Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Singh, Sushil K.
- Characterization of Different Forms of Chalcopyrite Disease through Fractal Analysis
Abstract Views :341 |
PDF Views:140
Authors
Affiliations
1 Department of Geology, University of Delhi, Delhi 110 007, IN
2 Department of Physics, SGTB Khalsa College, University of Delhi, Delhi 110 007, IN
1 Department of Geology, University of Delhi, Delhi 110 007, IN
2 Department of Physics, SGTB Khalsa College, University of Delhi, Delhi 110 007, IN
Source
Current Science, Vol 117, No 3 (2019), Pagination: 460-469Abstract
Complex shapes that form by natural processes are often difficult to explain using non-Euclidean geometry. Chalcopyrite disease (CD) formation, a replacement texture, demonstrates a nonlinear-fractal geometry. CD samples from three polymetallic deposits were chosen for fractal analysis. CD did not show a fractal value specific to mineralized deposits. However, fractal analysis showed consistent values for a similar form of CD, thus setting a quantitative relationship between varied forms of CD and their condition of formation. The mean fractal dimension calculated for each study area displayed a positive correlation with the peak metamorphic grade of the respective deposit. The statistical analysis (ANOVA) of fractal dimension data further delineated the differences among the three study areas.Keywords
Box Counting Method, Chalcopyrite Disease, Fractal Dimension, Replacement Texture, Statistical Analysis.References
- Betekhtin, A. G., Genkin, A. D., Filimonova, A. A. and Shadlun, T. N., Structures and Textures of Ores, Gosgeoltekhisdat, Moscow, Russia, 1958, p. 435.
- Grigoriev, I. F., Textures of mineral intergrowths in ores. Zap. Vses. Mineral. Ova., 1928, 57, 11–56.
- Ramdohr, P., Beobachtungen an opaken Erzen. Arch. Lagerstaettenforsch, 1924, 34, 30.
- Schneiderhöhn, H., Anleitung zur microscopischen Bestimmung und Untersuchung von Erzen und Aufbereitungsprodukten, besonderes im auffallenden Licht: Berlin, Selbstverlag Gesell. Deutsche Metallhiitten Bergleute, 1922, p. 292.
- Nakano, N., On the microscopic intergrowths of chalcopyrite and zincblende. Jpn. Assoc. Mineral. Petrol. Econ. Geol. J., 1937, 18, 23–29.
- Barton, P. B., Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Min. Geol., 1978, 28, 293–300.
- Barton, P. B. and Bethke, P. M., Chalcopyrite disease in sphalerite: pathology and epidemiology. Am. Mineral., 1987, 76, 451– 467.
- Sugaki, A., Kitakaze, A. and Kojima, S., Bulk compositions of intimate intergrowths of chalcopyrite and sphalerite and their genetic implications. Miner. Deposita, 1987, 22(1), 26–32.
- Eldridge, C. S., Bourcier, W. L., Ohmoto, H. and Barnes, H. L., Hydrothermal inoculation and incubation of the chalcopyrite disease in sphalerite. Econ. Geol., 1988, 83(5), 978–989.
- Wiggins, L. B. and Craig, J. R., Reconnaissance of the Cu–Fe– Zn–S system; sphalerite phase relationships. Econ. Geol., 1980, 75(5), 742–751.
- Mizuta, T., Interdiffusion rate of zinc and iron in natural sphalerite. Econ. Geol., 1988, 83, 1205–1220.
- Kojima, S., A co-precipitation experiment on intimate association of sphalerite and chalcopyrite and its bearing on the genesis of Kuroko ores. Min. Geol., 1990, 40, 147–158.
- Hutchinson, M. N. and Scott, S. D., Sphalerite geobarometry in the system Cu–Fe–Zn–S. Econ. Geol., 1981, 76, 143–155.
- Kojima, S. and Sugaki, A., Phase relations in the Cu–Fe–Zn–S system between 500 and 300 under hydrothermal conditions. Econ. Geol., 1985, 80, 158–171.
- Govindarao, B., Pruseth, K. L. and Mishra, B., Sulfide partial melting and chalcopyrite disease: an experimental study. Am. Mineral., 2018, 103(8), 1200–1207.
- Pruseth, K. L., Mishra, B., Jehan, N. and Kumar, B., Evidence of sulfide melting and melt fractionation during amphibolite facies metamorphism of the Rajpura–Dariba polymetallic sulfide ores. Ore Geol. Rev., 2016, 72, 1213–1223.
