAT, India Soils:Yesterday, Today and Tomorrow
Abstract Views :355 |
PDF Views:73
Authors
T. Bhattacharyya
1,
Suhas P. Wani
2,
D. K. Pal
3,
K. L. Sahrawat
2,
S. Pillai
2,
A. Nimje
2,
B. Telpande
3,
P. Chandran
3,
Swati Chaudhury
2
Affiliations
1 Dr Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli 415 712, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 010, IN
1 Dr Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli 415 712, IN
2 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
3 National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 010, IN
Source
Current Science, Vol 110, No 9 (2016), Pagination: 1652-1670Abstract
Associated red and black soils are common in the Deccan plateau and the Indian peninsula. The red soils are formed due to the progressive landscape reduction process and black soils due to the aggradation processes; and they are often spatially associated maintaining their typical characteristics over the years. These soils are subject to changes due to age-long management practices and the other factors like climate change. To maintain soil quality, it is essential to monitor changes in soil properties preferably using benchmark (BM) soil sites. One such example lies at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) farm in Patancheru, India where red (Patancheru) and black (Kasireddipalli) soils co-exist in close association under almost similar topographical condition, which also represents very commonly occurring spatially associated soils. The database generated over the years for these two dominant soils that are under cultural practices for the last 2-3 decades, helps us understand the relative changes in properties over a time scale. To do this exercise, we revisited the BM spots as the data on the original characterization of these soils since the development of the farm, are available, for comparative evaluation. We also attempted to make prediction of future changes in properties for these two important and representative black and red soils of the ICRISAT farm in Patancheru, India.Keywords
Associated Red and Black Soils, Changes, ICRISAT Farm, Monitor, Soil Quality.References
- Smith, P. and Powlson, D. S., Sustainability of soil management practices – a global perspective. In Soil Biological Fertility (eds Abbott, L. K. and Murphy, D. V.), Kluwer Academic, Dordrecht, 2003, pp. 241–254.
- Fischer, G., Shah, M., van Velthuizen, H. and Nachtergaele, F. O., Executive summary report: Global agro-ecological assessment for agriculture in the 21st century, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2001.
- IPCC, Climate Change 2001: The Scientific Basis, Cambridge University Press. UK, 2007, p. 944.
- Bhattacharyya, T. et al., Physical and chemical properties of red and black soils of selected benchmark spots in semi-arid tropics of India, Global theme on agro ecosystems, Report no. 35, ICRISAT, Patancheru and ICAR, New Delhi, 2007, p. 236.
- Bhattacharyya, T. et al., Characterization of benchmark spots of selected red and black soils in semi-arid tropics of India for identifying systems for carbon sequestration and increased productivity in semi-arid tropical environments, Global theme on agro ecosystems, Report no. 42, Working Report of identifying systems for carbon sequestration and increased productivity in semi-arid tropical environments (RNPS-25), National Agricultural Technology Project (NATP), ICRISAT, Patancheru and ICAR, New Delhi, 2008, p. 388.
- Bhattacharyya, T. et al., Morphological properties of red and black soils of selected benchmark spots in semi-arid tropics, India, and global theme on agro ecosystems, Report no. 21. ICRISAT, Patancheru and ICAR, New Delhi, 2006, p. 100.
- Bhattacharyya, T. et al., Estimation of carbon stocks in the red and black soils of selected benchmark spots in semi-arid tropics, India, Global theme on agro ecosystems, Report no. 28, NBSSLUP, ICAR and ICRISAT, India, 2006, p. 86.
- Bhattacharyya, T., Chandran, P., Ray, S. K., Pal, D. K., Venugopalan, M. V., Mandal, C. and Wani, S. P., Changes in levels of carbon in soils over years of two important food production zones of India. Curr. Sci., 2007, 93, 1854–1863.
- Pal, D. K., Balpande, S. S. and Srivastava, P., Polygenetic Vertisols of the Purna Valley of Central India. Catena, 2001, 43, 231–249.
- Pal, D. K., Bhattacharyya, T., Chandran, P. and Ray, S. K., Tectonicsclimate-linked natural soil degradation and its impact in rainfed agriculture: Indian experience. In Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P., Rockstrom, J. and Oweis, T.), CABI International, Oxfordshire, UK, 2009, pp. 54–72.
- Pal, D. K., Dasog, G. S., Vadivelu, S., Ahuja, R. L. and Bhattacharyya, T., Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Global Climate Change and Pedogenic Carbonates (eds Lal, R., Kimble, J. M., Eswaran, H. and Stewart, B. A.), Lewis Publishers, USA, 2000, pp. 149–185.
- Johnson, D. L. and Watson-Stegner, D., Evolution model of pedogenesis. Soil Sci., 1987, 143, 349–366.
- Kadu, et al., Use of hydraulic conductivity to evaluate the suitability of Vertisols for deep ischolar_mained crops in semi-arid parts of Central India. Soil Use Manage., 2003, 19, 208–216.
- Pal, D. K., Bhattacharyya, T. and Wani, S. P., Formation and management of cracking clay soils (Vertisols) to enhance crop productivity: Indian Experience. In World Soil Resources (eds Lal, R. and Stewart, B. A.), Francis and Taylor, 2011, pp. 317–343.
- Murthy, R. S. and Swindale, L. D., Soil Survey of ICRISAT Farm and Type Area Around Patancheru, Andhra Pradesh, NBSS&LUP;, Nagpur and ICRISAT, Patancheru, 1993.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C. and Telpande, B., Soil carbon storage capacity as a tool to prioritise areas for carbon sequestration. Curr. Sci., 2008, 95, 482–494.
- Mandal, C. et al., Revisiting agro-ecological sub regions of India – a case study of two major food production zones. Curr. Sci., 2014, 107, 1519–1536.
- Lal, Sohan, Deshpande, S. B. and Sehgal, J., Soil series of India, Soils Bulletin No. 40, National Bureau of Soil Survey and Land Use Planning, Nagpur, 1994, p. 684.
- Bhattacharyya, T. et al., Processes determining the sequestration and maintenance of carbon in soils: A synthesis of research from tropical India. Soil Horizons, 2014, 1–16; doi:10.2136/sh14-01-0001.
- Bhattacharyya, T., Chandran, P., Ray, S. K. and Pal, D. K., Soil classification following US taxonomy: An Indian commentary. Soil Horizon, 2015, 1–16; doi:10.2136/sh14-08-0011.
- Soil Survey Staff Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook No. 436, Soil Conservation Service, US Dept of Agriculture, 1975.
- Chandran, P. et al., Calcareousness and subsoil sodicity in ferruginous Alfisols of southern India: and evidence of climate shift. Clay Res., 2013, 32, 114–126.
- Pal, D. K. and Deshpande, S. B., Genesis of clay minerals in a red and black complex soils of southern India. Clay Res., 1987, 6, 6–13.
- Naitam, R. and Bhattacharyya, T., Quasi-equilibrium of organic carbon in swell-shrink soils of sub-humid tropics in India under forest, horticulture and agricultural system. Austr. J. Soil Res., 2003, 42, 181–188.
- Balpande, S. S., Kadu, P. R., Pal, D. K., Bhattacharyya, T. and Durge, S. L., Role of swelling mineral in fixing lower limit of exchangeable sodium percentage for sodic soils. Agropedology, 1997, 7, 54–61.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Mandal, C., Ray, S. K., Gupta, R. K. and Gajbhiye, K. S., Managing soil carbon stocks in the Indo-Gangetic Plains, India, Rice–Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India, 2004, p. 44.
- Bhattacharyya, T. et al., Georeferenced Soil Information System: assessment of database. Curr. Sci., 2014, 107, 1400–1419.
- Srivastava, P., Bhattacharyya, T. and Pal, D. K., Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (Vertisols) of India. Clays Clay Min., 2002, 50, 111–126.
