A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Pullakhandam, Raghu
- Iron and Zinc Bioavailability from Madhukar × Swarna Derived Biofortifed Rice Lines
Authors
1 ICMR-National Institution of Nutrition, Indian Council of Medical Research, Hyderabad 500 007, IN
2 ICAR-Indian Institute of Rice Research, Hyderabad 500 030, IN
3 ICAR-Indian Institute of Millets Research, Hyderabad 500 030, IN
Source
Current Science, Vol 118, No 3 (2020), Pagination: 455-461Abstract
Rice is the prime target of biofortification as it provides calories for about half of the world’s population. We assessed the iron (Fe) and zinc (Zn) bioavailability from polished rice grains of three high Fe and Zn recombinant inbred lines (RILs) using simulated in vitro digestion/Caco-2 cell model. Ferritin induction and 65Zn uptake were used as surrogate for Fe and Zn bioavailability respectively. Fe and Zn concentration in both unpolished and polished rice grains of three RILs was higher compared to Swarna, a parent and popular variety used as control. The grain Fe concentration was positively correlated (r = 0.94) to Zn concentration. There was a 2-fold induction of ferritin (42.4 ± 3.2 ng/mg protein) in Caco-2 cells only in the presence of ascorbic acid and 3-fold increase in 65Zn uptake (17.7 ± 2.4 pmol/mg protein) from the RIL 185M compared to Swarna (ferritin: 24.8 ± 4.0 ng/mg protein; 65Zn uptake: 5.8 ± 0.3 pmol/mg protein). Phytic acid was highest (8.75 mg/g) in 185 M but that did not affect bioavailability of Fe and Zn. Thus, improving the density of Fe and Zn in grains of conventionally bred rice lines has the potential to enhance the bioavailability of Fe and Zn.Keywords
Ascorbic Acid, Caco-2 Cells, Ferritin Induction, Phytic Acid, Recombinant Inbred Lines.References
- Monsen, E. R., Iron nutrition and absorption: dietary factors which impact iron bioavailability. J. Am. Diet Assoc., 1988, 88(7), 786– 790.
- Welch, R. M., Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J. Nutr., 2002, 132, 495S–499S.
- Zimmermann, M. B. and Hurrell, R. F., Nutritional iron deficiency. Lancet., 2007, 370, 511–520.
- Hunt, J. R., Dietary and physiological factors that affect the absorption and bioavailability of iron. Int. J. Vitam. Nutr. Res., 2005, 75, 375–384.
- Johnson, A. A. T., Kyriacou, B., Callahan, D. L., Carruthers, L. and Stangoulis, J., Constitutive overexpression of the OsNAS gene family reveals single‐gene strategies for effective iron- and zinc-biofortification of rice endosperm. PLoS ONE, 2011, 6(9), e24476.
- Anuradha, K., Agarwal, S., Venkateswara Rao, Y., Rao, K. V., Viraktamath, B. C. and Sarla, N., Mapping QTLs and candidate genes for iron and zinc concentrations in unpolished rice of Madhukar × Swarna RILs. Gene, 2012, 508, 233–240.
- Lee, S. et al., Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J., 2011, 9, 865–873.
- Hoppler, M., Schonbachler, A., Meile, L., Hurrell, R. F. and Walczyk, T., Ferritin-iron is released during boiling and in vitro gastric digestion. J. Nutr., 2008, 138, 878–884.
- Candela, E., Camacho, M. V., Martinez-Torres, C., Perdomo, J., Mazzarri, G., Acurero, G. and Layrisse, M., Iron absorption by humans and swine from Fe(III)-EDTA. Further studies. J. Nutr., 1984, 114, 2204–2211.
- Lynch, S. R. and Stoltzfus, R. J., Iron and ascorbic acid: proposed fortification levels and recommended iron compounds. J. Nutr., 2003, 133, 2978S–2984S.
- Zheng, L. et al., Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS ONE, 2010, 5(4), e10190.
- Nair, K. M. et al., Inclusion of guava enhances non-heme iron bioavailability but not fractional zinc absorption from a rice-based meal in adolescents. J. Nutr., 2013, 143(6), 852–858.