- Bente, K. and Doering, T., Solid state diffusion studies in sphalerite: an experimental verification of the ‘chalcopyrite disease’. Eur. J. Mineral., 1993, 53, 285–305.
- Bente, K. and Doering, T., Experimental studies on the solid state diffusion of (Cu + In) in (ZnS) and on ‘disease’, DIS (diffusion induced segregations), in sphalerite and their geological application. J. Mineral. Petrol., 1995, 53, 285–305.
- Mandelbrot, B. B., The Fractal Geometry of Nature (revised and enlarged edition), Freeman and Co, NY, USA, 1983, p. 495.
- Lipowsky, R., Scaling properties of interfaces and membranes. In Random Fluctuations and Pattern Growth: Experiments and Models, Springer, The Netherlands, 1988, pp. 227–245.
- Agterberg, F. P., Bonham-Carter, G. F., Cheng, Q. and Wrigh, D. F., Weights of evidence modeling and weighted logistic regression for mineral potential mapping. In Computers in Geology – 25 years of Progress, Oxford University Press, NY, USA, 1993, pp. 13–32.
- Ford, A. and Blenkinsop, T. G., Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geol. Rev., 2008, 33(3–4), 435–450.
- Changjiang, L., Youlang, X. and Xuliang, J., Fractal Nature of Mineral Deposit, Geology of Zhejiang, 2, 1994.
- Blenkinsop, T. G., Kruhl, J. H. and Kupková, M. (eds), Fractals and Dynamic Systems in Geoscience, Birkhäuser Verlag, Basel, Switzerland, 2000.
- Gulbin, Y. L. and Evangulova, E. B., Morphometry of quartz aggregates in granites: fractal images referring to nucleation and growth processes. Math. Geol., 2003, 35(7), 819–833.
- Huber, M. A., Dynamics of metamorphism processes by the fractal textures analysis of garnets, amphiboles and pyroxenes of Lapland Granulite Belt, Kola Peninsula. J. Biol. Earth Sci., 2012, 2(2), 50–55.
- Nkono, C., Féménias, O., Lesne, A., Mercier, J. C., Ngounouno, F. Y. and Demaiffe, D., Relationship between the fractal dimension of orthopyroxene distribution and the temperature in mantle xenoliths. Geol. J., 2016, 51(5), 748–759.
- Kueppers, U., Scheu, B., Spieler, O. and Dingwell, D. B., Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts. J. Volcanol. Geotherm. Res., 2006, 153, 125–135.
- Bindeman, I. N., Fragmentation phenomena in populations of magmatic crystals. Am. Mineral., 2005, 90, 1801–1815.
- Yu, C. and Liu, J., Fractal and multifractal analyses of sphalerite banding at the Zhaishang gold deposit, western Qinling, China. Eur. J. Mineral., 2015, 27, 511–520.
- Fowler, A. D. and L’Heureux, I., Self-organized banded sphalerite and branching galena in the Pine Point ore deposit, Northwest Territories. Canadian Mineral., 1996, 34(6), 1211–1222.
- Xia, F. et al., A characterization of porosity in sulfide ore minerals: a USANS/SANS study. Am. Mineral., 2014, 99, 2398–2404.
- Heron, A. M., The geology of central Rajputana. Mem. Geol. Surv. India, 1953, 79, 389.
- Deb, M., Genesis and metamorphism of two stratiform massive sulphide deposits at Ambaji and Deri in the Precambrian of western India. Econ. Geol., 1980, 75, 572–591.
- Deb, M. and Sarkar, S. C., Proterozoic tectonic evolution and metallogenesis in the Aravalli–Delhi orogenic complex, northwestern India. Precambrian Res., 1990, 46, 115–137.
- Raghunandan, K. R., Dhruva Rao, B. K. and Singhal, M. L., Exploration for copper, lead and zinc ores in India. Bull. Geol. Surv. India, Ser. A, 1981, 47, 16–18.
- Tripathi, S., Geological characterisation of the carbonate-hosted polymetallic prospect at Imalia, Mahakoshal belt, Central India. Unpublished Ph D thesis, University of Delhi, India, 2008, p. 315.
- Peternell, M. and Kruhl, H., Automation of pattern recognition and fractal-geometry-based pattern quantification, exemplified by mineral-phase distribution patterns in igneous rocks. Comput. Geosci., 2011, 35, 1415–1426.
- Pruess, S. A., Some remarks on the numerical estimation of fractal dimension. In Fractals in the Earth Sciences (eds Barton, C. C. and La Pointe, P. R.), Plenum Press, NY, USA, 1995, pp. 65–76.
