Refine your search
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Malik, Shalie
- Neuropeptide Y (NPY) Distribution in the Forebrain of Adult Spiny Eel, Macrognathus pancalus
Abstract Views :481 |
PDF Views:2
Authors
Affiliations
1 DST-IRHPA Center for Excellence in Biological Rhythm Research, Department of Zoology, University of Lucknow, Lucknow 226007, IN
1 DST-IRHPA Center for Excellence in Biological Rhythm Research, Department of Zoology, University of Lucknow, Lucknow 226007, IN
Source
Journal of Endocrinology and Reproduction, Vol 18, No 2 (2014), Pagination: 75-86Abstract
In the present study, the distribution of neuropeptide Y (NPY)-immunoreactive neurons and fibers in the forebrain of adult spiny eel, Macrognathus pancalus, which is a bottom-dwelling nocturnal fish, was investigated. Serial Nissl-stained brain sections were used to demarcate forebrain regions and neuronal structures. NPY peptidecontaining cell bodies and fibers localized immunocytochemically were found widely distributed throughout the forebrain. The brain areas showing NPY distribution included predominant cell groups in the telencephalon (nucleus entopeduncularis, NE; nucleus of area ventralis telencephali, Vn), diencephalon (nucleus preopticus, pars parvocellularis, NPOp; nucleus preopticus, pars magnocellularis, NPOm; nucleus lateralis tuberis, NLT) and mesencephalon (midbrain tegmentum, MT). The important areas with only NPY-immunoreactive (-ir) fibers included olfactory bulb (OB), area dorsalis telencephali pars anterioris (Da), dorsal part of Dmd (Dmdd), ventral subdivision of Dl (Dlv), anterior subdivision of Dl (Dla), preoptic area (POA), optic tectum (OTec) and nucleus recessi lateralis (NRL). The pattern of NPY distribution in the forebrain of M. pancalus suggests its role in processing of many physiological functions (viz., feeding, daily activities, reproduction and other metabolic processes). The basic information on anatomical localization of NPY in eel will help to understand better the seasonal variations of NPY and its interaction with other reproductive hormones.Keywords
Forebrain, Immunocytochemistry, NPY Distribution, Spiny eel.References
- Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM. (1983) Neuropeptide Y distribution in the rat brain. Science 221:877-79.
- Batten TFC, Cambre ML, Moons L, Vandesande F. (1990) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilila latipinna. J Comp Neurol. 302:893-919.
- Bonn U. (1990) NPY-like immunoreactivity in the brain of the teleost, Tinca tinca. J Hirnforsch. 31:323-30.
- Burmeister SS, Munshi RG, Fernald RD. (2009) Cytoarchitecture of a cichlid fish telencephalon. Brain Behav Evol. 74:110-20.
- Bushnik T, Fernald RD. (1995) The population of GnRH-containing neurons showing socially mediated size changes project to the pituitary in a teleost, Haplochromis burtoni. Brain Behav Evol. 46:371-377.
- Castro A, Becera M, Manso MJ, Anadòn R. (1999) Development of immunoreactivity to neuropeptide Y in the brain of brown trout, Salmo trutta fario. J Comp Neurol. 414:13-32.
- Cerda-Reverter JM, Larhammar D. (2000) Neuropeptide Y family of peptides: structure, anatomical expression, function, and molecular evolution. Biochem Cell Biol. 78:371-92.
- Chiba A. (1999) Immunohistochemical distribution of neuropeptide Y-related substance in the brain and hypophysis of the arctic lamprey, Lethenteron japonica. Brain Behav Evol. 53:102-09.
- Chiba A. (2005) Neuropeptide Y-immunoreactive (NPY-ir) structures in the brain of the gar, Lepisosteus oculatus (Lepisosteiformes, Osteichthyes) with special regard to their anatomical relations to gonadotropin-releasing hormone (GnRH)-ir structures in the hypothalamus and the terminal nerve. Gen Comp Endocrinol. 142:336-46.
- Chiba A, Honma Y. (1994) Neuropeptide Y-immunoreactive structures in the telencephalon and diencephalon of the white sturgeon, Acipenser transmontanus, with special regard to the hypothalamo-hypophysis system. Arch Histol Cytol. 57:77-86.
- Chiba A, Sohn YC, Honma Y. (1996) Distribution of neuropeptide Y and gonadotropin-releasing hormone immunoreactivities in the brain and hypophysis of the ayu, Plecoglossus altivelis (Teleostei). Arch Histol Cytol. 59:137-48.
