Refine your search
Collections
Co-Authors
- S. K. Singh
- Praveen Thakur
- Naveen Tripathi
- Purvee Joshi
- Vaibhav Garg
- Amit Dubey
- Satyesh Ghetiya
- Madhukar Srigyan
- Jay Das
- P. Jayaprasad
- Aparna Shukla
- Praveen K. Gupta
- Praveen K. Thakur
- Shard Chander
- Nimisha Singh
- Ashwin Gujrati
- Simone Darji
- R. D. Shah
- B. P. Rathore
- I. M. Bahuguna
- Rajashree V. Bothale
- D. Ram Rajak
- Saroj Maity
- Arpit Chouksey
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Oza, Sandip R.
- Harnessing the potential of EOS-04 SAR data for Himalayan and polar cryospheric studies
Abstract Views :293 |
Authors
S. K. Singh
1,
Praveen Thakur
2,
Naveen Tripathi
1,
Purvee Joshi
1,
Vaibhav Garg
2,
Amit Dubey
1,
Satyesh Ghetiya
1,
Madhukar Srigyan
1,
Jay Das
3,
P. Jayaprasad
1,
Aparna Shukla
4,
Sandip R. Oza
1
Affiliations
1 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, IN
2 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
3 Gujarat University, Ahmedabad 380 009, IN
4 Ministry of Earth Sciences, New Delhi 110 003, IN
1 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, IN
2 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
3 Gujarat University, Ahmedabad 380 009, IN
4 Ministry of Earth Sciences, New Delhi 110 003, IN
Source
Current Science, Vol 126, No 9 (2024), Pagination: 1077-1087Abstract
Present study focuses on the utilization of Earth observation satellite-04 (EOS-04) synthetic aperture radar (SAR) data for maintaining the continuity of the first Indian radar imaging satellite (RISAT)-1 SAR derived products along with exploring the potential of capability of the improved sensor over mountain and polar cryospheric region. Backscattering coefficient (s 0) of various snow and ice features over mountain and polar cryosphere have been analysed to understand the interaction mechanism using C-band SAR data. EOS-04 is able to pick up the spatio-temporal variability of SAR backscatters over accumulation and ablation zone of the glacier due to melt-freeze cycles, and observations were in accordance with variation in elevations over the glacier surface. When analysed for Drang-Drung glacier, wet snow zone was found to be prominently centered around 5500 m elevation zone, having sigma-naught backscatter lower than –10 dB in the ablation months, whereas percolation zone was observed at more than 6000 m elevation with higher sigma-naught backscatter of around –4 dB and above as winter started setting in. EOS-04 also showed the potential to classify various polar ice features based on backscattering signature using HH (H, horizontal) (s 0), HV (V, vertical) (s 0) and normalized difference polarization ratio index (NDPRI) respectively. EOS-04 data have been used to implement approaches to retrieve wet snow cover and set up of Weather Research and Forecasting Model Hydrological Modelling System (WRF hydro) model for snow melt runoff studies, interaction mechanism of snow and ice, snow/ice facies extraction, ice shelf monitoring, sea ice properties and sea ice advisory for Indian scientific expedition to Antarctica. Enrichment of EOS-04 data, suitable for cryosphere studies, will be employed to retrieve parameters such as snowpack properties, elevation, ice surface velocities over mountain and polar region, and to further improve comprehensive understanding on regional and global frozen ice dynamics.Keywords
EOS-04, Himalayan cryosphere, polar cryosphere, RISAT-1A, synthetic aperture radar.Full Text

- Hydrological applications of EOS-04 synthetic aperture radar
Abstract Views :302 |
Authors
Praveen K. Gupta
1,
Praveen K. Thakur
2,
Shard Chander
1,
Vaibhav Garg
1,
Nimisha Singh
1,
Ashwin Gujrati
1,
Sandip R. Oza
1
Affiliations
1 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, IN
2 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
1 Space Applications Centre, Indian Space Research Organisation (ISRO), Ahmedabad 380 015, IN
2 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
Source
Current Science, Vol 126, No 9 (2024), Pagination: 1069-1076Abstract
