Refine your search
Collections
Co-Authors
- Prakash Chauhan
- Prabhjot Kaur
- N. Srivastava
- Rishitosh K. Sinha
- Nirmala Jain
- Ami J. Desai
- M. Shanmugam
- S. V. Vadawale
- Arpit R. Patel
- N. P. S. Mithun
- Hitesh Kumar Adalaja
- Tinkal Ladiya
- Shiv Kumar Goyal
- Neeraj K. Tiwari
- Nishant Singh
- Sushil Kumar
- Deepak Kumar Painkra
- A. K. Hait
- A. Patinge
- Abhishek Kumar
- Saleem Basha
- Vivek R. Subramanian
- R. G. Venkatesh
- D. B. Prashant
- Sonal Navle
- Y. B. Acharya
- Anil Bhardwaj
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Murty, S. V. S.
- Hyperspectral Remote Sensing of Planetary Surfaces: An Insight into Composition of Inner Planets and Small Bodies in the Solar System
Abstract Views :436 |
PDF Views:186
Authors
Prakash Chauhan
1,
Prabhjot Kaur
1,
N. Srivastava
2,
Rishitosh K. Sinha
2,
Nirmala Jain
1,
S. V. S. Murty
2
Affiliations
1 Space Applications Centre, (ISRO), Ahmedabad 380 015, IN
2 Physical Research Laboratory, Ahmedabad 380 009, IN
1 Space Applications Centre, (ISRO), Ahmedabad 380 015, IN
2 Physical Research Laboratory, Ahmedabad 380 009, IN
Source
Current Science, Vol 108, No 5 (2015), Pagination: 915-924Abstract
Space exploration missions of planetary bodies in our solar system have provided new insights to understand their formation and evolutionary processes that such bodies have undergone leading to their current geological state. Remote sensing from orbiter mission has helped in identifying surface features, delineating surface topography, mapping surface composition and deriving reliable age estimates of different planetary surfaces. In particular, high spatial and spectral resolution spacecraft observations have significantly contributed to our current understanding of the geological, physical and chemical processes that resulted in divergent evolutionary paths undertaken by different planetary objects such as inner and outer planets, dwarf planets, the moons and small solar system bodies (asteroids and comets). Hyperspectral remote sensing has been an emerging field of space-based reflectance spectroscopy and in recent years many imaging spectroscopy instruments have flown on different planetary missions, e.g. Moon Mineralogy Mapper on-board Chandrayaan-1, VIMS on Cassini mission, CRISM on Mars Reconnaissance Orbiter (MRO) mission, etc. This article provides a review on imaging reflectance spectroscopy for understanding the surface composition through mineralogy for different planetary bodies.Keywords
Hyperspectral Remote Sensing, Mineralogy, Planetary Surfaces, Solar Systems.- Morphology of Slope Streaks within Nicholson Crater, Mars:Records of Recent Wind Activity
Abstract Views :369 |
PDF Views:139
Authors
Affiliations
1 PLANEX, Physical Research Laboratory, Ahmedabad 380 009, IN
1 PLANEX, Physical Research Laboratory, Ahmedabad 380 009, IN
Source
Current Science, Vol 114, No 03 (2018), Pagination: 596-607Abstract
Wind is currently the dominant active geological agent bringing about constant changes over the Martian surface. One of the most conspicuous resultant morphology derived is the formation of slope streaks, highly transient features that tend to develop and may completely disappear within a few ten of years. In this article a detailed analysis on the pattern, morphology and appearance of slope streaks within the central mound of the Nicholson crater on Mars, has been made and plausible reasons for their formation as well as darkening and fading mechanisms are discussed. We focus on some observations which indicate the role of wind in carving specific streak patterns. The morphological observations discussed, strongly support active aeolian processes and provide evidences in favour of the dust avalanche theory for the formation and current morphology of slope streaks in the Nicholson crater.Keywords
Aeolian Activities, Craters, Morphology, Slope Streaks.References
- Silvestro, S., Fenton, L. K., Vaz, D. A., Bridges, N. T. and Ori, G. G., Ripple migration and dune activity on Mars; evidence for dynamic wind processes. Geophys. Res. Lett., 2010, 37, L20203; doi:10.1029/2010GL044743.