- Cuadrado MI, Covenas R. (1993) Neuropeptide Y in the carp Torus semicircularis: an immunocytochemical study. Arch Ital Biol. 131:317–26.
- Danger JM, Guy J, Benyamina M, Jegou S, Leboulenger F, Cote J, Tonon MC, Pelletier G, Vaudry H. (1985) Localization and identification of neuropeptide Y (NPY) - like immunoreactivity in the frog brain. Peptides 6:1225-36.
- Gaikwad A, Biju KC, Subhedar N. (2003) GnRH-LH secreting cells axis in the pituitary of the teleost Clarias batrachus responds to neuropeptide Y treatment: an immunocytochemical study. Gen Comp Endocrinol. 33:126–33.
- Gaikwad A, Biju KC, Saha SG, Subhedar N. (2004) Neuropeptide in the olfactory system, forebrain and pituitary of the teleost, Clarias batrachus. J Chem Neuroanat. 27:55-70.
- Gaikwad A, Biju KC, Muthal PL, Saha S, Subhedar N. (2005) Role of neuropeptide Y in the regulation of gonadotropin releasing hormone system in the forebrain of Clarias batrachus (Linn.): immunocytochemistry and high performance liquid chromatography–electrospray ionization-mass spectrometric analysis. Neuroscience 133:267–79.
- Gall C, Seroogy KB, Brecha N. (1986) Distribution of VIP- and NPY-like immunoreactivites in the rat main olfactory bulb. Brain Res. 374:389-94.
- Garcýá-Fernández JM, del Brio MA, Cernuda R, Coto A, Riera P. (1992) Distribution of neuropeptide Y-like immunoreactivity in the brain of Salmo salar and Gambusia affinis. Histol Histopathol. 7:385-92.
- Himick BA, Peter RE. (1995) Neuropeptide regulation of feeding and growth hormone secretion in fish. Netherlands J Zool. 45:3-9.
- Holmqvist BI, Ekstrom P. (1995) Hypophysiotrophic systems in the brain of the Atlantic salmon: Neuronal innervation of the pituitary and the origin of pituitary dopamine and nonapeptides identified by means of combined carbocyanine tract tracing and immunocytochemistry. J Chem Neuroanat. 8:125-45.
- Kah O, Zanuy S, Pradelles P, Cerdá J, Carrillo M. (1994) An enzyme immunoassay for salmon gonadotropin-releasing hormone and its application to the study of the effects of diet on brain pituitary GnRH in the sea bass, Dicentrarchus labrax. Gen Comp Endocrinol. 95:464-74.
- Kennedy M, Browner RH. (1981) The torus semicircularis in a gekonid lizard. J Morphol. 169:259-74.
- Klüver H, Barrera E. (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol. 12:400-03.
- Kuenzel WJ, McMurtry J. (1988) Neuropeptide Y: brain localisation and central effects on the plasma insulin levels in chick. Physiol Behav. 44:669-78.
- Lazar G, Maderdrut JL, Trasti SL, Liposits Z, Toth P, Kozicz T, Merchenthaler I. (1993) Distribution of neuropeptide Y-derived peptides in the brain of Rana esculenta and Xenopus laevis. J Comp Neurol. 327:551-71.
- Marchetti GL, Cozzi B, Tavanti M, Russo V, Pellegrini S, Fabiani O. (2000) The distribution of neuropeptide Yimmunoreactive neurons and nerve fibers in the forebrain of the carp, Cyprinus carpio (L.). J Chem Neuroanat. 20:129-39.
- Mazumdar M, Sakharkar AJ, Singru PS, Subhedar N. (2007) Reproduction phase- related variations in neuropeptide Y immunoreactivity in the olfactory system, forebrain, and pituitary of the female catfish, Clarias batrachus (Linn.). J Comp Neurol. 504:450–69.
- Meek J, Nieuwenhuys R. (1998) Holosteans and teleosts. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (Eds.) The Central Nervous System of Vertebrates. pp 758-937. Berlin, Springer.
- Moons LM, Ollevier F, Vandesande F. (1989) Immunocytochemical demonstration of close relationship between neuropeptidergic nerve fibres and hormone-producing cell types in the adenohypophysis of the sea bass, Dicentrarchus labrax. Gen Comp Endocrinol. 73:270-83.
