Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Attri, S. D.
- Impact of Observed Climate Change on the Classification of Agroclimatic Zones in India
Abstract Views :395 |
PDF Views:117
Authors
N. Chattopadhyay
1,
A. K. Sahai
1,
P. Guhathakurta
1,
S. Dutta
1,
A. K. Srivastava
1,
S. D. Attri
2,
R. Balasubramanian
1,
K. Malathi
1,
Swati Chandras
1
Affiliations
1 India Meteorological Department, Shivajinagar, Pune 411 005, IN
2 India Meteorological Department, New Delhi 110 003, IN
1 India Meteorological Department, Shivajinagar, Pune 411 005, IN
2 India Meteorological Department, New Delhi 110 003, IN
Source
Current Science, Vol 117, No 3 (2019), Pagination: 480-486Abstract
The classification of agroclimatic zones in India was made in the 1990s for identifying priorities and developing strategies for location-specific and need-based research as well as overall agricultural development in the country. Long-term climatic parameters, particularly temperature and rainfall along with soil and crop information were used for the classification of agroclimatic zones. It has been documented with a fair degree of accuracy that overall climate is changing, particularly with respect to temperature over the Indian region. Thus it is anticipated that in the recent past, climate change may be reflected in the agroclimatic zones as well and ultimately affect the criteria of their classification based on climatic parameters. The objective of the present study is to examine the trends and spatial/temporal variability of temperature, rainfall, rainy days, and heavy rainfall in different agroclimatic zones of the country, which may help in better understanding of the further initiatives on reclassification of agroclimatic zones, if required. Using various long-term gridded data from 1985 and instrumental datasets starting from 1951 to 1980, studies have been made to observe changes in different components of the climatic variables, i.e. temperature and rainfall. It has been observed that there are significant changes in temperature and rainfall, both temporally and spatially, across India and there is a definite shift in temperature and rainfall patterns in the recent past compared to 1951–1980. It has also been inferred that there is a need to reconsider the classification of agroclimatic zones in India under the scenario of observed climate changes in the country.Keywords
Agroclimatic Zones, Classification, Climatic Parameters, Climate Change.References
- ICAR, agroclimatic zone specific research. In Indian Perspectives under NARP, Indian Council of Agricultural Research, New Delhi, 1991.
- Kothawale, D. R., Munot, A. A. and Krishna Kumar, K., Surface air temperature variability over India during 1901–2007 and its association with ENSO. Climate Res., 2010, 42, 89–104; doi:10.3354/ cr00857.
- Srivastava, A. K., Kothawale, D. R. and Rajeevan, M. N., Variability and long-term changes in surface air temperatures over the Indian subcontinent. In Observed Climate Variability and Change over the Indian Region, Springer, Singapore, 22 November 2016, 2017, 1st edn, pp. 17–36.
- Naidu, C. V., Srinivasa Rao, B. R. and Bhaskar Rao, D. V., Climatic trends and periodicities of annual rainfall over India. Meteorol. Appl., 1999, 6, 395–404; doi:10.1017/S1350482799001358.
- Chung, C. E. and Ramanathan, V., Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Climate, 2006, 19, 2036–2045.
- Parthasarathy, B. and Dhar, O. N., Climate fluctuations over Indian region – rainfall: a review. Research Report No. RR-025. Indian Institute of Tropical Meteorology, Pune, 1978, p. 14.
- Rupa Kumar, K., Pant, G. B., Parthasarathy, B. and Sontakke, N. A., Spatial and sub-seasonal patterns of the long-term trends of Indian summer monsoon rainfall. Int. J. Climatol., 1992, 12, 257–268.
- Guhathakurta, P. and Rajeevan, M., Trends in rainfall pattern over India. Int. J. Climatol., 2008, 28, 1453–1469.
- Vijay Kumar, S. and Jain, K., Trends in rainfall amount and number of rainy days in river basins of India (1951–2004). Hydrol. Res., 2011, 42(4), 290–306; doi:10.2166/nh.2011.067.