Synthetic aperture radars (SARs) have enabled all-weather sensing of land surfaces, which has significantly benefitted surface hydrology. In this article, we explore various hydrological applications enabled by Indian Space Research Organisation’s (ISRO’s) recently launched Earth observation satellite-04 (EOS-04) C-band SAR satellite. We present the preliminary results of EOS-04 driven flood inundation mapping, monitoring of water bodies and study of river dynamics. Novel application of EOS-04 SAR data in estimation of sedimentation rate is presented for Jayakwadi reservoir, Maharashtra, India. Additionally, this article explores the integrated use of SAR and altimeter data for estimation of lake and reservoir water level and volume. We have used multi-date observations from EOS-04 SAR and Sentinel-3A/3B altimeters to derive river width and estimate area–water level hypsometric curves for reservoirs. Long-term and near real-time availability of EOS-04 data can provide an indispensable tool for monitoring water bodies and extreme events like floods, at regional scalesKeywords
Bathymetry, EOS-04, flood, hydrology, synthetic aperture radar, water level.Full Text

- Rift Assessment and Potential Calving Zone of Amery Ice Shelf, East Antarctica
Abstract Views :483 |
PDF Views:225
Authors
Affiliations
1 Geology Department, M.G. Science Institute, Navrangpura, Ahmedabad 380 009,, IN
2 Space Applications Centre, ISRO, Jodhpura Tekra, Ahmedabad 380 015, IN
1 Geology Department, M.G. Science Institute, Navrangpura, Ahmedabad 380 009,, IN
2 Space Applications Centre, ISRO, Jodhpura Tekra, Ahmedabad 380 015, IN
Source
Current Science, Vol 115, No 9 (2018), Pagination: 1799-1804Abstract
Ice shelves line the peripheries of Antarctica. Rift and crevasses are two main deformational structures affecting ice shelf stability. The present study deals with propagation-widening of five active rifts and future potential calving zones on Amery Ice Shelf (AIS), East Antarctica, between 2000 and 2017 using moderate resolution image spectroradiometer (MODIS) data. The widening and rift propagating rate, as well as advancement in AIS show abnormal behaviour. The expansion of AIS differs across the shelf. The highest rate of advancement was observed in 2012–2013 (~517 sq. km) and the lowest was observed in 2000– 2001 (~35 sq. km). The rift system shows variability in its proportion and having poor relationship with environmental processes, which suggests heterogeneities in the AIS. The abnormal behaviour of rift propagation during the study period can be attributed to tsunamis, tide, current action, crevasses pattern and icequakes in the vicinity of the study region.Keywords
Amery Ice Shelf–Lambert Glacier System, Rift System, Potential Calving Zone.References
- Bassis, J., Coleman, R., Fricker, H. and Minster, J., Australian Antarctic Division: Leading Australia’s Antarctic Program, 2003; www.AustralianAntarcticDivision.com
- Walker, C., Bassis, J., Fricker, H. and Czerwinski, R., Observation of interannual and spatial variablity in rift propagation in the Amery Ice Shelf, Antarctica, 2002–14. J. Glaciol., 2015, 61(226), 243–252.
- Jacobs, S., MacAyeal, D. and Ardal, J., The recent advance of the Ross Ice Shelf, Antarctica. J. Galciol., 1986, 32(112), 464–474.
- Lazzara, M., Jezek, K., Scambos, T., MacAyeal, D. and Van der Veen, C., On the recent calving of icebergs from the Ross Ice Shelf. Polar Geography, 1999, 23(3), 201–212.
- Jayaprasad, P., Ahmed, T., Maity, S. and Misra, A., Breaking of Larsen C from Antarctica. Curr. Sci., 2018, 114(5), 961–962.
- Bassis, J., Fricker, H., Coleman, R. and Minster, J., An investigation into the forces that drive ice-shef rift propagation on the Amery Ice Shelf, East Antarctica. J. Glaciol., 2008, 54(184), 17–27; doi:10.3189/002214308784409116.
- Fricker, H., Young, N., Coleman, R., Bassis, J. and Minster, J., Multi-year monitoring of rift propagation on the Amery Ice Shelf. Geophys. Res. Lett., 2005, 32; doi:10.1029/2004GL021036.