- Silvestro, S. et al., Pervasive aeolian activity along rover Curiosity’s traverse in Gale crater, Mars, Geology, Geological Society of America, 2013; doi:10.1130/G34162.1.
- Zimbelman, J. R., Bourke, M. C. and Lorenz, R. D., Recent developments in planetary aeolian studies and their terrestrial analogs. Aeolian Res., 2013, 11, 109–126.
- Bradley, B. A., Sakimoto, S. E., Frey, H. and Zimbelman, J. R., Medusae Fossae Formation: new perspectives from Mars Global Surveyor. J. Geophys. Res. E, 2002, 107(E8), 2-1–2-17.
- Schorghofer, N. and King, C. M., Sporadic formation of slope streaks on Mars. Icarus, 2011, 216(1), 159–168.
- Fenton, L. K. and Richardson, M. I., Martian surface winds’ insensitivity to orbital changes and implications for aeolian processes. J. Geophys. Res., 2001, 106(El2), 32,885–32,902.
- Fenton, L. K., Bandfield, J. L. and Ward, A. W., Aeolian processes in proctor crater on Mars: sedimentary history as analyzed from multiple data sets. J. Geophys. Res., E, 2003, 108, 1–3.
- Baratoux, D. et al., The role of the wind-transported dust in slope streaks activity: evidence from the HRSC data. Icarus, 2006, 183(1), 30–45.
- Schorghofer, N., Aharonson, O. and Khatiwala, S., Slope streaks on Mars: Correlations with surface properties and the potential role of water. Geophys. Res. Lett., 2002, 29(23), 2126; doi: 10.1029/2002GL015889.
- Bergonio, J. R., Rottas, K. M. and Schorghofer, N., Properties of Martian slope streak populations. Icarus, 2013, 225(1), 194–199.
- Sullivan, R., Thomas, P., Veverka, J., Malin, M. and Edgett, K. S., Mass movement slope streaks imaged by the Mars Orbiter camera. J. Geophys. Res., 2001, 106(E10), 23,607–23,633.
- De Mijolla, G. M., Howe, K. L. and Dixon, J. C., Experimental simulation of Martian slope streak formation. In 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, USA, abstr. # 1142, 7–11 March 2011.
- Head, J. W., Marchant, D. R., Dickson, J. L., Levy, J. S. and Morgan, G. A., Slope streaks in the Antarctic Dry Valleys: characteristics, candidate formation mechanisms, and implications for slope streak formation in the Martian environment. In 10th International Symposium on Antarctic Earth Sciences, U.S. Geological Survey and the National Academies, USGS of 2007-1047 (extended abstr.), 177, 2007.
- Phillips, C. B., Burr, D. M. and Beyer, R. A., Mass movement within a slope streak on Mars. Geophys. Res. Lett., 2007, 34(L21202); doi:10.1029/2007GL031577.
- Morris, E., Aureole deposits of the Martian volcano Olympus Mons. J. Geophys. Res., 1982, 87, 1164–1178.
- Malin, M. C. and Edgett, K. S., Mars Global Surveyor Mars Orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res., 2001, 106, 23,429–23,570.
- Schorghofer, N., Aharonson, O., Gerstell, M. F. and Tatsumi, L., Three decades of slope streak activity on Mars. Icarus, 2007, 191, 132–140.
- Chilton, H. and Phillips, C., Temporal contrast changes in dark slope streak on Mars. In 44th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, Abstr. # 3109, 18–22 March 2013.
- Kreslavsky, M. A. and Head, J. W., Slope streaks on Mars: a new ‘wet’ mechanism. Icarus, 2009, 201, 517–527.