- Nair, K. M. and Augustine, L. F., Food synergies for improving bioavailability of micronutrients from plant foods. Food Chem., 2016; doi:10.1016/j.foodchem.2016.09.115.
- Agarwal, S., Tripura Venkata, V. G. N., Kotla, A., Mangrauthia, S. K. and Neelamraju, S., Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains. Gene, 2014, 546, 430–436.
- Hurrell, R. F. et al., Enhancing the absorption of fortification iron. A SUSTAIN Task Force report. Int. J. Vitam. Nutr. Res., 2004, 74(6), 387–401.
- Olivares, M., Pizarro, F. and Ruz, M., Zinc inhibits nonheme iron bioavailability in humans. Biol. Trace Elem. Res., 2007, 117, 7– 14.
- Glahn, R. P., Lee, O. A., Yeung, A., Goldman, M. I. and Miller, D. D., Caco-2 cell ferritin formation predicts non-radiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J. Nutr., 1998, 28, 1555–1561.
- Glahn, R. P., Cheng, Z., Welch, R. and Gregorio, G. B., Comparison of iron bioavailability from 15 rice genotypes: studies using an in vitro digestion/Caco‐2 cell culture model. J. Agric. Food Chem., 2002, 50, 3586–3591.
- Kilari, S., Raghu, P. and Nair, K. M., Zinc inhibits oxidative stress induced iron signaling and apoptosis in Caco-2 cells. Free RadicBiol. Med., 2010, 48, 961–968.
- Nemirovsky, Y., Zavaleta, N., Villanueva, M. E., Armah, S. M., Iman, S. A. and Reddy, M. B., Negative effect of camu-camu (Myrciariadubia) despite high vitamin C content on iron bioavailability, using a Caco-2 cell model. Pol. J. Food Nutr. Sci., 2014, 64, 45–48.
- Satyanarayana, B., Raghu, P., Ravinder, P. and Nair, K. M., Gastric digestion of pea ferritin and modulation of its iron bioavailability by ascorbic and phytic acids in Caco-2 cells. World J. Gastroenterol., 2007, 13, 2083–2088.
- Paltridge, N. G., Palmer, L. J., Milham, P. J., Guild, G. E. and Stangoulis, J. C. R., Energy-dispersive X-ray fluorescence analysis of zinc and iron concentration in rice and pearl millet grains. Plant Soil, 2012, 361, 251–260.
- Wheeler, E. L. and Ferral, R. E., A method for phytic acid determination in wheat and wheat fractions. Cereal Chem., 1971, 48, 312–320.
- Palika, R., Mashurabad, P. C., Kilari, S., Kasula, S., Nair, K. M. and Pullakhandam, R., Citric acid mediates the iron absorption from low molecular weight human milk fractions. J. Agric. Food Chem., 2013, 61, 11151–11157.
- Raghu, P., Nair, K. M., Pamini, H. and Punjal, R., Bioavailability of iron and zinc from multiple micronutrient fortified beverage premixes in Caco-2 cell model. J. Food Sci., 2011, 76(2), H38– H42.
- Lu, L., Tian, S., Liao, H., Zhang, J., Yang, X., Labavitch, J. M. and Chen, W., Analysis of metal element distributions in rice (Oryza sativa L.) seeds and relocation during germination based on X-ray fluorescence imaging of Zn, Fe, K, Ca, and Mn. PLoS ONE, 2013, 8(2), e57360.
- Gregorio, G. B., Senadhira, D. H., Tut, H. and Graham, R. D., Breeding for trace mineral density in rice. Food Nutr. Bull., 2009, 21, 382–386.
- Sperotto, R. A., Ricachenevsky, F. K., Duarte, G. L., Boff, T., Lopes, K. L. and Sperb, E. R., Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta., 2009, 230, 985–1002.
- Pandian, S. S., Robin, S., Vinod, K. K., Rajeswari, S., Manonmani, S., Subramanian, K. S., Saraswathi, R. and Kirubhakaran, A. P. M., Influence of intrinsic soil factors on genotype-by-environment interactions governing micronutrient content of milled rice grains. Aust. J. Crop. Sci., 2011, 5(13), 1737–1744.
- Suwarto, N., Genotype × environment interaction for iron concentration of rice in central Java of Indonesia. Rice Sci., 2011, 18(1), 75–78.