- Bassis, J., Coleman, R., Fricker, H. and Minster, J., Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica. Geophys. Res. Lett., 2005, 32; doi:10.1029/2004GL022048.
- Griggs, J. and Bamber, J., Antarctica ice-shelf thickness from satellite radar altimetry. J. Glaciol., 2011, 57(203), 485–498.
- Budd, W., The dynamics of Amery Ice Shelf. J. Glaciol., 1966, 335–358.
- Bassis, J., Fricker, H., Coleman, R., Bock, Y., Behrens, J., Darnell, D. and Minster, J., Seismicity and deformation associated with ice-shelf rift propagation. J. Glaciol., 2007, 53, 523–536.
- Walker, C., Bassis, J., Fricker, H. and Czerwinski, R., Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring. Geophys. Res. Lett., 2013, 118(4), 2354–2364; doi:10.1002/2013jf002742.
- Pittard, M. L., Roberts, J. L., Warner, R. C., Galton-Fenzi, B. K., Watson, C. S. and Coleman, R., Flow of the Amery Ice Shelf and its tributary glaciers. In 18th Australasian Fluid Mechanics Conference, Launceston, Australia, 2012.
- Voytenko, D., Stern, A., Holland, D., Dixon, T., Christianson, K. and Walker, R., Tidally driven ice speed variation at Helheim Glacier, Greenland, observed with terrestrial radar interferometry. J. Glaciol., 2015, 61(226), 301–308.
- Diandong, R. and Lance, L., Effects of Waves on Tabular IceShelf Calving. Earth Interact., 2014, 18.
- Jayaprasad, P., Rajak, D., Singh, R., Oza, S., Sharma, R. and Sharma, R., Ice calving and deformation from Antarctica ice margins using RISAT-1 circular polarization SAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8, 2014.
- Larour, E., Rignot, E. and Aubry, D., Modelling of rift propagation on Ronne Ice Shelf, Antarctica, and sensitivity to climate change. Geophys. Res. Lett., 2004, 31(16); doi:10.1029/ 2004GL020077.
- Oza, S., Spatial-temporal patterns of surface melting observed over Antarctica ice shelves using scatterometer data. Antarct. Sci., 2015, 27(4), 403–410; doi:10.1017/S0954102014000832.
- Fricker, H., Coleman, R., Padman, L., Scambos, T., Bohlander, J. and Brunt, K., Mapping the grounding zone of the Amery Ice Shelf East Antarctica using InSAR, MODIS and ICESat. Antarct. Sci., 2009, 515–532; doi:10.1017/S095410200999023X.
- Assessment of Cryospheric Parameters Over the Himalaya and Antarctic Regions using SCATSAT-1 Enhanced Resolution Data
Abstract Views :629 |
PDF Views:199
Authors
Sandip R. Oza
1,
Rajashree V. Bothale
2,
D. Ram Rajak
1,
P. Jayaprasad
1,
Saroj Maity
1,
Praveen K. Thakur
3,
Naveen Tripathi
1,
Arpit Chouksey
3,
I. M. Bahuguna
1
Affiliations
1 Space Applications Centre, ISRO, Ahmedabad 380 015, IN
2 National Remote Sensing Centre, ISRO, Hyderabad 500 037, IN
3 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
1 Space Applications Centre, ISRO, Ahmedabad 380 015, IN
2 National Remote Sensing Centre, ISRO, Hyderabad 500 037, IN
3 Indian Institute of Remote Sensing, ISRO, Dehradun 248 001, IN
Source
Current Science, Vol 117, No 6 (2019), Pagination: 1002-1013Abstract
Antarctica is the focus of scientific studies considering the largest reservoir of terrestrial water in the form of ice and doubling of ice area during winter due to sea-ice growth. The third pole – Himalaya is equally important due to the large extent of snow and ice cover outside the polar regions, which is a major source of water for the Asian countries. At present, the Ku-band scatterometer observing global cryosphere is the SCATSAT-1 launched by India. This article describes the study carried out on different cryospheric parameters using high-resolution (~2.2 km) scatterometer data in the Antarctica and Himalaya. Impact of seasonal variations in snow/ice and ice calving on the backscatter over Antarctica is discussed in detail. A procedure developed for the estimation of sea-ice extent, which yielded overall accuracy of 89%, has been presented and successfully applied for daily monitoring of the Antarctic ice extent for 2017. Surface melting using backscatter and brightness temperature data has been discussed and the contrast between large-sized and small-sized Antarctic ice shelves during the austral summer period of summer 2017–18 is highlighted. The higher average surface melt observed around majority of east Antarctic ice shelves, particularly near the Indian station ‘Maitri’, is of particular interest. Typical surface melting patterns observed over the third largest Antarctic ice shelf, Amery, are discussed in detail. Over northwest Himalaya, derived changes in snow water equivalent (ΔSWE) shows a good correlation between observed and calculated SWE variations. The present study demonstrates that simultaneous availability of high-resolution brightness temperature and backscatter data from SCATSAT-1 provides a unique opportunity to study the polar and mountain cryosphere.Keywords
Calving, Scatterometer, Sea-ice, Snow Water Equivalent, Surface Melt.References
- Vaughan, D. G. et al., Observations: cryosphere. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.), Cambridge University Press, Cambridge, UK, 2013, pp. 317– 382.