- McEwen, A. S. et al., Mars reconnaissance orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., 2007, 112(E05S02), doi:10.1029/2005JE002605.
- Malin, M. C. et al., Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res., 2007, 112; doi:10.1029/2006JE002808.
- Silvestro, S., Vaz, D. A., Fenton, L. K. and Geissler, P. E., Active aeolian processes on Mars: a regional study on Arabia and Meridiani Terrae. Geophys. Res. Lett., 2011, 38(L20201).
- Rice, M. S., Bell, J. F. III, Gupta, S., Warner, N. H., Goddard, K. and Anderson, R. B., A detailed geologic characterization of Eberswalde crater, Mars. Int. J. Mars Sci. Expl., Mars Inform., (open access journals), 2005; doi:10.1555/mars.2005.1.0.
- Goudie, A. S., Arid and Semi-Arid Morphology, Aeolian Geomorphology, Cambridge University Press, 2013, pp. 156–157.
- Gerstell, M. F., Aharonson, O. and Schorghofer, N., A distinct class of avalanche scars on Mars. Icarus, 2004, 168, 122–130.
- Chaung, F. C., Beyer, R. A., McEwen, A. S. and Thompson, B. J., HiRISE observations of slope streaks on Mars. Geophys. Res. Lett., 2007, 34(20); doi:10.1029/2007GL031111/
- Miyamoto, H., Dohm, J. M., Beyer, R. A. and Baker, V. R., Fluid dynamical implications of anastamosing slope streaks on Mars. J. Geophys. Res., 2004, 109(E06008); doi:10.1029/2003JE002234.
- Aharonson, O., Schorghofer, N. and Gerstell, M. F., Slope streak formation and dust deposition rates on Mars. J. Geophys. Res., 2003, 108(E12), 5138; doi:10.1029/2003JE002123.
- Ferguson, H. M. and Lucchitta, B. K., Dark streaks on talus slopes, Mars, In Reports of the Planetary Geology Program, NASA Technical Memoir, TM-86246, pp. 188–190 (1983, 84).
- Williams, S. H., Dark talus streaks on Mars are similar to aeolian dark streaks. In Lunar and Planetary Science XXII, Houston, USA, abstr. #1509, 18–22 March 1991.
- Ferris, J. C., Dohm, J. M., Baker, V. R. and Maddock, T. III, Dark slope streaks on Mars: are aqueous processes involved? Geophys. Res. Lett., 2002, 29(10), 128-1–128-4.
- Motazedian, T., Currently flowing water on Mars. In Lunar and Planetary Science, Houston, USA, 2003, vol. XXXIV, abstr. #1840.
- Burleigh, K. J., Melosh, H. J., Tornabene, L. L., Ivanov, B., McEwen, A. S. and Daubar, I. J., Impact airblast triggers dust avalanches on Mars. Icarus, 2012, 217, 194–201.