- Liang, J., Han, Bei, Z., Han, L., Robert, Nout, M. J. and Hamer, R. J., Iron, zinc and phytic acid concentration of selected rice varieties from China. J. Sci. Food Agric., 2007, 87, 504–510.
- Pelig-Ba, K. B., Assessment of phytic acid levels in some local cereal grains in two districts in the upper east region of Ghana. Pakistan J. Nutr., 2009, 8(10), 1540–1547.
- Trijatmiko, K. R. et al., Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep., 2016, 6, doi:10.1038/srep19792.
- Welch, R. M., William, A. H., Steven, B., Dharmawansa, S., Glenn, B. G. and Cheng, Z., Testing iron and zinc bioavailability in genetically enriched beans (Phaseolus vulgaris L.) and rice (Oryza sativa L.) in a rat model. Food Nutr. Bull., 2000, 21, 428– 433.
- Tako, E., Hoekenga, O. A., Kochian, L. V., Glahn, R. P., High bioavailablilty iron maize (Zea mays L.) developed through molecular breeding provides more absorbable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr. J., 2013, 12, 3.
- Promuthai, C., Huang, L., Glahn, R., Welch, R. M., Fukai, S. and Rerkasem, B., Iron (Fe) bioavailability and the distribution of antiFe nutrition biochemicals in the unpolished, polished grain and bran fraction of five rice genotypes. J. Sci. Food Agric., 2006, 86, 1209–1215.
- Eagling, T., Wawer, A. A., Shewry, P. R., Zhao, F. J. and FairweatherTait, S. J., Iron bioavailability in two commercial cultivars of wheat: comparison between wholegrain and white flour and the effects of nicotianamine and 2′-deoxymugineic acid on iron uptake into Caco-2 cells. J. Agric. Food Chem., 2014, 62(42), 10320–10325.
- Petry, N., Egli, I., Campion, B., Nielsen, E. and Hurrell, R., Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. Nutrition, 2013, 143(8), 1219–1224.
- Sedef Nehir, E. I., Sibel, K. and Şebnem, S., Effect of phytic acid on iron bioavailability in fortified infant cereals. Nutrition Food Sci., 2010, 40(5), 485–493.
- Afify, A. M., El-Beltagi, H. S., El-Salam, S. M. and Omran, A. A., Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PLoS ONE, 2011, 6(10), e25512; doi:10.1371/journal.pone.0025512.
- Swamy, B. P. M. et al., Identification of genomic regions associated with agronomic and biofortification traits in DH populations of rice. PLoS ONE, 2018; https://doi.org/10.1371/journal.pone.0201756.
- Inabangan-Asilo, M. A. et al., Stability and G × E analysis of zincbiofortified rice genotypes evaluated in diverse environments. Euphytica, 2019, 215, 61; doi.org/10.1007/s10681-019-2384-7.
- Calcium and vitamin D supplementation to pregnant women in urban hospital and community settings
Authors
1 Division of Public Health Nutrition, Nutrition Foundation of India, New Delhi, Delhi - 110 016, IN
2 National Institute of Nutrition, Hyderabad - 500 007., IN
Source
The Indian Journal of Nutrition and Dietetics, Vol 60, No 1 (2023), Pagination: 1-16Abstract
In India, calcium intake is low and the prevalence of Vitamin D deficiency in pregnant women is high. The National Guidelines envisage elemental calcium 500 mg (as calcium carbonate salt) and 250 IU vitamin D supplements should be provided to pregnant and lactating women. In Delhi, iron folic acid tablets are given twice a day after meals in anaemic women and one tablet of calcium and vitamin D daily after a meal in all pregnant women. A study was taken up to assess the availability and compliance with calcium and vitamin D supplementation in primary health care institutions under research (Group 1 - 387 women) and service conditions (Group 2 - 400 women) and in urban community setting (Group 3 - 448 women). Women in Group 1 received Ca and Vitamin D tablets regularly from the research staff. In Group 2 and Group 3 tablets, were provided as and when government supplies were available and prescriptions were given when they were not available. Ca and Vitamin D tablets were expensive; families bought the tablets as and when they had the funds. As a result, the number of tablets available for consumption was lower in Group 2 and 3. In all three groups, side effects were rare and nearly all available tablets were consumed. In Group 1, Vitamin D estimation was done at enrolment and after supplementation for three months; 83% of women at enrolment and 68% of women after three months of supplementation had serum vitamin D levels below 20 ng/ml. These data suggest that one tablet of Ca and Vit D per day is insufficient for correcting maternal vitamin D deficiency. It is essential to carry out studies to assess the impact of supplementation with two tablets of Ca and Vit D on maternal vitamin D levels.