- Bhattacharyya, T. et al., Walkley–Black recovery factor to reassess soil organic matter: Indo-Gangetic plains and black soil region of India case studies. Comm. Soil Sci. Pl. Ana., 2015, 46, 2628–2648; doi:10.1080/00103624.2015.1089265.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Role of calcium carbonate minerals in improving sustainability of degraded cracking clay soils (Sodic Haplusterts) by improved management: an appraisal of results from the semi-arid zones of India. Clay Res., 2012, 31, 94–108.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Durge, S. L., Mandal, C. and Telpande, B., Available K reserve of two major crop growing regions (Alluvial and shrink-swell soils) in India. Indian J. Fert., 2007, 3, 41–52.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Carbon sequestration in Indian soils: Present status and the potential. Proc. Natl. Acad. Sci. Biol. Sci. (NASB), India, 2015, 85, 337–358; doi:10.1007/ s40011-014-0351-6.
- Sidhu, G. S. et al., Impact of soil management levels and land use changes on soil properties in rice-wheat cropping system of the Indo-Gangetic Plains (IGP). Curr. Sci., 2014, 107, 1487–1501.
- Tiwary, P. et al., Pedotransfer functions: A tool for estimating hydraulic properties of two major soil types of India. Curr. Sci., 2014, 107, 1431–1439.
- Bhattacharyya, T. et al., Simulating change in soil organic carbon in two long term fertilizer experiments in India: with the RothC model. Climate Change Environ. Sustainab., 2013, 1, 104–117.
- Sahrawat, K. L., Bhattacharyya, T., Wani, S. P., Chandran, P., Ray, S. K., Pal, D. K. and Padmaja, K. V., Long-term lowland rice and arable cropping effects on carbon and nitrogen status of some semi-arid tropical soils. Curr. Sci., 2005, 89, 2159–2163.
- Bhattacharyya, T. et al., Evaluating the century C model using long-term fertilizer trials in the Indo-Gangetic Plains, India. Agric. Ecosyst. Env., 2007, 122, 73–83.
- Bhattacharyya, T. et al., Evaluation of RothC model using four long term fertilizer experiments in black soils, India. Agric. Ecosys. Env., 2011, 144, 222–234.
- Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L. and Bhuse, S. R., Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma, 2006, 136, 210–228.
- Bhattacharyya, T., Pal, D. K., Wani, S. P. and Sahrawat, K. L., Resilience of the semi-arid tropical soils. Curr. Sci., 2016, 110(9), 1784–1788.
- Milne, E. et al., Simulating soil organic carbon in a rice–soybean– wheat soybean chronosequence in Prairie County, Arkansas using the Century model. J. Integr. Biosci., 2008, 6, 41–52.
- Soil Survey Staff, Keys to Soil Taxonomy, USDA-NRCS, Washington, DC, 2014, 12th edn.
- World reference base for soil resources, International soil classification system for naming soils and creating legends for soil maps, 2014, 106.
- Bhattacharyya, T., Assessment of organic carbon status in Indian soils. In Soil Carbon: Science, Management, and Policy for Multiple Benefits (eds Steven, A. et al.), CABI SCOPE, 2015, vol. 71, pp. 328–342.
- Balpande, S. S., Deshpande, S. B. and Pal, D. K., Factors and processes of soil degradation in Vertisols of the Purna valley, Maharashtra, India. Land Degrad. Dev., 1996, 7, 313–324.
- Telpande, B., Bhattacharyya, T., Wankhede, D. M., Jha, P., Tiwary, P., Chandran, P. and Ray, S. K., Simulating soil organic carbon in high clay soils in India: DNDC model experience. Climate Change Env. Sustainab., 2013, 1, 118–126.
- Natural Chemical Degradation of Soils in the Indian Semi-Arid Tropics and Remedial Measures
Abstract Views :236 |
PDF Views:74
Authors
Affiliations
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 010, IN
2 International Crops Research Institutes for the Semi-Arid Tropics, Patancheru 502 324, IN
1 National Bureau of Soil Survey and Land Use Planning (ICAR), Amravati Road, Nagpur 440 010, IN
2 International Crops Research Institutes for the Semi-Arid Tropics, Patancheru 502 324, IN
Source
Current Science, Vol 110, No 9 (2016), Pagination: 1675-1682Abstract
Most published research on soil degradation in general emphasizes the role of anthropogenic factors. Even among the natural soil degradation processes the regressive pedogenic processes that lead to the formation of CaCO3 and concomitant development of subsoil sodicity and the adverse effects of palygorskite on the soils of the semi-arid tropics (SAT), have received little global attention as the natural processes of chemical degradation of soils. Studies in India during the last two decades, however, have demonstrated the important role of regressive pedogenic processes in natural degradation of major soil types in the Indian SAT regions. The present article summarizes the research on natural degradation of soils in the Indian SAT. The management practices to reclaim the degraded soils are also discussed with examples.Keywords
CaCO3 Formation, Regressive Pedogenesis, Remedial Measures, SAT Soils, Subsoil Sodicity.References
- Pal, D. K., Dasog, G. S., Vadivelu, S., Ahuja, R. L. and Bhattacharyya, T., Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Global Climate Change and Pedogenic Carbonates (eds Lal, R. et al.), Lewis Publishers, USA, 2000, pp. 149–185.
- Soil Survey Staff, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, United States Department of Agriculture Handbook No. 436. US Government Printing Office, Washington DC, 1975.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Vertisols of tropical Indian environments: Pedology and edaphology. Geoderma, 2012, 189–190, 28–49.
- Pal, D. K., Wani, S. P., Sahrawat, K. L. and Srivastava, P., Red ferruginous soils of tropical Indian environments: a review of the pedogenic processes and its implications for edaphology. Catena, 2014, 121, 260–278; doi:10.1016/j.catena2014.05.023.
- Srivastava, P., Pal, D. K., Aruche, K. M., Wani, S. P. and Sahrawat, K. L., Soils of the Indo-Gangetic Plains: a pedogenic response to landscape stability, climatic variability and anthropogenic activity during the Holocene. Earth-Sci. Rev., 2015, 140, 54–71; doi:10.1016/j.earscirev.2014.10.010.
- Pal, D. K., Sarkar, D., Bhattacharyya, T., Datta, S. C., Chandran, P. and Ray, S. K., Impact of climate change in soils of semi-arid tropics (SAT). In Climate Change and Agriculture (eds Bhattacharyya, T. et al.), Studium Press, New Delhi, 2013, pp. 113– 121.
- Lal, R., Hall, G. F. and Miller, F. P., Soil degradation. I. Basic processes. Land Degrad. Rehabilitat., 1989, 1, 51–69.
- Hall, G. F., Daniels, R. B. and Foss, J. E., Rates of soil formation and renewal in the USA. In Determinants of Soil Loss Tolerance (ed. Schmidt, B. L.), ASA Publication No. 45. American Society of Agronomy, USA, 1982, pp. 23–29.
- Sehgal, J. L. and Abrol, I. P., Land degradation status: India. Desertificat. Control Bull., 1992, 21, 24–31.
- Sehgal, J. L. and Abrol, I. P., Soil Degradation in India: Status and Impact, Oxford & IBH, New Delhi, 1994.
- FAO (Food and Agriculture Organization of the United Nations), Land Degradation in South Asia: its Severity, Causes and Effects upon the People, World Soil Resources Reports 78. FAO, Rome, Italy, 1994.
- Oldeman, L. R. (ed.), Global Assessment of Soil Degradation (GLASOD), Guidelines for General Assessment of Status of HumanInduced Soil Degradation, ISRIC, Wageningen, The Netherlands, 1988.
- UNEP, World Atlas of Desertification, Edward Arnold, London, 1992.
- Balpande, S. S., Deshpande, S. B. and Pal, D. K., Factors and processes of soil degradation in Vertisols of the Purna valley, Maharashtra, India. Land Degradation Dev., 1996, 7, 313–324.
- Pal, D. K., Balpande, S. S. and Srivastava, P., Polygenetic Vertisols of the Purna Valley of central India. Catena, 2001, 43, 231– 249.
- Pal, D. K., Srivastava, P. and Bhattacharyya, T., Clay illuviation in calcareous soils of the semi-arid part of the Indo-Gangetic Plains, India. Geoderma, 2003, 115, 177–192.
- Pal, D. K., Srivastava, P., Durge, S. L. and Bhattacharyya, T., Role of microtopography in the formation of sodic soils in the semi-arid part of the Indo-Gangetic Plains, India. Catena, 2003, 51, 3–31.
- Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L. and Bhuse, S. R., Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma, 2006, 136, 210–228.
