Refine your search
Collections
Co-Authors
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Samarakoon, S. P. A. U. K.
- Photo-Current Enhancement in the Cu/rGO/n-Cu2O Photo-Electrode at Electrolyte Interface
Abstract Views :263 |
PDF Views:3
Authors
Affiliations
1 Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, LK
1 Nano-Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, Kuliyapitiya, LK
Source
Journal of Scientific and Technical Research (Sharda University, Noida), Vol 6, No 1 (2016), Pagination: 32-36Abstract
A simple method was found to fabricate Cu/rGO/n-Cu2O photo-electrode to enhance the photocurrent with compared to the device Cu/n-Cu2O photo-electrode at semiconductor-electrolyte interface. Reduced graphene oxide (rGO) was fabricated on a well cleaned copper sheet using electrophoretic deposition (EPD) technique to fabricate Cu/rGO. Thereafter Cu/rGO electrode was boiled in a 10-4M CuSO4 solution to fabricate Cu/rGO/n-Cu2O photo-electrode for the first time. Here The rGO acts as a good electron acceptor ton-Cu2O photo-generated electrons enhancing the charge separation process suppressing the recombination process of the photo-generated charge carriers.Keywords
n-Cu2O, rGO, Photoelectron Chemical Cell.References
- Tran, P. D., Batabyal, S. K., Pramana, S. S., Barber, J., Wong, L. H., and Loo Nanoscale, S. C. J. (2012). A cuprous oxide–reduced graphene oxide (Cu 2 O–rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu 2 O, 4, 3875-3878
- Fernando, C. A. N., and Wetthasinghe, S. K. (2000). Sol. Energy Mater. Sol. Cells, 63, 299-308
- Prashant, V. K. (2011). Journal of Physical Chemistry Leters, 2, 242-251
- Guo, S., Zhang, G. K. Guo, Y. D., and Yu, J. C. (2013). Carbon, 60, 437-444
- Hu, S. J., Chi, B., Pu, J., and Jian, L., (2014). RSC Advances, 4, 60437-60444
- An, S. J., Zhu, Y., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J., and Ruoff, R. S. (2010). The Journal of Physical Chemistry Letters, 1, 1259
- Hummers, W. S., and Offeman, R. E. (1958). Journal of the American Chemical Society, 80, 1339
- Fernando, C. A. N., De Silva, P. H. C., Wethasinha, S. K., Dharmadasa, I. M., Delsol, T., and Simmonds, C. M. (2002). Renew. Energy, 26, 521-529
- Zhang, Y., Tang, Z., Fu, X., and Xu, Y. (2010). ACS Nano, 4, 7303-7314
- Photo-Current Enhancement at Cu/P-Cu2O/rGO-Electrolyte Interface
Abstract Views :298 |
PDF Views:3
Authors
Affiliations
1 Nano Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, LK
1 Nano Technology Research Laboratory, Department of Electronics, Wayamba University of Sri Lanka, LK
Source
Journal of Scientific and Technical Research (Sharda University, Noida), Vol 6, No 1 (2016), Pagination: 37-41Abstract
A considerable photocurrent enhancement was found at the Cu/p-Cu2O/rGO-electrolyte interface in a photo-electrochemical cell with compared to that of Cu/p-Cu2O-electrolyte interface. The reason for the photocurrent enhancement may be due to the efficient charge separation process provided at Cu/p-Cu2O/rGO-electrolyte interface. Here rGO (reduced graphene oxide) acts as an electron acceptor for the photo-generated charge carriersas it readily accept electrons from the conduction band of p-Cu2O. rGO was synthesized using electro-phoretic deposition (EPD) technique. Fabricated samples were characterized using diffuse reflectance spectra, photocurrent action spectra and the time development of the photocurrent of photo-electrochemical cells.Keywords
Photo-Current, Electrolyte Interface, Photo Electrochemical Cell.References
- Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H. (2010). Chem. Rev., 110, 6598
- Tran, P. D., Batabyal, S. K., Pramana, S. S., Barber, J., Wongand, L. H., and Loo, S. C. J. (2012). Nanoscale, 4, 3875
- An, S. J., Zhu, Y., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J., and Ruoff, R. S. (2010). Journal of Physical Chemistry Letter, 1, 1259
- Musa, A. O., Akomolafe, T., and Carter, M. J. (1998). Solar energy Materials and solar cells, 51, 306
- Abdu, Y., and Musa, A. O. (2009). Bayero Journal of Pure and Applied Sciences, 2, 9-11
- Ismail, R. A., Ramadhan, I., and Mustafa, A. (2005). Chinese Physics Letter, 22, 2977
- Liyanaarachchi, U. S., Fernando, C. A. N., Foo, K. L., Hashim, U., and Maza, M. (2015). Chinese Journal of Physics, 53, 040803-1-040803-17
- Hummers, W. S., and. Offeman, R. E. (1958). Journal of American Chemical Society, 80, 1339
- Zhang, Y., Tang, Z., Fu, X., and Xu, Y. (2010). ACS Nano, 4, 7303-7314