- Impact Assessment of a Severe Dust Storm on Atmospheric Aerosols Over an Urban Site in India
Abstract Views :515 |
PDF Views:142
Authors
Affiliations
1 Jamia Millia Islamia, New Delhi 110 025, IN
2 India Meteorological Department, New Delhi 110 003, IN
1 Jamia Millia Islamia, New Delhi 110 025, IN
2 India Meteorological Department, New Delhi 110 003, IN
Source
Current Science, Vol 118, No 5 (2020), Pagination: 737-749Abstract
An intense dust storm occurred over the northwestern part of India between 28 and 31 May 2014, that drastically reduced air quality and visibility over the region. This study evaluates the impact of dust storm on aerosol characteristics over the mega city of Delhi. As the storm reached Delhi on 30 May 2014, the PM10 concentration soared to an unusually high value of more than 933 μg m–3. The aerosol optical properties such as aerosol optical depth (AOD), Ångström exponent (AE), single scattering albedo (SSA), and asymmetry parameter were measured using the groundbased sky radiometer installed at India Meteorological Department (IMD), New Delhi. During the dust event, higher AOD was recorded at 500 nm (1.456 ± 0.158), while AE dropped to 0.287. Large variation in SSA indicated the optical state of dust to be more absorbing in nature. The water vapour content in the atmosphere was also analysed from measurements taken at the 940 nm channel of the instrument. During the study period, radiative forcing at the surface, atmosphere and top of the atmosphere ranged from –31 to – 82, 15 to 92 and 2 to 10 Wm–2 respectively. On the day of dust storm, large reduction in aerosol radiative forcing was observed at the surface level that caused significant cooling.Keywords
Atmospheric Aerosol, Dust Storm, Sky Radiometer, Radiative Forcing, Urban Site.References
- Hansen, J., Sato, M. and Ruedy, R., Radiative forcing and climate response. J. Geophys. Res., 1997, 102(D6), 6831–6864.
- Ramanathan, V., Crutzen, Kiehl, J. T. and Rosenfeld, D., Aerosols, climate, and the hydrologic cycle. Science, 2001, 294, 2119– 2124.
- Miller, R. L., Tegen, I. and Perlwitz, J., Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 2004, 109, D04203; doi:10.1029/2003JD004085.
- Tegen, I., Werner, M., Harrison, S. P. and Kohfeld, K. E., Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett., 2004, 31, L05105; doi:10.1029/2003GL019216.
- Lau, K. M., Kim, M. K. and Kim, K. M., Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate Dyn., 2006, 26(7–8), 855–864; https://doi.org/10.1007/s00382-006-0114-z.
- Charlson, R. J. and Heintzenberg, J., Aerosol Forcing of Climate, John Wiley, Chichester, UK, 1995.
- Sharma, D., Singh, D. and Kaskaoutis, D. G., Impact of two intense dust storms on aerosol characteristics and radiative forcing over Patiala, northwestern India. Adv. Meteorol., 2012, 956814; https://doi.org/10.1155/2012/956814.
- Mahowald, N., Albani, S., Kok, J. F., Engelstaeder, S., Scanza, R., Ward, D. S. and Flanner, M. G., The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res., 2014, 15, 53–71.
- Hsu, N. C., Tsay, S. C., King, M. and Herman, J., Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci. Remote Sensing, 2004, 42, 557–569; https://doi.org/10.1109/TGRS.2004.824067.
- Dey, S., Tripathi, S. N., Singh, R. P. and Holben, B. N., Influence of dust storms on the aerosol optical properties over the IndoGangetic basin. J. Geophys. Res., 2004, 109, D20211; http://dx.doi.org/10.1029/2004JD004924.
- Pandithurai, G., Dipu, S., Dani, K. K., Tiwari, S., Bisht, D. S., Devara, P. C. S. and Pinker, R. T., Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res., 2008, 113, D13209; https://doi.org/10.1029/2008JD009804.
- Srivastava, A. K., Soni, V. K., Singh, S., Kanawade, V. P., Singh, N., Tiwari, S. and Attri, S. D., An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study. Sci. Total Environ., 2014, 493, 526–534.