- Vaidya, P. H. and Pal, D. K., Microtopography as a factor in the degradation of Vertisols in central India. Land Degrad. Dev., 2002, 13, 429–445.
- Chandran, P. et al., Calcareousness and subsoil sodicity in ferruginous Alfisols of southern India: an evidence of climate shift. Clay Res., 2013, 32, 114–126.
- Ritter, D. F., Is Quaternary geology ready for the future? Geomorphology, 1996, 16, 273–276.
- Singh, S., Parkash, B., Rao, M. S., Arora, M. and Bhosle, B., Geomorphology, pedology and sedimentology of the Deoha/Ganga–Ghaghara Interfluve, Upper Gangetic Plains (Himalayan Foreland Basin) – extensional tectonic implications. Catena, 2006, 67, 183–203.
- Brunner, H., Pleisitozane klimaschwankengen im Bereich den ostlichen Mysore-Plateaus (Sudindien). Geologie, 1970, 19, 72–82.
- Pal, D. K., Soil modifiers: their advantages and challenges. Clay Res., 2013, 32, 91–101.
- Pal, D. K., Bhattacharyya, T., Chandran, P. and Ray, S. K., Tectonicsclimate linked natural soil degradation and its impact in rainfed agriculture: Indian experience. In Rainfed Agriculture: Unlocking the Potential (eds Wani, S. P. et al.), CAB International Publishing, Oxfordshire, 2009, pp. 54–72.
- Wilding, L. P., Odell, R. T., Fehrenbacher, J. B. and Beavers, A. H., Source and distribution of sodium in Solonetz soils in Illinois. Soil Sci. Soc. Am. Proc., 1963, 27, 432–438.
- Wright, V. P., Pleokarsts and paleosols as indicators of paleoclimate and porosity evolution: a case study from the carboniferous of South Wales (eds James, N. P. and Choquette, P. W.), Springer, New York, 1988, pp. 329–341.
- Wieder, M. and Yaalon, D. H., Effect of matrix composition on carbonate nodule crystallization. Geoderma, 1974, 43, 95–121.
- Srivastava, P., Bhattacharyya, T. and Pal, D. K., Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (Vertisols) of India. Clays Clay Min., 2002, 50, 111–126.
- Pal, D. K. et al., Vertisols (cracking clay soils) in a climosequence of Peninsular India: Evidence for Holocene climate changes. Quaternary Int., 2009, 209, 6–21.
- Richards, L. A. (ed.), Diagnosis and Improvement of Saline and Alkali Soils, USDA Agriculture Handbook 60, USDA, Washington, USA, 1954.
- Zade, S. P., Pedogenic studies of some deep shrink-swell soils of Marathwada Region of Maharashtra to develop a viable land use plan, Ph D thesis, Dr PDKV, Akola, Maharashtra, 2007.
- Heidari, A., Mahmoodi, Sh., Roozitalab, M. H. and Mermut, A. R., Diversity of clay minerals in the Vertisols of three different climatic regions in western Iran. J. Agric. Sci. Technol., 2008, 10, 269–284.
- Singer, A., Palygorskite and sepiolite. In Soil Mineralogy with Environmental Applications (eds. Dixon, J. B. and Schulze, D. G.), SSSA Book Series, Soil Science Society of America, Madison, 2002, vol. 7, pp. 555–583.
- Neaman, A., Singer, A. and Stahr, K., Clay mineralogy as affecting disaggregation in some palygorskite-containing soils of the Jordan and Bet-She’an Valleys. Aust. J. Soil Res., 1999, 37, 913–928.
- Neaman, A. and Singer, A., The effects of palygorskite on chemical and physico-chemical properties of soils: a review. Geoderma, 2004, 123, 297–303.
- Abrol, I. P. and Fireman, M., Alkali and Saline Soils; Identification and Improvement for Crop Production, Bulletin No. 4. Central Soil Salinity Research Institute, Karnal, 1977.
- Pal, D. K., Mandal, D. K., Bhattacharyya, T., Mandal, C. and Sarkar, Revisiting the agro-ecological zones for crop evaluation. Indian J. Genet., 2009, 69, 315–318.
- Kadu, P. R., Vaidya, P. H., Balpande, S. S., Satyavathi, P. L. A. and Pal, D. K., Use of hydraulic conductivity to evaluate the suitability of Vertisols for deep-ischolar_mained crops in semi-arid parts of central India. Soil Use Manage., 2003, 19, 208–216.
- Soil Survey Staff, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, United States Department of Agriculture, Natural Resource Conservation Service, Agriculture Handbook No. 436, US Government Printing Office, Washington DC, 1999.
- Wani, S. P., Pathak, P., Jangawad, L. S., Eswaran, H. and Singh, P., Improved management of Vertisols in the semi-arid tropics for increased productivity and soil carbon sequestration. Soil Use Manage., 2003, 19, 217–222.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Role of calcium carbonate minerals in improving sustainability of degraded cracking clay soils (Sodic Haplusterts) by improved management: an appraisal of results from the semi-arid zones of India. Clay Res., 2012, 31, 94–108.
- Wani, S. P., Sahrawat, K. L., Sreedevi, T. K., Bhattacharyya, T., Srinivas Rao, Ch., Carbon sequestration in the semi-arid tropics for improving livelihoods. Int. J. Environ. Stud., 2007, 64, 719–727.
- Pal, D. K., Bhattacharyya, T. and Wani, S. P., Formation and management of cracking clay soils (Vertisols) to enhance crop productivity: Indian Experience. In World Soil Resources (eds Lal, R. and Stewart, B. A.), Francis and Taylor, Boca Raton, Florida, 2012, pp. 317–343.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Carbon sequestration in Indian soils: Present status and the potential. Proc. Natl. Acad. Sci., Biol. Sci. (NASB), India, 2015, 85, 337–358; doi:10.1007/s40011-014-0351-6.
- Land Use and Cropping Effects on Carbon in Black Soils of Semi-Arid Tropical India
Abstract Views :225 |
PDF Views:83
Authors
Swati Chaudhury
1,
T. Bhattacharyya
1,
Suhas P. Wani
1,
D. K. Pal
2,
K. L. Sahrawat
1,
Ankush Nimje
1,
P. Chandran
2,
M. V. Venugopalan
3,
B. Telpande
2
Affiliations
1 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
2 National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 010, IN
3 Central Institute for Cotton Research, Nagpur 440 010, IN
1 International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, IN
2 National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 010, IN
3 Central Institute for Cotton Research, Nagpur 440 010, IN
Source
Current Science, Vol 110, No 9 (2016), Pagination: 1692-1698Abstract
Soil organic carbon (SOC) and rainfall are generally positively related, whereas a negative relationship between soil inorganic carbon (SIC) and rainfall with some exception is observed. Land use pattern in black soil region (BSR) of the semi-arid tropical (SAT) India, consists of 80% under agriculture, followed by forest, horticulture, wasteland and permanent fallow. For sustainable agriculture on these soils, there is a concern about their low OC status, which warrants fresh initiatives to enhance their OC status by suitable management interventions. In the BSR region, cotton, soybean and cereal-based systems dominate but it is not yet clear as to which cropping system in the SAT black soils is most suitable for higher OC sequestration. Many short-term experiments on cotton or cereal-based systems clearly suggest that cotton or cereal-based cropping systems including leguminous crops perform better in terms of SOC sequestration whereas soybean-legume combination do not add any substantial amount of OC. In sub-humid bioclimatic zones (1053-1209 mm mean annual rainfall), soybean is grown successfully with wheat or fallowing, and SOC concentration is maintained at 0.75% in the 0.30 m soil layer under integrated nutrient management. In view of enhancement and maintenance of OC in many shortterm experiments conducted in various agro-climate zones of SAT, it is realized that OC accumulation in soils of the semi-arid ecosystem with suitable cropping and management practices could be substantial especially in cotton-pigeon pea rotation, and thus the discussed crop rotations in each major bio-climatic zone stand for wide acceptance by the SAT farmers.Keywords
Land Use and Cropping Systems, Rainfall, Soil Carbon, Vertisol and Associated Soils.References
- Farquharson, R. J., Schwenke, G. D. and Mullen, J. D., Should we manage soil organic carbon in Vertisols in the northern grains region of Australia? Aust. J. Exp. Agric., 2003, 43, 261–270.