Keywords
Vitamin D Deficiency in Pregnancy, Calcium and Vitamin D Supplementation, Availability of Calcium and Vitamin D Supplements, Compliance With Supplementation, Impact of SupplementationReferences
- Teotia, S.P.S. and Teotia, M. Nutritional osteomalacia with raised therapeutic requirements of vitamin D. The Lancet, 1972, 299, 543-544.
- Teotia, M., Teotia, S.P.S. and Singh, R.K. Maternal hypovitaminosis and congenital rickets. Bull. Intern. Pediatr. Assoc., 1979, 3, 39-46.
- Teotia, M., Teotia, S.P.S. and Nath, M. Metabolic studies in congenital vitamin D deficiency rickets. The Ind. J. Pediat., 1995, 62, 55-61.
- Teotia, M. and Teotia, S.P.S. Nutritional and metabolic rickets. The Ind. J. Pediatr., 1997, 64, 153-157.
- Teotia, S.P.S. and Teotia, M. Nutritional bone disease in Indian population. Ind. J. Med. Res., 2008, 127, 219-228.
- Goswami, R., Gupta, N., Goswami, D., Marwaha, R.K., Tandon, N. and Kochupillai, N. Prevalence and significance of low 25-hydroxyvitamin D concentrations in healthy subjects inDelhi. The Am. J. Clin. Nutr., 2000, 72, 472-475.
- Sofi, N.Y., Jain, M., Kapil, U., Seenu, V., Ramakrishnan, L., Yadav, C.P. and Pandey, R.M. Status of serum vitamin D and calcium levels in women of reproductive age in national capital territory of India. Ind. J. Endocrinol. Metabol., 2017, 21, 731.
- Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V., Sudhakar, D., Srinivasarao, P.V., Sarma, K.V. and Kumar, E. G. T. High prevalence of low dietary calcium, high phytate consumption and vitamin D deficiency in healthy south Indians. The Am. J. Clin. Nutr., 2007, 85, 1062-1067.
- Harinarayan, C.V., Ramalakshmi, T., Prasad, U.V. and Sudhakar, D. Vitamin D status in Andhra Pradesh: A population based study. Ind. J. Med. Res., 2008, 127, 211.
- Goswami, R., Mishra, S.K. and Kochupillai, N. Prevalence and potential significance of vitamin D deficiency in Asian Indians. Ind. J. Med. Res., 2008, 127, 229-238.
- Harinarayan, C.V., Sachan, A., Reddy, P.A., Satish, K.M., Prasad, U.V. and Srivani, P. Vitamin D status and bone mineral density in women of reproductive and postmenopausal age groups: A cross-sectional study from south India. JAPI., 2011, 59, 5.
- Harinarayan, C.V. Vitamin D deficiency in sun drenched India- Can D-lightful sunlight be a respite?- sunlight D lemma. In Proc. Ind. Natl. Sci. Acad., 2018, 84, 923-935.
- Balasubramanian, K., Rajeswari, J., Govil, Y. C., Agarwal, A.K., Kumar, A. and Bhatia, V. Varying role of vitamin D deficiency in the etiology of rickets in young children vs. adolescents in northern India. J. Trop. Pediat., 2003, 49, 201-206.
- Balasubramanian, S. and Ganesh, R. Vitamin D deficiency in exclusively breast-fed infants. Ind. J. Med. Res., 2008, 127, 250-256.
- Jain, V., Gupta, N., Kalaivani, M., Jain, A., Sinha, A. and Agarwal, R. Vitamin D deficiency in healthy breastfed term infants at 3 months and their mothers in India: Seasonal variation and determinants. The Ind. J. Med. Res., 2011, 133, 267.