- Mukuda T, Ando M. (2003) Atlas of the Japanese eel: Comparison to other fishes. Mem Fac Integr Arts Sci Hiroshima Univ. 29:1-25.
- Narnaware YK, Peyon PP, Linn X, Peter RE. (2000) Regulation of food intake by neuropeptide Y in goldfish. Am J Physiol Regul Integr Comp Physiol. 279: R1025–R1034.
- Ohm TG, Braak E, Probst A, Weindl A. (1988) Neuropeptide Y-like immunoreactive neurons in the human olfactory bulb. Brain Res. 451:295-300.
- Parhar IS, Sim MK. (1994) Central dopaminergic neurons in tilapia: effects of gonadectomy and hypothalamic lesion. Neurosci Res.18:255-66.
- Parhar IS, Pfaff DW, Schwanzel-Fukuda, M. (1996) Gonadotropin releasing hormone gene expression in teleosts. Mol Brain Res. 41:216-27.
- Peng C, Peter RE. (1997) Neuroendocrine regulation of growth hormone secretion and growth in fish. Zool Studies 36:79-89.
- Peng, C, Gallin W, Peter RE, Blomqvist AG, Larhammar D. (1994) Neuropeptide Y gene expression in the goldfish brain: distribution and regulation by ovarian steroids. Endocrinology 134:1095-103.
- Pickavance CL, Staines WA, Fryer JN. (1992) Distribution and colocalization of neuropeptide Y and somatostatin in the goldfish brain. J Chem Neuroanat. 5:221-33.
- Pirone A, Lenzi C, Marroni P, Betti L, Mascia G, Giannaccini G, Lucacchini A, Fabiani O. (2008) Neuropeptide Y in the brain and retina of the adult teleost Gilthead Seabream (Sparus aurata L.). Anat Histol Embryol. 37:231-40.
- Pontet A, Danger JM, Dubourg P, Pelletier G, Vaudry H, Calas A, Kah O. (1989) Distribution and characterization of neuropeptide Y-like immunoreactivity in the brain and pituitary of the goldfish. Cell Tissue Res.255:529-38.
- Pritz M. (1974) Ascending connections of a midbrain auditory area in a crocodile, Caiman crocodiles. J Comp Neurol. 153:179-98.
- Rama Krishna NS, Subhedar IN. (1989) Hypothalamic innervation of the pituitary in the catfish, Clarias batrachus: a retrograde horseradish peroxidase study. Neurosci Lett. 107:39-44.
- Reiner A, Northcutt RG. (1992) Immunohistochemical study of the telencephalon of the Senegal bichir, Polypterus senegalus. J Comp Neurol. 319:359-86.
- Rodríguez-Gómez FJ, Rendón-Unceta C, Sarasquete C, Mu oz-Cueto JA. (2001) Distribution of neuropeptide Y-like immunoreactivity in the brain of the senegalese sole (Solea senegalensis). Anat Rec. 262: 227-37.
- Sakharkar AJ, Singru PS, Sarkar K, Subhedar N. (2005) Neuropeptide Y in the forebrain of the adult male cichlid fish, Oreochromis mossambicus: distribution, effects of castration and testosterone replacement. J Comp Neurol. 489:148-65.
- Silverstein JT, Breininger J, Baskin DG, Plisetskaya EM. (1998) Neuropeptide Y-like gene expression in the salmon brain increases with fasting. Gen Comp Endocrinol. 110:157-65.
- Subhedar N, Cerda J, Wallace RA. (1996) Neuropeptide Y in the forebrain and retina of the killifish, Fundulus heteroclitus. Cell Tissue Res. 283:313–23.
- Tatemoto K, Carlquist M, Mutt V. (1982) Neuropeptide Y- a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659-60.
- Traverso JM, Ravaglia MA, Vissio PG, Maggese MC, Paz DA. (2003) Localization of neuropeptide Y-like immunoreactive structures in the brain of the Pejerrey, Odontesthes bonariensis (Teleostei, Atheriniformes). Anat Histol Embryol. 32:29-35.
- Vallarino M, Danger JM, Fasolo A, Pelletier G, Saint-Pierre S, Vaudry H. (1988) Distribution and characterization of neuropeptide Y in the brain of an elasmobranch fish. Brain Res. 448:67-76.
- Volkoff H, Peter RE. (2001) Interactions between orexine A, NPY and galanin in the control of food intake of the goldfish, Carassius auratus. Regul Peptides 101: 59–72.