- Abrol, I. P. and Gupta, R. K., Indo-Gangetic Plains – issues of changing land use. LUCC Newsl., 1998, 3.
- Bauer, P. J., Frederick, J. R. and Busscher, W. J., Tillage effect on nutrient stratification in narrow and wide row cropping systems. Soil Tillage Res., 2002, 66, 175–182.
- Pal, S. S. and Shurpali, N. J., Variation in soil organic carbon as influenced by climate under different cropping systems in India. J. Indian Soc. Soil Sci., 2006, 54, 294–299.
- Naitam, R. and Bhattacharyya, T., Quasi-equilibrium of organic carbon in shrink-swell soils of the subhumid tropics in India under forest, horticulture, and agricultural systems. Aust. J. Soil Res., 2004, 42, 181–188.
- Jenny, H., Causes of high nitrogen and organic matter content of certain tropical forest soils. Soil Sci., 1950, 69, 63–69.
- Dickson, B. A. and Crocker, R. L., A chronosequence of soils and vegetation near Nt. Stasta, California I and II. Soil Sci., 1953, 4, 142–154.
- Batjes, N. H., Options for increasing carbon sequestration in West African soils: an exploratory study with special focus on Senegal. Land Degrad. Dev., 2001, 12, 131–142.
- Saikh, H., Varadachari, C. and Ghosh, K., Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: a case study in Simlipal National park, India. Plant Soil, 1998, 198, 137–145.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Mandal, C., Ray, S. K., Gupta, R. K. and Gajbhiye, K. S., Managing soil carbon stocks in the Indo-Gangetic Plains, India, Rice–Wheat Consortium for the Indo-Gangetic Plains, New Delhi, 2004, p. 44.
- Pal, D. K., Dasog, G. S., Vadivelu, S., Ahuja, R. L. and Bhattacharyya, T., Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Global Climate Change and Pedogenic Carbonates (eds Lal, R. et al.), Lewis Publishers, Boca Ratan, 2000, pp. 149–185.
- Bhattacharyya, T. et al., Processes determining the sequestration and maintenance of carbon in soils: a synthesis of research from tropical India. Soil Horizon, 2014, 1–16; doi: 10.2136/sh14-01-0001.
- Bhattacharyya, T., Chandran, P., Ray, S. K., Pal, D. K., Venugopalan, M. V., Mandal, C. and Wani, S. P., Changes in levels of carbon in soils over years of two important food production zones of India. Curr. Sci., 2007, 93, 1854–1863.
- Sahrawat, K. L., Bhattacharyya, T., Wani, S. P., Chandran, P., Ray, S. K., Pal, D. K. and Padmaja, K. V., Long-term low land rice and arable cropping effects on carbon and nitrogen status of some semi-arid tropical soils. Curr. Sci., 2005, 89, 2159–2163.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C. and Telpande, B., Soil carbon storage capacity as a tool to prioritise areas for carbon sequestration. Curr. Sci., 2008, 95, 482–494.
- Bhattacharyya, T., Pal, D. K., Lal, S., Chandran, P. and Ray, S. K., Formation and persistence of Mollisols on Zeolitic Deccan basalt of humid tropical India. Geoderma, 2006, 136, 609–620.
- Dalal, R. C. and Conter, J. U., Soil organic matter dynamics and carbon sequestration. In Australian Tropical Soils (eds Lal, R. et al.), Lewis Publishers, Florida, 2000, pp. 283–314.
- Bhattacharyya, T., Pal, D. K., Velayutham, M., Chandran, P. and Mandal, C., Total carbon stock in Indian soils: issues, priorities and management. In Special Publication, International Seminar on Land Resource Management for Food, Employment and Environmental Security (ICLRM) at New Delhi, 8–13 November 2000, pp. 1–46.
- Kesava Rao, A. V. R., Wani, S. P., Singh, K. K., Ahmed, M. I., Srinivas, K., Bairagi, S. D. and Ramadevi, O., Increased arid and semi-arid areas in India with associated shifts during 1971–2004. J. Agromet., 2013, 15, 11–18.
- Bhattacharyya, T. et al., Estimation of carbon stocks in the red and black soils of selected benchmark spots in semi-arid tropics, India, Global theme on agro ecosystems report no. 28, NBSSLUP, (ICAR), and ICRISAT (India), 2006, p. 86.
- Mandal, C. et al., Revisiting agro-ecological sub regions of India – a case study of two major food production zones. Curr. Sci., 2014, 107, 1519–1536.
- Jenny, H. and Raychaudhuri, S. P., Effect of Climate and Cultivation on Nitrogen and Organic Matter Resources in Indian Soils, ICAR, New Delhi, 1960, p. 25.
- Kern, J. S., Spatial pattern of soil organic carbon in contiguous United States. Soil Sci. Soc. Am. J., 1994, 58, 439–455.
- Padekar, D. G., Bhattacharyya, T., Deshmukh, P. D., Ray, S. K., Chandran, P. and Tiwary, P., Is irrigation water causing degradation in black soils? Curr. Sci., 2014, 106, 1487–1489.
- Influence of Irrigation Water on Black Soils in Amravati District, Maharashtra
Abstract Views :265 |
PDF Views:60
Authors
Affiliations
1 Department of Soil Science and Agricultural Chemistry, Shri Shivaji College of Agriculture, Amravati 444 603, IN
2 Dr Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli 415 712, IN
3 Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 033, IN
1 Department of Soil Science and Agricultural Chemistry, Shri Shivaji College of Agriculture, Amravati 444 603, IN
2 Dr Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli 415 712, IN
3 Division of Soil Resource Studies, National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 033, IN
Source
Current Science, Vol 110, No 9 (2016), Pagination: 1740-1755Abstract
In view of earlier reports on the occurrence of saltaffected shrink-swell soils in the Purna valley areas in Amravati district of Maharashtra, the present study was carried out to assess the current nature and extent of soil degradation due to use of irrigation water. Results indicate that the irrigation water used to raise agricultural crops in Amravati, Bhatkuli, Warud and Daryapur tehsils contains enough soluble Na-ions and residual sodium carbonate as the water belongs to C4S2 and C4S1 class of the United States Salinity Laboratory. The anthropogenic activities by introducing irrigation have caused severe drainage problem in the shrink-swell soils of the district, which are highly clayey and smectitic that have inherent low permeability. Only exception is the better drained soils of Warud tehsil, which are endowed with Ca-zeolite that help to ward off the ill effects of irrigation. The study thus suggests that continuing the present anthropogenic activities might render the soils unsuitable for agricultural production in the future. In contrast, the soils which are not irrigated do not suffer from any serious degradation in terms of high exchangeable Na (ESP) and low saturated hydraulic conductivity (sHC), suggesting that it would be prudent to encourage rainfed agriculture in the district under improved management practices.Keywords
Anthropogenic Activities, Irrigation Water Quality, Shrink-Swell Soils, Soil Degradation, Soil Quality.References
- Glanz, J. T., Saving Our Soil: Solutions for Sustaining Earth’s Vital Resource, Johnson Books, Boulder, CO, 1995.
- Lal, R., Soil carbon sequestration in India. Climate Change, 2004, 65, 277–296.
- Larson, W. E. and Pierce, F. J., Conservation and enhancement of soil quality. In Evaluation for Sustainable Land Management in the Developing World (ed. Dumanski, J.), Proceedings of the International Workshop, Chiang Rai, Thailand, 15–21 September 1991. Technical papers, vol. 2. Int. Board for Soil Research and Management, Bangkok, Thailand, 1991, pp. 175–203.
- Sharma, K. L. and Biswapati Mandal, Soil quality and its relevance for sustainable agriculture. J. Indian Soc. Soil Sci., 2009, 57, 572–586.
- Larson, W. E. and Pierce, F. J., The dynamics of soil quality as a measure of sustainable management. In Defining Soil Quality for a Sustainable Environment (ed. Doran, J. W. et al.), Soil Science Society America and America Society of Agronomy, Madison, WI, 1994, vol. 35, pp. 37–51.