- Taneja, K., Attri, S. D., Ahmad, S., Ahmad, K., Soni, V. K., Mor, V. and Dhankhar, R., Analysis of diurnal and seasonal variations in aerosol optical properties over a mega city and adjacent urban area in India. Mausam, 2017, 68(4), 673–688.
- Jin, Q., Yang, Z. L. and Wei, J., Seasonal responses of Indian summer monsoon to dust aerosols in the Middle East, India, and China. J. Climate, 2016, 29, 6329–6349.
- Alpert, P., Kishcha, P., Shtivelman, A., Krichak, S. O. and Joseph, J. H., Vertical distribution of Saharan dust based on 2.5-year model predictions. Atmos. Res., 2004, 70(2), 109–130.
- Tanré, D. et al., Measurement and modeling of the Saharan dust radiative impact: overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res., 2003, 108(D18), D8574.
- Srivastava, M. K. et al., Aerosol optical properties over Delhi and Manora Peak during a rare dust event in early April 2005. Int. J. Remote Sensing, 2011, 32(23), 7939–7954.
- Moorthy, K. K., Babu, S. S., Satheesh, S. K., Srinivasan, J. and Dutt, C. B. S., Dust absorption over the ‘Great Indian Desert’ using ground-based and satellite remote sensing. J. Geophys. Res., 2007, 112, D09206; https://doi.org/10.1029/2006JD007690.
- Taneja, K., Soni, V. K., Attri, S. D., Peshin, S. K., Mor, V. and Sateesh, M., Seasonal asymmetry of aerosol optical and radiative properties over New Delhi, India using ground-based observations, In Global Sustainability Transitions: Impacts and Innovations (ed. Mishra, G. C.), Excellent Publishing House, New Delhi, 2014, pp. 124–130.
- Prasad, A. K., Singh, R. P. and Holben, B. N., Changes in aerosol parameters during major dust storm events (2001–2005) over the Indo-Gangetic plains using AERONET and MODIS data. J. Geophys. Res., 2007, 112, D09208; https://doi.org/doi:10.1029/2006JD007778.
- Rashki, A. et al., Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations. Nat. Hazards, 2014, 71, 563; https://doi.org/10.1007/s11069-013-09270.
- Nakajima, T., Tonna, G., Rao, R., Kaufman, Y. and Holben, B., Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Opt., 1996, 35, 2672– 2686.
- Estell´es, V., Campanelli, M., Smyth, T. J., Utrillas, M. P. and Mart´ınez-Lozano, J. A., Evaluation of the new ESR network software for the retrieval of direct sun products from CIMEL CE318 and PREDE POM01 sun-sky radiometers. Atmos. Chem. Phys., 2012, 12, 11619–11630; https://doi.org/10.5194/acp-1211619-2012.
- Shaw, G. E., Error analysis of multi-wavelength sunphotometry. Appl. Geophys., 1976, 114, 1–14.
- Tanaka, M., Nakajima, T. and Shiobara, M., Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations. Appl. Opt., 1986, 25, 1170–1176.
- Singh, S., Nath, S., Kohli, R. and Singh, R., Aerosols over Delhi during pre-monsoon months: characteristics and effects on surface radiation forcing. Geophys. Res. Lett., 2005, 32, L13808; http://dx.doi.org/10.1029/2005GL023062.
- Eck, T. F. et al., Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res., 1999, 104, 0148–0227; https://doi.org/10.1029/1999JD900923.
- Dubovik, O. et al., Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 2002, 59, 590–608.
- Kim, D. H., Sohn, B. J., Nakajima, T., Takamura, T., Takemura, T., Choi, B. C. and Yoon, S. C., Aerosol optical properties over East Asia determined from ground-based sky radiation measurements. J. Geophys. Res., 2004, 109, D02209; doi:10.1029/2003JD003387.