- Lieser, J. L. et al., Position Analysis: Antarctic Sea Ice and Climate Change 2014, Antarctic Climate & Ecosystems Cooperative Research Centre, Hobart, Tasmania, Australia, 2013, ISBN 978-0646-91260-8.
- Rivas, M. B. and Stoffelen, A., New Bayesian algorithm for seaice detection with QuikSCAT. IEEE Trans. Geosci. Remote Sensing, 2011, 49(6), 1894–1901; doi:10.1109/TGRS.2010.2101608.
- Comiso, J. C., Gersten, R. A., Stock, L. V., Turner, J., Perez, G. J. and Cho, K., Positive trend in the Antarctic sea-ice cover and associated changes in surface temperature. J. Climate, 2017, 30, 2251–2267; doi:10.1175/JCLI-D-16-0408.1.
- Yuan, N., Ding, M., Ludescher, J. and Bunde, A., Increase of the Antarctic sea-ice extent is highly significant only in the Ross Sea. Sci. Rep., 2017, 7, 41096; doi:10.1038/srep41096.
- Santis, A. D., Maier, E., Gomez, R. and Gonzalez, I., Antarctica, 1979–2016 sea-ice extent: total versus regional trends, anomalies and correlation with climatological variables. Int. J. Remote Sensing, 2017, 38, 7566–7584.
- Turner, J. et al., Antarctic climate change during the last 50 years. Int. J. Climatol., 2005, 25, 279–294.
- Trusel, L. D., Frey, K. E. and Das, S. B., Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. J. Geophys. Res., 2012, 117, F02023; doi:10.1029/2011JF002126.
- Oza, S. R., Spatial-temporal patterns of surface melting observed over Antarctic ice shelves using scatterometer data. Antarct. Sci., 2015, 27, 403–410.
- Bothale, R. V., Rao, P. V. N., Dutt, C. B. S., Dadhwal, V. K. and Maurya, D., Spatio-temporal dynamics of surface melting over Antarctica using OSCAT and QuikSCAT scatterometer data (2001–2014). Curr. Sci., 2015, 109, 733–744.
- Wang, X, Wang, C. and Li, B., Spatiotemporal analysis of Antarctic snowmelt changes using microwave radiometer data (1978– 2015). Fresesius Environ. Bull., 2018, 3028–3034.
- Hock, R., Rees, G., Williams, M. W. and Ramirez, E., Preface – contribution from glaciers and snow cover to runoff from mountains in different climates. Hydrol. Process., 2006, 20, 2089–2090.
- Takala, M. et al., Estimating northern hemisphere snow water equivalent for climate research through assimilation of spaceborne radiometer data and ground- based measurements, Remote Sensing Environ., 2011, 115, 3517–3529.
- Sturm, M. and Liston, G. E., The snow cover on lakes of the Arctic coastal plain of Alaska, USA. J. Glaciol., 2003, 49, 370–380.
- Ridley, J., Surface melting on Antarctic Peninsula ice shelves detected by passive microwave sensors. Geophys. Res. Lett., 1993, 23, 2639–2642; doi:10.1029/93GL02611.