- Dudal, R., Dark clay soils of tropical and subtropical regions, FAO Agricultural Development, Paper No. 83, FAO, Rome, 1965.
- Murthy, R. S., Hirekerur, L. R., Deshpande, S. B. and Venkat Rao, B. V., Benchmark Soils of India, National Bureau of Soil Survey and Land Use Planning (ICAR), Nagpur, India, 1982, p. 308.
- Bhattacharyya, T., Sarkar, D. and Pal, D. K. (eds), Soil Survey Manual, NBSS & LUP Publication No. 146, NBSS&LUP;, Nagpur, 2009, p. 400.
- Mandal, D. K., Mandal, C. and Velayutham, M., Development of a land quality index for sorghum in Indian semi-arid tropics (SAT). Agric. Syst., 2001, 70, 335–350.
- Sharma, K. L. et al., Evaluation of long-term soil management practices through key indicators and soil quality indices using principal component analysis and linear scoring method in rainfed Alfisols. Aust. J. Soil Res., 2008, 46, 368–377.
- Kundu, S. et al., Assessing soil health of Vertisol of AESR 10.1 using selected physical, chemical and biological attributes of soils. J. Indian Soc. Soil Sci., 2012, 60, 281–287.
- Ray, S. K. et al., Soil and land quality of the Indo-Gangetic Plains of India. Curr. Sci., 2014, 107, 1470–1486.
- Adyalkar, P. G., Paleogeography, nature and pattern of sedimentation and ground water potentiality of the Purna basin of Maharashtra. Proc. Nat. Sci., 1963, 29, 25–44.
- Tanpure, V. D., A study of salinity in well waters of saline Tract of Vidarbha, M Sc thesis (unpubl.) Dr. PDKV, Akola, 1971.
- Puranik, R. B., Barde, N. K. and Ballal, D. K., Studies on some salinealkali soils of Akola district, Maharashtra state. Panjabrao Krishi Vidyapith Res. J., 1972, 1, 51–58.
- Balpande, S. S., Deshpande, S. B. and Pal, D. K., Factors and processes of soil degradation in Vertisols of the Purna Valley, Maharashtra, India. Land Degrad. Rehabilitat., 1996, 7, 313–324.
- Magar, A. S., An appraisal of the nature of salinity and sodicity in black soils of the Purna Valley, M Sc thesis (unpubl.), Dr PDKV, Akola, 1990.
- Nimkar, A. M., Deshpande, S. B. and Babrekar, P. G., Evaluation of salinity problem in swell-shrink soils of a part of the Purna Valley, Maharashtra. Agropedology, 1992, 2, 59–65.
- Kadu, P. R., Pal, D. K. and Deshpande, S. B., Effect of low exchangeable sodium on hydraulic conductivity and drainage in shrink-swell soils of Purna Valley, Maharashtra. Clay Res., 1993, 12, 65–70.
- Van Wambeke, A., Calculated soil moisture and temperature regimes of Asia, SMSS Technical Monograph No. 9, Cornell Univ., Ithaka, New York, 1985.
- Soil Survey Staff, Keys to Soil Taxonomy (Twelfth edition), United States Dept. of Agriculture, Natural Resource Conservation Service, Washington, DC, 2014.
- Soil Survey Staff, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Survey, USDA Handbook 436, US Government Printing Office, Washington, DC, 1998.
- Pal, D. K., Genesis of sodic black soils (Vertisols). In International Conference on Sustainable Management of sodic lands, Lucknow, India, 2004, pp. 12–15.
- Kadu, P. R., Physical and chemical properties affecting hydraulic conductivity of black soils of Purna valley, M Sc thesis (unpubl.) Dr PDKV, Akola, 1991.
- Balpande, S. S., Characteristics, genesis and degradation of Vertisols of Purna Valley, Maharashtra. Ph D thesis (unpubl.), Dr PDKV, Akola, 1993.
- Nimkar, A. M., Evaluation of physical and chemical characteristics of soils of the Purna Valley of Maharashtra, M Sc thesis (unpubl.), Dr PDKV, Akola, 1990.
- Richards, L. A. (ed.), Diagnosis and Improvement of Saline and Alkali Soils, USDA Agriculture Handbook No. 60, US Government Printing Office, Washington, DC, 1954.
- Elangovan, D., Reappraisal hydrological studies in parts of the Purna Alluvial Valley, Akola district, Maharashtra, Central Groundwater Board, Nagpur, 1985.
- Muthuraman, K., Tiwari, M. P. and Mukhopadhyay, P. K., Salinity in the groundwater of the Purna basin – its genesis. Geol. Soc. India J., 1992, 39, 50–60.
- Bhattacharyya, T., Pal, D. K. and Deshpande, S. B., Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt. J. Soil Sci., 1993, 44, 159–171.
- Pal, D. K., Balpande, S. S. and Srivastava, P., Polygenetic Vertisols of the Purna Valley of central India. Catena, 2001, 43, 231–249.
- Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L. and Bhuse, S. R., Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of Peninsular India in refining the sodic soils. Geoderma, 2006, 136, 210–228.
- Piper, C. S., Soil and Plant Analysis, University of Adelaide, Adelaide, 1950.
- Jackson, M. L., Soil Chemical Analysis, Prentice-Hall Inc., Eaglewood Cliffs, New Jersey, 1958.
- Klute, A., Water retention, laboratory methods. In Methods of Soil Analysis Part 1 (ed. Clute, A.), 2nd edn, Agron, Monograph 9, Madison, Wisconsin, 1986, pp. 635–662.
- Jackson, M. L., Soil Chemical Analysis – Advanced Course, University of Wisconsin, Madison, WI, 1979, 2nd edn.
- Kanwar, J. S., Quality of irrigation water as an index of suitability for irrigation purposes. Potash Rev., 1961, 18, 1–13.
- Eaton, E. M., Significance of carbonate in irrigation water. Soil Sci., 1950, 69, 123–133.
- Wilcox, L. V., Determining the quality of irrigation water, US Dept. Agric. Information Bulletin, 1958, pp. 194.
- Bhattacharyya, T., Pal, D. K. and Srivastava, P., Role of zeolites in persistence of high altitude ferruginous Alfisols of the Western Ghats, India. Geoderma, 1999, 90, 263–276.
- Padekar, D. G., Soil quality as influenced by landuse management with special reference to irrigation in selected tehsils of Amravati district, Maharashtra, Ph D thesis (unpublished), Dr PDKV, Akola, 2014.
- Bhattacharyya, T., Chandran, P., Ray, S. K., Pal, D. K., Venugopalan, M. V., Mandal, C. and Wani, S. P., Changes in levels of carbon in soils over years of two important food production zones of India. Curr. Sci., 2007, 93, 1854–1863.
- FAO, Water Quality for Agriculture. In FAO Irrigation and Drainage (eds Ayers, R. S. and Westcot, D. W.), Paper No. 29, Rev. 1, FAO, Rome, 1994.
- Vaidya, P. H., Evaluation of shrink-swell soils and groundwater of the Pedhi watershed in Amravati district of land use planning. Ph D thesis (unpubl.), Dr PDKV, Akola, 2001, p. 167.
- Resilience of the Semi-Arid Tropical Soils
Abstract Views :221 |
PDF Views:71
Authors
Affiliations
1 ICRISAT Development Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, IN
2 Formerly at National Bureau of Soil Survey and Land use Planning, Nagpur 440 033, IN
1 ICRISAT Development Center, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, IN
2 Formerly at National Bureau of Soil Survey and Land use Planning, Nagpur 440 033, IN
Source
Current Science, Vol 110, No 9 (2016), Pagination: 1784-1788Abstract
Soils in the semi-arid tropics (SAT) are subject to chemical degradation mostly due to climatic reasons which make the pedo-environment hostile to form calcium carbonate. This triggers an overall deterioration of soil properties affecting its physical and chemical parameters. Such soils require management interventions which may include chemical and other phytoremediation process. The present paper details this process of degradation in light of resilience of these soils of SAT.Keywords
Chemical Degradation, SAT, Soil Properties, Soil Resilience.References
- Sahrawat, K. L., Wani, S. P., Pathak, P. and Rego, T. J., Managing natural resources of watersheds in the semi-arid tropics for improved soil and water quality: a review. Agric. Water Manage., 2010, 97, 375–381.