- Alpha Particle X-ray Spectrometer onboard Chandrayaan-2 Rover
Abstract Views :407 |
PDF Views:154
Authors
M. Shanmugam
1,
S. V. Vadawale
1,
Arpit R. Patel
1,
N. P. S. Mithun
1,
Hitesh Kumar Adalaja
1,
Tinkal Ladiya
1,
Shiv Kumar Goyal
1,
Neeraj K. Tiwari
1,
Nishant Singh
1,
Sushil Kumar
1,
Deepak Kumar Painkra
1,
A. K. Hait
2,
A. Patinge
2,
Abhishek Kumar
3,
Saleem Basha
3,
Vivek R. Subramanian
3,
R. G. Venkatesh
3,
D. B. Prashant
3,
Sonal Navle
3,
Y. B. Acharya
1,
S. V. S. Murty
1,
Anil Bhardwaj
1
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U.R. Rao Satellite Centre, Bengaluru 560 017, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U.R. Rao Satellite Centre, Bengaluru 560 017, IN
Source
Current Science, Vol 118, No 1 (2020), Pagination: 53-61Abstract
Alpha Particle X-ray Spectrometer (APXS) is one of the two scientific experiments on Chandrayaan-2 rover named as Pragyan. The primary scientific objective of APXS is to determine the elemental composition of the lunar surface in the surrounding regions of the landing site. This will be achieved by employing the technique of X-ray fluorescence (XRF) spectroscopy using in situ excitation source 244Cm emitting both X-rays and alpha particles. These radiations excite characteristic X-rays of the elements by the processes of particle induced X-ray emission and XRF. The characteristic X-rays are detected by the ‘state-of-the-art’ X-ray detector known as Silicon Drift Detector, which provides high energy resolution, as well as high efficiency in the energy range of 1–25 keV. This enables APXS to detect all major rock forming elements such as, Na, Mg, Al, Si, Ca, Ti and Fe. The flight model of the APXS payload has been completed and tested for various instrument parameters. The APXS provides energy resolution of ~135 eV at 5. 9keV for the detector operating temperature of about –35°C. The design details and the performance measurement of APXS are presented in this paper.Keywords
Alpha Particle X-Ray Spectrometer, CSPA, Silicon Drift Detector, X-Ray Spectrometer.References
- McSween, H. Y. and Huss, G. R., Cosmochemistry, Cambridge University Press, Cambridge, 2010.
- Laxmiprasad, A. S. et al., An in situ laser induced breakdown spectroscope (LIBS) for Chandrayaan-2 rover: ablation kinetics and emissivity estimates. Adv. Space Res., 2013, 52, 332–341.
- Rieder, R. et al., Determination of the chemical composition of Martian soil and rocks: the alpha proton X-ray spectrometer. J. Geophys. Res., 1997, 102, 4027–4044.
- Rieder, R. et al., The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res.: (Planets), 2003, 108, 8066.
- Gellert, R. et al., The alpha-particle X-ray spectrometer (APXS) for the mars science laboratory (MSL) rover mission. Lunar and Planetary Science Conference, abstract no. 2364, 2009.
- Bridges, N. T., Crisp, J. A. and Bell, J. F., Characteristics of the pathfinder APXS sites: implications for the composition of Martian rocks and soils. J. Geophys. Res., 2001, 106, 14621–14665.
- Gellert, R. et al., Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res., 2006, 111; E02S05; doi:10.1029/2005JE002555.
- O’Connell-Cooper, C. D. et al., APXS derived chemistry of the Bagnold dune sands: comparisons with gale crater soils and the global Martian average. J. Geophys. Res.: Planets, 2017, 122, 2623–2643.
- Klingelhofer, G. et al., The Rosetta alpha particle X-ray spectrometer (APXS). Space Sci. Rev., 2007, 128, 383–396.
- Turkevich, A. L., Franzgrote, E. J. and Patterson, J. H., Chemical analysis of the moon at the surveyor 5 landing site. Science, 1967, 158, 635–637.
- Chunlai, L. et al., The Chang’e 3 mission overview. Space Sci. Rev., 2015, 190, 85–101.
- Ye, P. J. et al., An overview of the mission and technical characteristics of Chang’e 4 lunar probe. Sci. China Technol. Sci., 2017, 60, 658–667.
- Zhang, G.-L. et al., Laboratory verification of the active particleinduced X-ray spectrometer (APXS) on the Chang’e-3 mission. Res. Astron. Astrophys., 2015, 15, 1893.
- Shanmugam, M. et al., Alpha particle X-ray spectrometer (APXS) onboard Chandrayaan-2 rover. Adv. Space Res., 2014, 54, 1974– 1986.
- Goyal, S. K. et al., Laboratory XRF measurements using alpha particle X-ray spectrometer of Chandrayaan-2 rover: comparison with GEANT4 simulation results. IEEE proc. NSS/MIC/RTSD1695, 2013.
- Radchenko, V. M. and Ryabinin, M. A., Research sources of ionizing radiation based on transplutonium elements, IOP Conference Series: Materials Science and Engineering, 2010.