- Vecino E, Perez MTR, Ekstrñm P. (1994) In situ hybridization of neuropeptide Y (NPY) mRNA in the goldfish brain. Neuroreport 6:127-31.
- Zandbergen MA, Voormolen AHT, Peute J, Kah O, Goos HJ Th. (1994) Immunohistochemical localization of neuropeptide Y positive cell bodies and fibres in forebrain and pituitary of the African catfish, Clarias gariepinus. Netherlands J Zool.44:43-54.
- WhatsApp Text Messaging Follows a Daily Rhythm in Both Formal and Informal Settings
Abstract Views :200 |
Authors
Affiliations
1 Department of Zoology, University of Lucknow, Lucknow 226 007, IN
1 Department of Zoology, University of Lucknow, Lucknow 226 007, IN
Source
Current Science, Vol 127, No 4 (2024), Pagination: 491-493Abstract
We examined and compared the 24-hour pattern of WhatsApp messaging between a formal cohort of n = 59 members of the Indian scientific society and an informal cohort of n = 41 family members. In particular, we analysed and calculated the intensity and pattern of messaging activity across 24 hours in relation to the sunrise and sunset timings, as well as the overall daily activity period. There was a daily periodicity in the WhatsApp messaging, with their close coupling to the time of day in formal compared to that in the informal cohort. However, the messaging activity pattern appeared to conform to a daily rhythm in both cohorts.Keywords
Behaviour, circadian rhythm, social networking, WhatsApp.Full Text

- Avian Sleep and its Resemblance with Mammals
Abstract Views :266 |
PDF Views:0
Authors
Affiliations
1 Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, IN
1 Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, IN
Source
Journal of Scientific and Technical Research (Sharda University, Noida), Vol 10, No 1-2 (2020), Pagination: 24-29Abstract
Sleep, a ubiquitous behavior reported in animal kingdom spreads out from cnidarians to mammals. Evolutionarily it is linked with the development of nervous system which was first time reported in phylum Cnidaria. Thus, this information satisfies a basic function of sleep which is memory processing and information storage. Besides this, cellular restoration and synaptic scaling also encompass as the core function of sleep. Sleep is broadly characterized by the oscillation of NREM (Non-rapid eye movement) and REM (Rapid eye movement) sleep cycles in mammals. Interestingly its distant relative birds also show the same stages while sleeping. Therefore, avian sleep can act as window to understand the mechanisms associated with generation and function of mammalian sleep. Avian sleep shares many similarities with that of mammals, for instance, presence of REM/NREM sleep states which in turn are under circadian and homeostatic control. Likewise minor differences also exist between the two groups for example, the thalamocortical spindles and the ripple complex which are missing from bird sleep. Thus, avian model system can help in understanding the complicacies associated with mammalian sleep (with reference to human) during health and illness.Keywords
Cellular Restoration, Circadian, NREM, REM, Sleep.References
- H. Watanabe, T. Fujisawa, and T. W. Holstein, “Cnidarians and the evolutionary origin of the nervous system,” Dev. Growth Differ., vol. 51, no. 3, pp. 167-183, 2009.
- J. E. Seymour, T. J. Carrette, and P. A. Sutherland, “Do box jellyfish sleep at night?,” Med. J. Aust. , vol. 181, no. 11-12, p. 707, 2004.
- R. V. Rial, M. Akaarir, A. Gamundi, C. Nicolau, C. Garau, S. Aparicio, S. Tejada, L. Gene, J. Gonzalez, L. M. De Vera, A. M. L. Coenen, P. Barcelo, and S. Esteban, “Evolution of wakefulness, sleep and hibernation: From reptiles to mammals,” Neurosci. Biobehav. Rev., vol. 34, no. 8, pp. 1144-1160, 2010.
- M., Shein-Idelson, J. M. Ondracek, H.-P. Liaw, S. Reiter, and G. Laurent, “Slow waves, sharp waves, ripples, and REM in sleeping dragons,” Science, vol. 352, no. 6285, pp. 590-595, 2016.
- Y. Hayashi, M. Kashiwagi, K. Yasuda, R. Ando, M. Kanuka, K. Sakai, and S. Itohara, “Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice,” Science, vol. 350, no. 6263, pp. 957-961, 2015.