- Kunz, L. B. and Long, D. G., Melt detection in Antarctic ice shelves using scatterometers and microwave radiometers. IEEE Trans. Geosci. Remote Sensing, 2006, 44, 2461–2469.
- Liu, H., Wang, L. and Jezek, K. C., Spatiotemporal variations of snowmelt in Antarctica derived from satellite scanning multichannel microwave radiometer and Special Sensor Microwave Imager data (1978–2004). J. Geophys. Res., 2006, 111, F01003; doi:10.1029/2005JF000318.
- Picard, C. and Fily, M., Surface melting observations in Antarctica by microwave radiometers: correcting 26-year time series from changes in acquisition hours. Remote Sensing Environ., 2006, 104, 325–336.
- Tedesco, M., Assessment and development of snowmelt retrieval algorithms over Antarctica from K-band spaceborne brightness temperature (1979–2008). Remote Sensing Environ., 2009, 113, 979–997.
- Oza, S. R., Singh, R. K. K., Vyas, N. K., Gohil, B. S. and Sarkar, A., Spatio-temporal coherence based technique for near-real time sea-ice identification from scatterometer data. J. Indian Soc. Remote Sensing, 2010, 39, 169–176.
- Bothale, R. V., Rao, P. V. N., Dutta, C. B. S. and Dadhwal, V. K., Dynamics of surface melting over Amery and Ross ice shelf in Antarctic using OCAT data. Int. Arch. Photogramm., Remote Sensing Spat. Inf. Sci., 2014, XL-8, 505–509; doi:10.5194/ isprsarchives-XL-8-505-2014.
- Cavalieri, D. J., Gloersen, P. and Campbell, W. J., Determination of sea-ice parameters with the Nimbus 7 SMMR. J. Geophys. Res., 1984, 89, 5355–5369.
- Cavalieri, D. J., Crawford, J., Drinkwater, M. R., Eppler, D. T., Farmer, L. D., Jentz, R. R. and Wackerman, C., Aircraft active and passive microwave validations of sea-ice concentrations from the DMSP SSM/I. J. Geophys. Res., 1991, 96, 21989–22008.
- Zwally, H. J., Comiso, J. C., Parkinson, C. L., Campbell, W. J., Carsey, F. D. and Gloersen, P., Antarctic sea-ice, 1973–1976: satellite passive microwave observations, National Aeronautics and Space Administration, Washington, DC (NASA SP 459), 1983.
- Parkinson, C. L., Comiso, J. C., Zwally, H. J., Cavalieri, D. J., Gloersen, P. and Campbell, W. J., Arctic sea ice 1973–1976 from satellite passive microwave observations. NASA Special Publication No. 489, 1987.
- Comiso, J. C., Cavalieri, D. J., Parkinson, C. L. and Gloersen, P., Passive microwave algorithms for sea-ice concentration: a comparison of two techniques. Remote Sensing Environ., 1997, 60, 357–384.
- Vyas, N. K. and Dash, M. K., Oceansat-MSMR observes interesting features on the frozen continent and surrounding sea. J. Indian Soc. Remote Sensing, 2000, 28, 67.
- Vyas, N. K., Dash, M. K., Bhandari, S. M., Khare, N., Mitra, A. and Pandey, P. C., Large-scale Antarctic features captured by Multi-Frequency Scanning Microwave Radiometer onboard Oceansat-1. Curr. Sci., 2001, 80, 1319–1322.
- Dash, M. K., Bhandari, S. M., Vyas, N. K., Khare, N., Mitra, A. and Pandey, P. C., Oceansat-MSMR imaging of the Antarctic and the Southern Polar Ocean. Int. J. Remote Sensing, 2001, 22, 3253– 3259.
- Bhandari, S. M., Dash, M. K., Vyas, N. K., Khare, N. and Pandey, P. C., Microwave remote sensing of sea-ice in the Antarctic region from Oceansat-1 MSMR. In Advances in Marine and Polar Science (eds Sahoo, D. and Pandey, P. C.), A.P.H. Publishing Corporation, New Delhi, 2002.
- Bhandari, S. M., Vyas, N. K., Dash, M., Shrama, N. and Pandey, P. C., Simultaneous MSMR and SSM/I observations and analysis of sea-ice characteristics over the Antarctic region. Int. J. Remote Sensing, 2005, 26, 3123–3136.