- Bhattacharyya, T. et al., Soils of India: Historical perspective, classification and recent advances in knowledge: a review. Curr. Sci., 2013, 104, 1308–1323.
- Pal, D. K., Dasog, G. S., Vadivelu, S., Ahuja, R. L. and Bhattacharyya, T., Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Global Climate Change and Pedogenic carbonates (eds Lal, R. et al.), Published by Lewis Publishers, Boca Ratan, 2000, pp. 149–185.
- Pal, D. K. et al., Vertisols (cracking clay soils) in a climosequence of Peninsular India: Evidence for Holocene climate changes. Quaternary Int., 2009, 209, 1–16.
- Pal, D. K., Bhattacharyya, T., Sahrawat, K. L. and Wani, S. P., Natural chemical degradation of soils in the Indian semi arid tropics, and remedial measures: a review. Curr. Sci., 2016, 110(9), 1675–1682.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Mandal, C., Ray, S. K., Gupta, R. K. and Gajbhiye, K. S., Managing soil carbon stocks in the Indo-Gangetic plains, India, Rice–Wheat Consortium for the Indo-Gangetic Plains, New Delhi, 2004, p. 44.
- Bhattacharyya, T., Chandran, P. and Ray, S. K., Soil classification following US taxonomy: an Indian commentary. Soil Horizon, 2015. 1–16; doi: 10.2136/sh14-08-0011.
- Bhattacharyya, T. et al., ICRISAT, India soils: yesterday, today and tomorrow. Curr. Sci., 2016, 110(9), 1652–1670.
- Bhattacharyya, T. et al., Estimation of carbon stocks in the red and black soils of selected benchmark spots in semi-arid tropics, India, Global Theme on Agro Ecosystems Report No. 28, NBSSLUP, and ICRISAT (India), 2006, p. 86.
- Bhattacharyya, T., Pal, D. K., Chandran, P., Ray, S. K., Mandal, C. and Telpande, B., Soil carbon storage capacity as a tool to prioritise areas for carbon sequestration. Curr. Sci., 2008, 95, 482–494.
- Bhattacharyya, T. et al., Georeferenced Soil Information System: Assessment of Database. Curr. Sci., 2014, 107, 1400–1419.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Carbon sequestration in Indian soils: Present status and the potential. Proc. Nat. Acad. Sci., Biol. Sci. (NASB), India. 2015, 85, 337–358; doi: 10.1007/s40011-014-0351-6.
- Bhattacharyya, T. et al., Characterization of benchmark spots of selected red and black soils in semi-arid tropics of India for identifying systems for carbon sequestration and increased productivity in semi-arid tropical environments, Global Theme on Agro Ecosystems Report No. 42, Working report of identifying systems for carbon sequestration and increased productivity in semi-arid tropical environments (RNPS-25), National Agricultural Technology Project (NATP), Indian Council of Agricultural Research (ICAR), New Delhi, India, Patancheru, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), and New Delhi, India: Indian Council of Agricultural Research, 2008, p. 388.
- Soil Survey Staff. Keys to Soil Taxonomy, USDA-NRCS, Washington, DC, 2014, 12th edn.
- Bhattacharyya, T. et al., Carbon sequestration in red and black soils I. Influence of morphological properties. Agropedology, 2007, 17, 1–15.
- Bhattacharyya, T. et al., Carbon sequestration in red and black soils II. Influence of physical and chemical properties. Agropedology, 2007, 17, 16–25.
- Bhattacharyya, T. et al., Carbon sequestration in red and black soils III. Identifying systems through carbon stock and bulk density of soils. Agropedology, 2007, 17, 26–34.
- Abrol, I. P. and Fireman, M., Alkali and Saline Soils; Identification and Improvement for Crop Production, Bulletin No. 4. Central Soil Salinity Research Institute, Karnal, India, 1977.
- Bhattacharyya, T., Sehgal, J. and Sarkar, D., Soils of Tripura for Optimizing Land Use: Their Kinds, Distribution and Suitability for Major Field Crops and Rubber, NBSS Publ. 65 a and c (Soils of India series 6). NBSS & LUP, Nagpur, India, 1996, p. 154.
- Bhattacharyya, T., Chandran, P., Ray, S. K., Pal, D. K., Mandal, C. and Mandal, D. K., Distribution of zeolitic soils in India: an update. Curr. Sci., 2016, 110(9), 0000–0000.
- Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L. and Bhuse, S. R., Significance of soil modifiers (Ca-zeolites and gypsum) in naturally degraded Vertisols of the Peninsular India in redefining the sodic soils. Geoderma, 2006, 136, 210–228.
- Bhattacharyya, T., Pal, D. K. Lal, S., Chandran, P. and Ray, S. K., Formation and persistence of Mollisols on Zeolitic Deccan basalt of humid tropical India. Geoderma, 2006, 136, 609–620.
- Bhattacharyya, T. et al., Estimation of carbon stocks in the red and black soils of selected benchmark spots in semi-arid tropics, India, Global Theme on Agro Ecosystems Report No. 28, NBSSLUP and ICRISAT (India), 2006, p. 86.
- Padekar, D. G., Bhattacharyya, T., Deshmukh, P. D., Ray, S. K., Chandran, P. and Tiwary, P., Is irrigation water causing degradation in black soils? Curr. Sci., 2014, 106, 1487–1489.
- Sahrawat, K. L., How fertile are semi-arid tropical soils? Curr. Sci., 2016, 110(9), 1671–1674.
- Datta, A., Wani, S. P., Patil, M. D. and Tilak, A. S., Field scale evaluation of seasonal wastewater treatment efficiencies of freesurfaceconstructed wetlands in ICRISAT, India. Curr. Sci., 2016, 110(9), 1756–1763.
- Petare, K. J., Nayak, J., Jaini, V. and Wani, S. P., Livelihood system assessment and planning for poverty alleviation: a case of rainfed agriculture in Jharkhand. Curr. Sci., 2016, 110(9), 1773–1783.
- Soil Quality and Fibrous Mineral in Black Soils of Maharashtra
Abstract Views :203 |
PDF Views:46
Authors
Affiliations
1 Division of Soil Resources Studies, ICAR-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur - 440 010, IN
1 Division of Soil Resources Studies, ICAR-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur - 440 010, IN
Source
Current Science, Vol 115, No 3 (2018), Pagination: 482-492Abstract
There are many reports on soil parameters that have both yield-reducing and yield-favouring potential. However, only a few are available on the index soil properties of fibrous minerals containing soils on crop yields in the semi-arid tropical (SAT) regions. These minerals in soils are mostly palygorskite and sepiolite. In the present study, only the palygorskite mineral in black soils (cracking clay soils), its formation and probable influence on soil quality is addressed. The present study was also undertaken to indicate a possible genesis of palygorskite in Indian black soils with and without soil modifiers (Ca-zeolites and gypsum) supporting both rainfed and irrigated agriculture in SAT environments. Palygorskite is absent in aridic/ gypsic/sodic intergrades of black soils (Haplusterts), which might indicate non-interference of soil modifiers in its formation. Palygorskite is present only in sodic black soils (Calciusterts) in Maharashtra and parts of central and western India that contain no soil modifiers, and are under both rainfed and irrigated agricultural systems. The severe impairment of hydraulic properties of palygorskite containing naturally degraded black soils warrants a new research initiative for soils containing fibrous minerals.Keywords
Fibrous Minerals, Palygorskite, Black Soils, Soil Quality.References
- Sarma, V. A. K. and Sidhu, P. S., Genesis and transformation of clay minerals. In 12th International Congress of Soil Science, New Delhi, 1982, pp. 718–724.
- Zade, S. P., Pedogenic studies of some deep shrink–swell soils of Marathwada Region of Maharashtra to develop a viable land use plan. Ph D thesis, Dr PDKV, Akola, Maharashtra, 2007.
- Hillier, S. and Pharande, A. L., Contemporary formation of palygorskite in irrigation induced saline–sodic, shrink–swell soils of Maharashtra, India. Clays Clay Miner., 2008, 56, 531–548.