- I. Capellini, R. A. Barton, P. McNamara, B. T. Preston, and C. L. Nunn, “Phylogenetic analysis of the ecology and evolution of mammalian sleep,” Evolution, vol. 62, no. 7, pp. 1764-1776, 2008.
- H. P. Roffwarg, J. N. Muzio, and W. C. Dement, “Ontogenetic development of the human sleep-dream cycle,” Science, vol. 152, no. 3722, pp. 604-619, 1966.
- J. Dugas-Ford, J. J. Rowell, and C. W. Ragsdale, “Cell-type homologies and the origins of the neocortex,” Proc. Natl. Acad. Sci. USA, vol. 109, no. 42, pp. 16974-16979, 2012.
- H. J. Karten, “Neocortical evolution: Neuronal circuits arise independently of lamination,” Curr. Biol., vol. 23, no. 1, pp. R12-R15, 2013.
- H. J. Karten, “Vertebrate brains and evolutionary connectomics: On the origins of the mammalian ’neocortex,” Philos. Trans. R. Soc. Lond. B Biol. Sci., vol. 370, no. 1684, 2015.
- F. David, J. T. Schmiedt, H. L. Taylor, G. Orban, G. Di Giovanni, V. N. Uebele, J. J. Renger, R. C. Lambert, N. Leresche, and V. Crunelli, “Essential thalamic contribution to slow waves of natural sleep,” J. Neurosci., vol. 33, no. 50, pp. 19599-19610, 2013.
- M. Lemieux, J. Y. Chen, P. Lonjers, M. Bazhenov, and I. Timofeev, “The impact of cortical deafferentation on the neocortical slow oscillation,” J. Neurosci., vol. 34, no. 16, pp. 5689-5703, 2014.
- T. Mueller, “What is the thalamus in zebrafish?,” Front. Neurosci., vol. 6, p. 64, 2012.
- C. M. McDonough, and W. J. Loughry, “Influences on activity patterns in a population of nine-banded armadillos,” J. Mammal., vol. 78, no. 3, pp. 932-941, 1997.
- A. E. Prudom, and W. R. Klemm, “Electrographic correlates of sleep behavior in a primitive mammal, the armadillo Dasypus novemcinctus,” Physiol. Behav., vol. 10, no. 2, pp. 275-282, 1973.
- J. M. Siegel, “Sleep viewed as a state of adaptive inactivity,” Nat. Rev. Neurosci.,” vol. 10, no. 10, pp. 747-753, 2009.
- M. H. Schmidt, “The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness,” Neurosci. Biobehav. Rev., vol. 47, pp. 122-153, 2014.
- M. S. Blumberg, A. J. Gall, and W. D. Todd, “The development of sleep-wake rhythms and the search for elemental circuits in the infant brain,” Behav. Neurosci., vol. 128, no. 3, pp. 250-263, 2014.
- P. L. Brooks, and J. Peever, “A temporally controlled inhibitory drive coordinates twitch movements during REM sleep,” Curr. Biol., vol. 26, no. 9, pp. 1177-1182, 2016.
- S. G. Jones, E. M. Paletz, W. H. Obermeyer, C. T. Hannan, and R. M. Benca, “Seasonal influences on sleep and executive function in the migratory White-crowned Sparrow (Zonotrichia leucophrys gambelii),” BMC Neurosci., vol. 11, 2010, Art. no. 87.
- M. Steriade, “Grouping of brain rhythms in corticothalamic systems,” Neurosci., vol. 137, no. 4, pp. 1087-1106, 2006.
- A. Reiner, E. A. Stern, and C. J. Wilson, “Physiology and morphology of intratelencephalically projecting corticostriatal-type neurons in pigeons as revealed by intracellular recording and cell filling,” Brain Behav Evol., vol. 58, no. 2, pp. 101-114, 2001.
- Y. Nir, R. J. Staba, T. Andrillon, V. V. Vyazovskiy, C. Cirelli, I. Fried, and G. Tononi, “Regional slow waves and spindles in human sleep,” Neuron., vol. 70, no. 1, pp. 153-169, 2011.
- G. J. L. Beckers J. van der Meij, J. A. Lesku, and N. C. Rattenborg, “Plumes of neuronal activity propagate in three dimensions through the nuclear avian brain,” BMC Biol., vol. 12, 2014, Art. no. 16.
- J. T. Szymczak, W. Kaiser, H. W. Helb, and B. Beszczynska, “A study of sleep in the European blackbird,” Physiol Behav., vol. 60, no. 4, pp. 1115-1120, 1996.