- Deb, M., Polymetamorphism of ores in Precambrian stratiform massive sulfide Deposits at Ambaji–Deri, Western India. Miner. Deposita, 1979, 14, 21–31.
- Tiwary, A., Deb, M. and Cook, N. J., Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulphide deposits – an example from Deri, southern Rajasthan, India. Mineral. Mag., 1998, 62(2), 197–212.
- Li, J. M., Lü, L., Lai, M. O. and Ralph, B., Image Based Fractal Description of Microstructures, 2003, Kluwer, p. 272.
- Deb, M. and Bhattacharya, A. K., Geological setting and conditions of metamorphism of Rajpura–Dariba polymetallic ore deposit, Rajasthan, India. In Proceedings of the 5th IAGOD symposium, Scheweizerbart’sche Verlagsbuchhandlung, Sttutgart, Germany, 1980, pp. 679–697.
- Pal, T., Ore deposit modeling in the Dariba–Rajpura–Bethumni belt, Rajasthan, in the light of a database on sediment-hosted Pb–Zn sulphide deposits in India, 2006, Unpublished Ph D thesis, p. 311.
- Mishra, B. Evolution of the Rajpura–Dariba polymetallic sulphide deposit: constraints from sulphide–sulfosalt phase equilibria and fluid inclusion studies. In Crustal Evolution and Metallogeny in the Northwestern Indian Shield, Narosa Publication, New Delhi, 2000, pp. 347–370.
- Mishra, B., Upadhyay, D. and Bernhardt, H.-J. Metamorphism of the host and associated rocks at the Rajpura–Dariba massive sulfide deposit, Northwestern India. J. Asian Earth Sci., 2006, 26(1), 21–37.
- Bortnikov, N. S., Genkin, A. D., Dobrovol’skaya, M. G., Muravitskaya, G. N. and Filimonova, A. A., The nature of chalcopyrite inclusions in sphalerite: exsolution, coprecipitation, or ‘disease’? Econ. Geol., 1991, 86, 1070–1082.
- Nagase, T. and Kojima, S., An SEM examination of the chalcopyrite disease texture and its genetic implications. Mineral. Mag., 1997, 61, 89–97.
- Williams, V. A., Diffusion of some impurities in zinc sulphide single crystals. J. Mater. Sci., 1972, 7(7), 807–812.
- Differential Loss of Glacier Stored Water in the Indus River Basin
Abstract Views :253 |
PDF Views:160
Authors
Ashutosh Kulkarni
1,
Veena Prasad
2,
A. R. Arya
2,
Rajiv K. Chaturvedi
1,
Sushil K. Singh
3,
Sandip Oza
3
Affiliations
1 Birla Institute of Technology and Science, Pilani, Goa Campus, Goa 403 726, IN
2 DST Centre for Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, IN
1 Birla Institute of Technology and Science, Pilani, Goa Campus, Goa 403 726, IN
2 DST Centre for Excellence in Climate Change, Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru 560 012, IN
3 Space Applications Centre, Indian Space Research Organisation, Ahmedabad 380 015, IN
Source
Current Science, Vol 124, No 4 (2023), Pagination: 478-484Abstract
In this study, we assessed the glacier stored water (1,620 ± 340 Gt) using a combination of ice dynamics modelling and volume–area scaling method and estimated glacier mass loss (6.4%) from 2001 to 2013 for the Indus River basin. Results indicate that the impact of climate change is not uniform across the basin, especially the stark difference between the Western Himalayan region where the glaciers are losing mass at the rate of –0.56 ± 0.27 m.w.e. per annum and the Upper Indus where the loss is at –0.18 ± 0.11 m.w.e. per annum.Keywords
Climate Change, Glacier Stored Water, Improved Accumulation Area Ratio, Mass Balance, River Basin.References
- Wester, P., Mishra, A., Mukherji, A. and Shrestha, A. B., The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, Springer Nature, Switzerland, 2019, chapter 1, table 1.2, p. 5.
- Pritchard, H. D., Asia’s shrinking glaciers protect large populations from drought stress. Nature, 2019, 569(7758), 649–654.
- Mujumdar, P. P. and Tiwari, V. M., Water Futures of India: Status of Science and Technology, Indian National Science Academy, New Delhi, 2019.
- Abdullah, T., Romshoo, S. A. and Rashid, I., The satellite observed glacier mass changes over the Upper Indus Basin during 2000–12. Sci. Rep., 2020, 10(1), 1–9.
- Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A. and Osmanoglu, B., A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci., 2020, 7, 363.
- Hugonnet, R. et al., Accelerated global glacier mass loss in the early twenty-first century. Nature, 2021, 592(7856), 726–731.
- Zemp, M. et al., Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 2019, 568(7752), 382–386.
- Muhammad, S., Tian, L. and Khan, A., Early twenty-first century glacier mass losses in the Indus Basin constrained by density assumptions. J. Hydrol., 2019, 574, 467–475.
- Brun, F., Berthier, E., Wagnon, P., Kääb, A. and Treichler, D., A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016. Nature Geosci., 2017, 10(9), 668–673.
- Maurer, J. M., Schaefer, J. M., Rupper, S. and Corley, A., Acceleration of ice loss across the Himalayas over the past 40 years. Sci. Adv., 2019, 5(6), eaav7266.
- Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J. and Dehecq, A., Manifestations and mechanisms of the Karakoram glacier anomaly. Nature Geosci., 2020, 13(1), 8–16.
- Kumar, P., Md Saharwardi, Banerjee, A., Mohd Azam, Dubey, A. K. and Murtugudde, R., Snowfall variability dictates glacier mass balance variability in Himalaya–Karakoram. Sci. Rep., 2019, 9(1), 1–9.
- Wang, R., Liu, S., Shangguan, D., Radić, V. and Zhang, Y., Spatial heterogeneity in glacier mass-balance sensitivity across high mountain Asia. Water, 2019, 11(4), 776.
- Negi, H. S., Kumar, A., Kanda, N., Thakur, N. K. and Singh, K. K., Status of glaciers and climate change of East Karakoram in early twenty-first century. Sci. Total Environ., 2021, 753, 141914.
- Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha, F. and Kraaijenbrink, P. D. A., Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia. J. Geophys. Res.: Earth Surf., 2019, 124(6), 1331–1345.
- Singh, G., Nela, B. R., Bandyopadhyay, D., Mohanty, S. and Kulkarni, A. V., Discovering anomalous dynamics and disintegrating behaviour in glaciers of Chandra-Bhaga sub-basins, part of Western Himalaya using DInSAR. Remote Sensing Environ., 2020, 246; https://doi.org/10.1016/j.rse.2020.111885.
- Singh, G., Bandyopadhyay, D., Nela, B. R., Mohanty, S., Malik, R. and Kulkarni, A. V., Anomalous glacier thinning due to climate feedback mechanism in the Himalaya and evidences in other mountain ranges. Remote Sensing Appl.: Soc. Environ., 2021, 22; https://doi.org/10.1016/j.rsase.2021.100512.
- Huss, M. and Hock, R., Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 2018, 8(2), 135–140.
- Immerzeel, W. W. et al., Importance and vulnerability of the world’s water towers. Nature, 2020, 577(7790), 364–369.
- Negi, H. S., Kanda, N., Shekhar, M. S. and Ganju, A., Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci., 2018, 114(4), 760–770.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., Estimation of glacier mass balance on a basin scale: an approach based on satellite-derived snowlines and a temperature index model. Curr. Sci., 2016, 111(12), 1977–1989.
- Tawde, S. A., Kulkarni, A. V. and Bala, G., An estimate of glacier mass balance for the Chandra basin, Western Himalaya, for the period 1984–2012. Ann. Glaciol., 2017, 58(75pt2), 99–109.
- Marzeion, B., Jarosch, A. H. and Hofer, M., Past and future sea-level change from the surface mass balance of glaciers. Cryosphere, 2012, 6(6), 1295–1322.
- Kulkarni, A., Prasad, V., Shirsat, T., Chaturvedi, R. K. and Bahuguna, I. M., Impact of climate change on the glaciers of Spiti River basin, Himachal Pradesh, India. J. Indian Soc. Remote Sensing, 2021, 49(8), 1951–1963.
- Prasad, V. et al., Large losses in glacier area and water availability by the end of twenty-first century under high emission scenario, Satluj basin, Himalaya. Curr. Sci., 2019, 116(10), 1721–1730.
- Nuimura, T. et al., The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers. Cryosphere, 2015, 9(3), 849–864.
- RGI Consortium, Randolph glacier inventory – a dataset of global glacier outlines, version 6. Technical report, National Snow and Ice Data Center, Boulder, Colorado, USA, 2017.