- Marwaha, R.K., Tandon, N., Reddy, D.R.H., Aggarwal, R., Singh, R., Sawhney, R.C. and Singh, S. Vitamin D and bone mineral density status of healthy school children in Northern India. The Am. J. Clin. Nutr., 2005, 82, 477-482.
- Marwaha, R.K. and Sripathy, G. Vitamin D and bone mineral density of healthy school children in northern India. Ind. J. Med. Res., 2008, 127, 239-245.
- Sachan, A., Gupta, R., Das, V., Agarwal, A., Awasthi, P.K. and Bhatia, V. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. The Am. J. Clin. Nutr., 2005, 81, 1060-1064.
- Marwaha, R.K., Tandon, N., Chopra, S., Agarwal, N., Garg, M.K., Sharma, B. and Puri, S. Vitamin D status in pregnant Indian women across trimesters and different seasons and its correlation with neonatal serum 25-hydroxy vitamin D levels. Br. J. Nutr., 2011, 106, 1383-1389.
- Hemalatha, N. A prospective study to assess the association of vitamin D deficiency and insufficiency with adverse pregnancy outcomes. Int. J. Clin. Obstet. Gynaecol., 2021, 5, 38-44.
- Abrams, S.A. In utero physiology: Role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D. The Am. J. Clin. Nutr., 2007, 85, 604S-607S.
- Cross, N. A., Hillman, L.S., Allen, S.H., Krause, G.F. and Vieira, N.E. Calcium homeostasis and bone metabolism during pregnancy, lactation, and post weaning: A longitudinal study. The Am. J. Clin. Nutr., 1995, 61, 514-523.
- Hollis, B.W. and Wagner, C.L. New insights into the vitamin D requirements during pregnancy. Bone Res., 2017, 5, 1-16.
- Hollick, M.F., Binkley, N.C., Bischoff-Ferrari, H.A., Gordon, C.M., Hanley, D.A., Heaney, R.P. and Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. The J. Clin. Endocrinol. Metabol., 2011, 96, 1911-1930.
- Hodgkin, P., Hine, P.M., Kay, G.H., Lumb, G.A. and Stanbury, S.W. Vitamin-D deficiency in Asians at home and in Britain. The Lancet, 1973, 302, 167-172.
- Brooke, O.G., Brown, I. R., Bone, C.D., Carter, N.D., Cleeve, H.J., Maxwell, J.D. and Winder, S. M. Vitamin D supplements in pregnant Asian women: Effects on calcium status and fetal growth. Br. Med. J., 1980, 280, 751-754.
- De-Regil, L.M., Palacios, C., Lombardo, L. K. and Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane database of systematic reviews, 2016 , 1, CD008873.
- MOHFW (2014) National Guidelines for calcium supplementation during pregnancy and lactation. Available from: http://www.nrhmhp.gov.in/sites/default/files/files/NG_calcium.pdf. accessed on 1.9.2022
- MOHFW (2013). Guidelines for Control of Iron Deficiency Anaemia. Available from: http://www.pbnrhm.org/docs/iron_plus_guidelines.pdfaccessed on 1.9.2022
- International Committee on standards: expert Panel on haemoglobinometry: Recommendation for reference method for haemoglobinometry in human blood. J. Clin. Pathol., 1996, 49, 271-274.
- Kalaivani, K. and Prema Ramachandran Hb estimation at point of care using cyanmethaemoglobin method. Int. J. Comm. Med. Public Healt., 2021, 8, 4498-4505
- Aknes, L. A Simplified high performance liquid chromatographic method for of the vitamin D3, 25- hydrroxy vitamin D2, and 25- hydroxy vitamin D3 in human sera. Scend. J. Clinic. Lab Invest., 1992, 52, 177-182.
- Ministry of Health and Family Welfare. Anemia Mukt Bharat. Intensified National Iron Plus Initiative (I-NIPI): 2 018. Available from https://www.fitterfly.com/site/pdf/anemia-mukt-bharat. pdf accessed on 1.9.2022
- Ramachandran, P., Pramanik, A. and Kalaivani, K. Can iron and folic acid-IFA and Ca and vitamin D supplementation in pregnancy be fitted into habitual pattern of three meals a day? The Ind. J. Nutr. Diet., 2019, 56, 341-350.