- Haarpaintner, J., Tonboe, R. T. and Long, D. G., Automatic detection and validity of the sea-ice edge: an application of enhancedresolution QuikSCAT/SeaWinds data. IEEE Trans. Geosci. Remote Sensing, 2004, 42(7), 1433–1443; doi:10.1109/TGRS.2004.828195.
- Oza, S. R., Singh, R. K. K., Vyas, N. K. and Sarkar, A., Recent trends of Arctic and Antarctic summer sea-ice cover observed from space-borne scatterometer. J. Indian Soc. Remote Sensing, 2010, 38, 611–616.
- Rivas, M. B., Otosaka, I., Stoffelen, A. and Verhoef, A., A scatterometer record of sea-ice extents and backscatter: 1992–2016. Cryosphere Discuss, 2018, doi:10.5194/tc-2018-68.
- Li, M., Zhao, C., Zhao, Y., Wang, Z. and Shi, L., Polar sea-ice monitoring using HY-2A scatterometer measurements. Remote Sensing, 2016, 8, doi:10.3390/rs8080688.
- Singh, R. K., Singh, K. N., Maisnam, M., Jayaprasad, P. and Maity, S., Antarctic sea-ice extent from ISROs SCATSAT-1 using PCA and an unsupervised classification. In Proceedings of the 2nd International Electronic Conference on Remote Sensing (ECRS2), 2018, 2, doi:10.3390/ecrs-2-05153.
- Lindell, D. B. and Long, D. G., Multiyear Arctic ice classification using ASCAT and SSMIS. Remote Sensing, 2016, 8, doi:10.3390/rs8040294.
- Rajak, D. R., Singh, R. K. K., Jayaprasad, P., Oza, S. R., Sharma, R. and Raj Kumar, Sea ice occurrence probability data and its applications over the Antarctic. J. Geomat., 2015, 9, 193–197.
- Ulaby, F. T., Moore, R. K. and Fung, A. K., Microwave Remote Sensing – Active and Passive, Vol. III: From Theory to Applications, Artech House, Dedham, MA, USA, 1986.
- Wismann, V., Monitoring of seasonal snowmelt on Greenland with ERS scatterometer data. IEEE Trans. Geosci. Remote Sensing, 2000, 38, 1821–1826.
- Smith, L. C., Sheng, Y., Forster, R. R., Steffen, K., Frey, K. E. and Alsdorf, D. E., Melting of small Arctic caps observed from ERS scatterometer time series. Geophys. Res. Lett., 2003, 30, doi:10.1029/2003GL017641.
- Oza, S. R., Singh, R. K. K, Vyas, N. K. and Sarkar, A., Study of inter-annual variations in surface melting over Amery Ice Shelf, East Antarctica using space-borne scatterometer data. J. Earth Syst. Sci., 2011, 120, 329–336.
- Yueh, S., Cline, D. and Elder, K., POLSCAT Ku-band radar remote sensing of terrestrial snow cover. In IGARSS 2008 – 2008 IEEE International Geoscience and Remote Sensing Symposium, 2008; doi:10.1109/IGARSS.2008.4779276.
- Liang, X., Lettenmaier, D. P., Wood, E. F. and Burges, S. J., A simple hydrologically based model of land surface water and energy fluxes for GSMs. J. Geophys. Res., 1994, 99(D7), 14415– 14428.
- Aggarwal, S. P., Garg, V., Gupta, P. K., Nikam, B. R., Thakur, P. K. and Roy, P. S., Runoff potential assessment over Indian landmass: a macro-scale hydrological modeling approach. Curr. Sci., 2013, 104(7), 950–959.
- Spreen, G., Kaleschke, L. and Heygster, G., Sea ice remote sensing using AMSR-E 89 GHz channels. J. Geophys. Res., 2008, 113, C02S03; doi:10.1029/2005JC003384.
- Simone, S., Oza, S. R., Shah, R. D., Rathore, B. P. and Bahuguna, I. M., Rift assessment and potential calving zone of Amery Ice Shelf, East Antarctica. Curr. Sci., 2018, 115(9), 1799–1804.