- Indus water treaty. 1960; https://mea.gov.in/bilateral-documents. htm?dtl/6439/Indus (accessed on 26 September 2022).
- Bolch, T. et al., The state and fate of Himalayan glaciers. Science, 2012, 336(6079), 310–314.
- Archer, D. R. and Fowler, H. J., Spatial and temporal variations in precipitation in the Upper Indus basin, global teleconnections and hydrological implications. Hydrol. Earth Sys. Sci., 2004, 8(1), 47–61.
- Dahri, Z. H., Ludwig, F., Moors, E., Ahmad, B., Khan, A. and Kabat, P., An appraisal of precipitation distribution in the high-altitude catchments of the Indus basin. Sci. Total Environ., 2016, 548, 289–306.
- Hewitt, K., Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus basin. Mt. Res. Dev., 2011, 31(3), 188–200.
- Shabeh ul Hasson, Pascale, S., Lucarini, V. and Böhner, J., Seasonal cycle of precipitation over major river basins in South and South-east Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos. Res., 2016, 180, 42–63.
- Bookhagen, B. and Burbank, D. W., Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 2006, 33(8).
- Pareta, K. and Pareta, U., Climate change impact on land and natural resource in Chamba tehsil of Himachal Pradesh State, India. Int. J. Sci. Technol., 2014, 2(4), 38.
- Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A. and Chakraborty, S., Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India, Springer Nature, 2020.
- Frey, H. et al., Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods. Cryosphere, 2014, 8(6), 2313–2333.
- Chen, J. and Ohmura, A., Estimation of alpine glacier water resources and their change since the 1870s. Hydrology in Mountainous Regions. I-Hydrological Measurements; the Water cycle. In Proceedings of Two Lausanne Symposia, IAHS Publ. No. 193, August 1990, pp. 127–135.
- Bahr, D. B., Meier, M. F. and Peckham, S. D., The physical basis of glacier volume–area scaling. J. Geophys. Res.: Solid Earth, 1997, 102(B9), 20355–20362.
- Chaohai, L., Sharmal, C. K., Mayor-Mora, R., Xing, H., Sanbao, W. and Shengteng, Z., Report on first expedition to glaciers and glacier lakes in the Pumqu (Arun) and Poiqu (Bhote-Sun Kosi) River basins, Xizang (Tibet), China. Sino-Nepalese investigation of glacier lake outburst floods in the Himalayas. Technical report, Lanzhou Institute of Glaciology and Geocryology, China, Water and Energy Commission Authority, Nepal Electrical Authority, 1988.
- Groos, A. R., Mayer, C., Smiraglia, C., Diolaiuti, G. and Lambrecht, A., A first attempt to model region-wide glacier surface mass balances in the Karakoram: findings and future challenges. Geogr. Fis. e Din. Quat., 2017, 40(2), 10.4461/GFDQ2017.40.10.
- Hersbach, H. et al., ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2018.
- Bolch, T., Past and future glacier changes in the Indus River basin. Indus River Basin, Elsevier Inc., USA, 2019; https://doi.org/10.1016/B978-0-12-812782-7.00004-7.
- Patel, A., Goswami, A., Dharpure, J. K., Meloth, T., Sharma, P., Kulkarni, A. V. and Oulkar, S., Estimation of mass and energy balance of glaciers using a distributed energy balance model over the Chandra River Basin (Western Himalaya). Hydrol. Proc., 2021, 35(2), e14058.
- Gardelle, J., Berthier, E., Arnaud, Y. and Kääb, A., Region-wide glacier mass balances over the Pamir–Karakoram–Himalaya during 1999–2011. Cryosphere, 2013, 7(4), 1263–1286.
- Garg, S., Shukla, A., Garg, P. K., Yousuf, B., Shukla, U. K. and Lotus, S., Revisiting the 24 year (1994–2018) record of glacier mass budget in the Suru sub-basin, Western Himalaya: overall response and controlling factors. Sci. Total Environ., 2021, 800, 149533.
- Li, L. et al., Twenty-first-century glacio-hydrological changes in the Himalayan headwater Beas River basin. Hydrol. Earth Syst. Sci., 2019, 23(3), 1483–1503.
- Azam, M. F., Wagnon, P., Berthier, E., Vincent, C., Fujita, K. and Kargel, J. S., Review of the status and mass changes of Himalayan–Karakoram glaciers. J. Glaciol., 2018, 64(243), 61–74.
- Zhou, Y., Li, Z. and Li, J., Slight glacier mass loss in the karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol., 2017, 63(238), 331–342.