- Kolhe, A. H., Characteristics and genesis of red swell-shrink soils of Hingoli District of Maharashtra, M Sc thesis submitted to Dr. PDKV, Akola, 2010, p. 91.
- Pal, D. K., Bhattacharyya, T., Ray, S. K. and Bhuse, S. R., Developing a model on the formation and resilience of naturally degraded black soils of the Peninsular India as a decision support system for better land use planning. NRDMS, DST Project Report, NBSS&LUP (ICAR), Nagpur, 2003, p. 144.
- Singer, A., Pedogenic palygorskite in the aid environment. In Palygorskite–Sepiolite Occurrences, Genesis and Uses (eds Singer, A. and Galan, E.), Elsevier, Amsterdam, The Netherlands, 1984, pp. 169–176.
- Singer, A., Palygorskite and sepiolite. In Soil Mineralogy with Environmental Applications (eds Dixon, J. B. and Schulze, D. G.), SSSA Book Series, Soil Science Society of America, Madison, WI, 2002, vol. 7, pp. 555–583.
- Jones, B. F. and Galan, E., Sepiolite and palygorskite. In Hydrous Phyllosilicates. Reviews in Mineralogy, 19, Mineralogical Society of America (ed. Bailey, S. W.), Washington DC, USA, 1988, pp. 631–674.
- Millot, G., Panquet, H. and Ruellan, A., Neoformation de I’attapulgite dans les sols a carapaces calcaires de la basse Moulouya (Maroc oriental). C.R. Academy of Sciences, Paris, 1969, 268, 2771–2774.
- Ducloux, J., Delhoume, J. P., Petit, S. and Decarreau, A., Clay differentiation in Aridisols of northern Mexico. Soil Sci. Soc. Am. J., 1995, 59, 269–276.
- Zelazny, L. W. and Calhoun, F. G., Palygorskite (attapulgite), sepiolite, talc, pyrophyllite and zeolites. In Minerals in Soil Environment (eds Dixon, J. B. and Weed, S. B.), Soil Science Society of America, Madison, Wisconsin, USA, 1977, pp. 435–470.
- Heidari, A., Mahmoodi, Sh., Roozitalab, M. H. and Mermut, A.
- R., Diversity of clay minerals in the black soils of three different climatic regions in western Iran. J. Agric. Sci. Technol., 2008, 10, 269–284.
- Callen, R. A., Clays of the palygorskite–sepiolite group: depositional environment, age and distribution. In Palygorskite–Sepiolite Occurrences, Genesis and Uses ((eds Singer, A. and Galan, E.), Elsevier, Amsterdam, The Netherlands, 1984, pp. 1–37.
- Singer, A., Palygorskite and sepiolite group minerals. In Minerals in Soil Environments (eds Dixon, J. B. and Weed, S. B.), SSSA Book Series No. 1, Madison, WI, USA, 1989, 2nd edn, pp. 830–873.
- Bigham, J. M., Jaynes, W. F. and Allen, B. L., Pedogenic degradation of sepiolite and palygorskite on the Texas High Plains. Soil Sci. Soc. Am. J., 1980, 44, 159–165.
- Fassi, D., L’encroutement calcaire differencie. Approche analytique intergree d’un profil du Sais. Rev. Geogr. Moracaine, 1987, 10, 115–148.
- Kadir, S. and Eren, M., The occurrence and genesis of clay minerals associated with quaternary caliches in the Mersin area, southern Turkey. Clays Clay Min., 2008, 56, 244–258.
- Xie, Q. et al., Mechanism of palygorskite formation in the red clay formation on the Chinese Loess Plateau, northwest China. Geoderma, 2013, 192, 39–49.
- Sombroek, W. G., The use of palygorskite as diagnostic criteria in soil classification. Pedologie, 1981, 31, 121.
- Singer, A. and Norrish, K., Pedogenic palygorskite occurrence in Australia. Am. Mineral, 1974, 59, 508–517.
- Neaman, A. and Singer, A., The effects of palygorskite on chemical and physico-chemical properties of soils: a review. Geoderma, 2004, 123, 297–303.
- Bhattacharyya, T., Pal, D. K. and Deshpande, S. B., Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and black soils) soils on Deccan basalt. J. Soil Sci., 1993, 44, 159–171.
- Pal, D. K., Bhattacharyya, T., Ray, S. K., Chandran, P., Srivastava, P., Durge, S. L. and Bhuse, S. R., Significance of soil modifiers (Ca-zeolites and gypsum) in naturally-degraded black soils of the Peninsular India in redefining the sodic soils. Geoderma, 2006, 136, 210–228.
- Pal, D. K. and Deshpande, S. B., Characteristics and genesis of minerals in some benchmark black soils of India. Pedologie, 1987, 37, 259–275.
- Pal, D. K. et al., Black soils (cracking clay soils) in a climosequence of Peninsular India: evidence for Holocene climate changes. Quaternary Int., 2009, 209, 6–21.
- Pal, D. K., Wani, S. P. and Sahrawat, K. L., Black soils of tropical Indian environments: pedology and edaphology. Geoderma, 2012, 189–190, 28–49.
- Bhattacharyya, T., Sarkar, D. and Pal, D. K. (eds), Soil Survey Manual, NBSS&LUP Publication No. 146, NBSS&LUP, Nagpur, 2009, p. 400.
- Jackson, M. L., Soil Chemical Analysis – Advanced Course, University of Wisconsin, Madison, USA (Published by the author), 1979, 2nd edn.
- Piper, C. S., Soil and Plant Analysis, Hans Publishers, Bombay, 1966.
- Richards, L. A., Diagnosis and Improvement of Saline and Alkali Soils, USDA Agricultural Handbook, US Government Printing Office, Washington, DC, USA, 1954, vol. 60.
- Brown, G., Associated minerals. In Crystal Structures of Clay Minerals and their X-ray Identification (eds Brindley, G. W. and Brown, G. W.), Mineralogical Society, London, UK, 1984, pp. 361–410.
- Gjems, O., Studies on clay minerals and clay mineral formation of soil profiles in Scandinavia. Medd. Nor. Inst. Skogforsok., 1967, 21, 303–415.
- Van Scoyoc, G. E., Serna, C. J. and Ahlrichs, J. L., Structural changes in palygorskite during dehydration and dehydroxylation. Am. Mineral., 1979, 64, 215–223.
- Nathan, Y., An improved X-ray method for detecting small quantities of palygorskite in clay mineral mixtures. Clays Clay Miner., 1970, 18, 363–365.
- Kadu, P. R., Vaidya, P. H., Balpande, S. S., Satyavathi, P. L. A.
- and Pal, D. K., Use of hydraulic conductivity to evaluate the suitability of black soils for deep ischolar_mained crops in semi-arid parts of Central India. Soil Use Manage., 2003, 19, 208–216.
- Owliaie, H. R., Abtahi, A. and Heck, R. J., Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 2006, 134, 62–81.
- Srivastava, P., Bhattacharyya, T. and Pal, D. K., Significance of the formation of calcium carbonate minerals in the pedogenesis and management of cracking clay soils (black soils) of India. Clays Clay Miner., 2002, 50, 110–125.
- Pal, D. K., Dasog, G. S., Vadivelu, S., Ahuja, R. L. and Bhattacharyya, T., Secondary calcium carbonate in soils of arid and semi-arid regions of India. In Global Climate Change and Pedogenic Carbonates (eds Lal, R. et al.), Lewis Publishers, Boca Raton, Florida, 2000, pp. 149–185.
- Pal, D. K., Deshpande, S. B., Venugopal, K. R. and Kabande, A. R., Formation of di and trioctahedral smectite as evidence for paleoclimatic changes of southern and central Peninsular India. Geoderma, 1989, 45, 175–184.
- Pal, D. K. et al., Clay minerals record from Late Quaternary drill cores of the Ganga Plains and their implications for provenance and climate change in the Himalayan Foreland. Palaeogeogr., Palaeoclimatol., Palaeoecol., 2012, 356–357, 27–37.
- Pal, D. K., Potassium release from muscovite and biotite under alkaline conditions. Pedologie, 1985, 35, 133–146.
- Thakare, P. V., Ray, S. K., Chandran, P., Bhattacharyya, T. and Pal, D. K., Does sodicity in Black soils affect the layer charge of smectites? Clay Res., 2013, 32, 76–90.