- Venkataraman, C. et al., Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active fire and land cover data. Global Biogeochem. Cycles, 2006, 20, GB2013; doi:10.1029/2005GB002547
- Beegum, S. N. et al., Spatial distribution of aerosol black carbon over India during pre-monsoon season. Atmos. Environ., 2009, 43, 1071–1078.
- Devi, J. J., Tripathi, S. N., Gupta, T., Singh, B. N., Gopalakrishnan, V. and Dey, S., Observation-based 3-D view of aerosol radiative properties over Indian Continental Tropical Convergence Zone: implications to regional climate. Tellus B, 2011, 63(5), 971– 989; doi:10.1111/j.1600-0889.2011.00580.x
- Russell, P. B. et al., Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys., 2010, 10, 1155–1169; http://dx.doi.org/10.5194/acp-10-1155-2010.
- Srivastava, A. K., Soni, V. K., Singh, S., Kanawade, V. P., Singh, N., Tiwari, S. and Attri, S. D., An early South Asian dust storm during March 2012 and its impacts on Indian Himalayan foothills: a case study. Sci. Total Environ., 2014, 493, 526–534.
- Alam, K., Shaheen, K., Blaschke, T., Chishtie, F., Khan, H. U. and Haq, B. S., Classification of aerosols in an urban environment on the basis of optical measurements. Aerosol Air Qual. Res., 2016, 16, 2535–2549.
- Tiwari, S., Srivastava, A. K. and Singh, A. K., Heterogeneity in pre-monsoon aerosol characteristics over the Indo-Gangetic Basin. Atmos. Environ., 2013, 77, 738–747.
- Khatri, P., Takamura, T., Shimizu, A. and Sugimoto, N., Observation of low single scattering albedo of aerosols in the downwind of the East Asian desert and urban areas during the inflow of dust aerosols. J. Geophys. Res. Atmos., 2014, 119, 787–802; doi:10.1002/2013JD019961.
- Li, J., Carlson, B. E. and Lacis, A. A., Using single-scattering albedo spectral curvature to characterize East Asian aerosol mixtures. J. Geophys. Res. Atmos., 2015, 120, 2037–2052; doi:10.1002/2014JD022433.
- Alam, K., Trautmann, T., Blaschke, T. and Subhand, F., Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sensing Environ., 2014, 143, 216– 227.
- D’Almeida, G. A., Koepke, P. and Shettle, E. P., Atmospheric Aerosols: Global Climatology and Radiative Characteristics, A Deepak Publishing Co, Hampton, Virginia, USA, 1991.
- Kumar, S., Singh, A. and Singh, A. K., Impact of ‘Holi’ festival on aerosol optical properties in Indo-Gangetic Plain. Int. J. Adv. Earth Sci., 2015, 4(1), 19–28.
- Carraca, K., Hatzianastassiou, M. B., Matsoukas, C., Gkikas, A. and Papadimas, C. D., The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements. Atmos. Chem. Phys., 2015, 15, 13113–13132; https:// doi.org/10.5194/acp-15-13113-2015.
- Andrews, E. et al., Comparison of methods for deriving aerosol asymmetry parameter. J. Geophys. Res., 2006, 111, D05S04; doi:10.1029/2004JD005734.
- Dubovik, O. et al., Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. J. Geophys. Res., 2000, 105, 9791–9806.
- Whitby, K. T., The physical characteristics of sulfur aerosols. Atmos. Environ., 1978, 12(1–3), 135–159.
- Ricchiazzi, P., Yang, S., Gautier, C. and Sowle, D., SBDART: research and teaching tool for plane-parellel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc., 1998, 79, 2101– 2114; https://doi.org/10.1175/1520-0477[1998]079<2101:SARATS> 2.0.CO;2.
- Liou, K. N., An Introduction to Atmospheric Radiation, Elsevier, New York, USA, 2002.
- Bhattacharjee, P. S., Prasad, A. K., Kafatos, M. and. Singh, R. P., Influence of a dust storm on carbon monoxide and water vapor over the Indo-Gangetic Plains. J. Geophys. Res., 2007, 112, D18203; doi:10.1029/2007JD008469.