- N. C. Rattenborg, B. H. Mandt, W. H. Obermeyer, P. J. Winsauer, R. Huber, M. Wikelski, and R. M. Benca, “Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii),” PLoS Biol., vol. 2, no. 7, p. E212, 2004.
- P. S. Low, S. S. Shank, T. J. Sejnowski, and D. Margoliash, “Mammalian-like features of sleep structure in zebra finches,” Proc Natl Acad Sci. USA, vol. 105, no. 26, pp. 9081-9086.
- D. Martinez-Gonzalez, J. A. Lesku, and N. C. Rattenborg, “Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): Evidence for avian sleep homeostasis,” J Sleep Res., vol. 17, no. 2, pp. 140-153, 2008.
- S. G. Jones, V. V. Vyazovskiy, C. Cirelli, G. Tononi, and R. M. Benca, “Homeostatic regulation of sleep in the white-crowned sparrow (Zonotrichia leucophrys gambelii),” BMC Neurosci., vol. 9, 2008, Art. no. 47.
- A. Yadav, J. Tiwari, V. Vaish, S. Malik, and S. Rani, “Migration gives sleepless nights to the birds: A study on a Palaearctic-Indian migrant, Emberiza bruniceps,” J Ornithol., 2020.
- M. F. Scriba, A.-L. Ducrest, I. Henry, A. L. Vyssotski, N. C. Rattenborg, and A. Roulin, “Linking melanism to brain development: Expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny,” Front Zool., vol. 10, 2013, Art. no. 42.
- J. A. Lesku, L. C. R. Meyer, A. Fuller, S. K. Maloney, G. Dell’Omo, A. L. Vyssotski, and N. C. Rattenborg, “Ostriches sleep like platypuses,” PLoS One., vol. 6, no. 8, e23203, 2011.
- R. Graf, H. C. Heller, S. Sakaguchi, and S. Krishna, “Influence of spinal and hypothalamic warming on metabolism and sleep in pigeons,” Am J Physiol., vol. 252, no. 4 Pt 2, pp. R661-R667, 1987.
- J. T. Szymczak, “Influence of environmental temperature and photoperiod on temporal structure of sleep in corvids,” Acta Neurobiol Exp (Wars), vol. 49, no. 6, pp. 359-366, 1989.
- S. B. S. Khalsa, D. A. Conroy, J. F. Duffy, C. A. Czeisler, D.-J. Dijk, “Sleep- and circadian dependent modulation of REM density,” J Sleep Res., vol. 11, no. 1, pp. 53-59, 2002.
- S. M. Newman, E. M. Paletz, N. C. Rattenborg, W. H. Obermeyer, and R. M. Benca, “Sleep deprivation in the pigeon using the Disk-Over-Water method,” Physiol Behav., vol. 93, no. 1-2, pp. 50-58, 2008.
- S. M. Newman, E. M. Paletz, W. H. Obermeyer, and R. M. Benca, “Sleep deprivation in pigeons and rats using motion detection,” Sleep, vol. 32, no. 10, pp. 1299-1312, 2009.
- A. Thurber, S. K. Jha, T. Coleman, and M. G. Frank, “A preliminary study of sleep ontogenesis in the ferret (Mustela putorius furo),” Behav Brain Res., vol. 189, no. 1, pp. 41-51, 2008.
- L. Astic, and D. Jouvet-Mounier, “Demonstration of paradoxical sleep in utero in guinea pigs,” C R Acad Sci., vol. 269, no. 25, pp. 2578-2581, 1969.
- N. Ibuka, “Ontogenesis of circadian sleep-wakefulness rhythms and developmental changes of sleep in the altricial rat and in the precocial guinea pig,” Behav Brain Res., vol. 11, no. 3, pp. 185-196, 1984.
- N. C. Rattenborg, D. Martinez-Gonzalez, T. C. Roth 2nd, and V. V. Pravosudov, “Hippocampal memory consolidation during sleep: A comparison of mammals and birds,” Biol Rev Camb Philos Soc., vol. 86, no. 3, pp. 658-691, 2011.
- I. Tobler, and A. A. Borbély, “Sleep and EEG spectra in the pigeon (Columba livia) under baseline conditions and after sleep-deprivation,” J Comp Physiol A., vol. 163, pp. 729-738, 1988.