- Rengasamy, P., Sarma, V. A. K., Murthy, R. S. and Krishna Murti, G. S. R., Mineralogy, genesis and classification of ferruginous soils of the eastern Mysore plateau. J. Soil Sci., 1978, 29, 431-445.
- De Kimpe, C., Gastuche, M. C. and Brindley, G. W., Ionic coordination in aluminosilicic gels in relation to clay mineral formation. Am. Mineral., 1961, 46, 1370–1381.
- Singer, A., Palygorskite in sediments: detrital, diagenetic or neoformed – a critical review. Geol. Rundsch., 1979, 68, 996–1008.
- Daoudi, L., Palygorskite in the uppermost Cretaceous–Eocene frocks from Marrakech High Atlas, Morocco. J. Afr. Earth Sci., 2004, 39, 353–358.
- Siddiqui, M. K. H., Palygorskite clays from Andhra Pradesh, India. Clay Min., 1967, 7, 120–123.
- Shrivastava, J. P., Salil, M. S, and Pattanayak, S. K., Clay mineralogy of Ir-bearing Anjar Intertrappeans, Kutch, Gujarat, India: inferences on paleoenvironment. J. Geol. Soc. India, 2000, 55, 197–206.
- Kolhe, A. H., Chandran P., Ray, S. K., Bhattacharyya, T., Pal, D.
- K. and Sarkar, D., Genesis of associated red and black shrinkswell soils of Maharashtra. Clay Res., 2011, 30, 1–11.
- Pal, D. K., Sarkar, D., Bhattacharyya, T., Datta, S. C., Chandran, P. and Ray, S. K., Impact of climate change in soils of semi-arid tropics (SAT). In Climate Change and Agriculture (eds Bhattacharyya, T. et al.), Studium Press, New Delhi, 2013, pp. 113–121.
- Bhattacharyya, T., Pal, D. K. and Srivastava, P., Role of zeolites in persistence of high altitude ferruginous Alfisols of the Western Ghats, India. Geoderma, 1999, 90, 263–276.
- Bhattacharyya, T., Pal, D. K., Lal, S., Chandran, P. and Ray, S. K., Formation and persistence of Mollisols on zeolitic Deccan basalt of humid tropical India. Geoderma, 2006, 136, 609–620.
- Soil Survey Staff, Keys to Soil Taxonomy, United States Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA, 10th edn, 2006.
- Velayutham M., Mandal D. K., Mandal, C. and Sehgal, J., Agro-ecological subregions of India for planning and development, NBSS&LUP Publ. No. 35, NBSSLUP, Nagpur, 1999, p. 372.
- Irrigation Water:Its Influence on the Quality of Soils in Amravati District, Maharashtra
Abstract Views :225 |
PDF Views:0
Authors
Affiliations
1 Department of Soil Science and Agricultural Chemistry, Shri Shivaji College of Agriculture, Amravati (M.S.), IN
2 Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli (M.S.), IN
1 Department of Soil Science and Agricultural Chemistry, Shri Shivaji College of Agriculture, Amravati (M.S.), IN
2 Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli (M.S.), IN
Source
An Asian Journal of Soil Science, Vol 13, No 1 (2018), Pagination: 19-29Abstract
Poor quality of both surface and groundwater is a limiting factor for the irrigation of many black soil areas of the Purna Valley, Maharashtra. The present study is a humble effort to flag some of the concerns of these valley raised by the farmers in Amravati district representing the Vidarbha region of Maharashtra. Irrigation sources are river, canal and predominantly wells in the study area. Samples of irrigation water and soils were collected and analysed from four tehsils of Amravati district, Vidarbha, Maharashtra to assess the quality of irrigation water and its impact on black soils. Soil samples (Shirala-Amravati, Darapur- Daryapur, Wathoda- Bhatkuli and Temburkheda- Warud) were analysed to study the influence of irrigation water on soil characteristics. It was observed that the water used for irrigation in Shirala soil is in the class C3S2 with sodium adsorption ratio (SAR) value ~12, electrical conductivity (EC) 1.8 dSm-1 and Na+ 14.0 mmolcl-1 which increased the EC of soils. The higher concentration of Na+ and Mg2+ ions is responsible for drainage impairment. The irrigation water of Wathoda (C4S1) increased EC values of irrigated soils. The reduced saturated hydraulic conductivity (sHC) in irrigated soils as compared to unirrigated soils is attributed to the higher concentration of sodium. The water used for irrigation in Temburkheda and Darapur are similar in quality (C3S1). The soils of Darapur experienced significant increase in EC as compared to Temburkheda soils. This was also associated with decrease in the values of soil drainage (sHC :0.14-0.17 cmh-1) in the Darapur soils. Moreover, exchangeable as well as water soluble Na+, Mg++cations and EC also increased in the upper layers of the irrigated soils due to application of poor quality irrigation water. This caused deterioration of the soil quality.With the help of temporal datasets of soils the effect of irrigation water on soil properties was assessed. The soils which were rainfed showed improved condition in terms of several physical and chemical properties; however, the soils when irrigated with poor quality water brought several problems in soils in terms of physical and chemical properties. Immediate measures are necessary in the study area.Keywords
Irrigation Water, Influence, Quality of Soils.References
- Adyalkar, P.G. (1963). Paleogeography, nature and pattern of sedimentation and ground water potentiality of the Purna basin of Maharashtra. Proc. Natn. Sci., 29: 25-44.
- Balpande, S.S., Deshpande, S.B. and Pal, D.K. (1996).Factors and processes of soil degradation in Vertisols of the Purna Valley, Maharashtra, India. Land Degradation & Rehabilitation. 7 : 313-324.
- Elangovan, D. (1985).Reappraisal hydrological studies in parts of the Purna Alluvial Valley, Akola district, Maharashtra, Central Groundwater Board, Nagpur.
- Girdhar, I.K. (1996). Effect of different RSC waters of varying salinity and SAR on soil properties of Haplustalfs. J. Indian Society of Coastal Agric. Res., 14 : 69-71.
- Jackson, M.L. (1973). Soil chemical analysis, Prentice Hall of India Pvt. Ltd., New Delhi, India.
- Kadu, P.R., Pal, D.K. and Deshpande, S.B. (1993). Effect of low exchangeable sodium on hydraulic conductivity and drainage in shrink-swell soils of Purna Valley, Maharashtra. Clay Res., 12 : 65-70.
- Muthuraman, K.,Tiwari, M.P. and Mukhopadhyay, P.K. (1992). Salinity in the groundwater of the Purna basin- Its genesis. Geol. Soc. India J., 39 : 50-60.
- Nimkar, A.M., Deshpande, S.B. and Babrekar, P.G. (1992). Evaluation of salinity problem in swell-shrink soils of a part of the Purna Valley, Maharashtra, Agropedology, 2:59-65.
- Padekar, D.G., Bhattacharyya, T., Deshmukh, P.D., Ray, S.K., Chandran, P. and Tiwary, P. (2014). Is irrigation water causing degradation in black soils? Curr. Sci., 106 (11): 1487-1489.
- Padekar, Deepak Gangadhar (2014). Soil quality as influenced by landuse management with special reference to irrigation in selected tehsils of Amravati district, Maharashtra, Ph.D. Thesis, LRM from Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, M.S. (India).
- Rajput, S.G. and Polara, K.B. (2013). Evaluation of quality of irrigation water in coastal Bhavnagar district of Saurashtra region (Gujarat). J. Indian Society of Soil Sci., 60 (1) : 34-37.
- Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils, USDA Agric. Handbook 60, U.S. Govt. Printing Office, Washington, D.C. 160 pp.
- Van Wambeke, A. (1985). Calculated soil moisture and temperature regimes of Asia, SMSS Technical Monograph No. 9, Cornell University, Ithaca NY.
- Wilcox, L.V., Blair, G.Y. and Bower, C.A. (1954). Effect of bicarbonate on suitability of water for irrigation. Soil Sci,77: 259-266.
- Yadav, J.S.P., Bandyopadhyay, A.K. and Bandyopadhyay, B.K. (1983). Extent of coastal saline soils of India. Indian Society of Coastal Agric. Res.,1 : 1-6.