Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Paul, Madhuparna
- Mineralogy of the Manipur Ophiolite Belt, North East India:Implications for Mid-Oceanic Ridge and Supra-Subduction Zone Origin
Abstract Views :160 |
PDF Views:23
Authors
Thungyani N. Ovung
1,
Jyotisankar Ray
1,
Xueming Teng
2,
Biswajit Ghosh
1,
Madhuparna Paul
1,
Proloy Ganguly
1,
Saradee Sengupta
1,
Supriyo Das
1
Affiliations
1 Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, IN
2 School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, CN
1 Department of Geology, Calcutta University, 35 B.C. Road, Kolkata 700 019, IN
2 School of Earth Sciences and Resources, China University of Geosciences Beijing, 29 Xueyuan Road, Beijing 100083, CN
Source
Current Science, Vol 112, No 10 (2017), Pagination: 2122-2129Abstract
Mineralogical studies on the mantle and crustal sections of the Manipur Ophiolite Belt (MOB) lead to important findings pertaining to its genesis and controlling tectonic milieu. The wide compositional gap in the Cr# and Mg# content of spinel in the mantle peridotites of MOB implies upper mantle melting in two different tectonic settings. The tectonic discrimination diagrams based on spinel chemistry indicate a midoceanic ridge (MOR) origin for the high-Al spinel peridotites and a supra-subduction zone origin for the high-Cr spinel peridotites. The pyroxenite mantle dyke, ultramafic cumulate and pillow-basalt record temperature in the range of 600-1030°C, 600-800°C and 700-1005°C respectively. Plotting of clinopyroxene composition of pillow-basalt in the TiO2-Na2O-SiO2/100 (wt%) tectonic discrimination diagram, implies a subduction-related origin of the basalts. Experimental studies on the serpentine stability indicate that it was dominantly affected by high temperature-low deformation setting.Keywords
Mineralogical Study, Ophiolite Belt, Pyroxenite Mantle Dyke, Pyroxene Thermometry.References
- Acharyya, S. K., Collisional emplacement history of the NagaAndaman ophiolites and the position of the eastern Indian suture. J. Asian Earth Sci., 2007, 29, 229–242.
- Joshi, A. and Vidyadharan, K. T., Lithostratigraphy of the NagaManipur Hills (Indo-Burma Range) ophiolite Belt from Ukhrul district, Manipur, India. Himalayan J. Sci., 2008, 5(7), 73–74.
- Singh, A. K., High-Al chromian spinel in ultramafic rocks of Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt: implication for petrogenesis and geotectonic setting. Curr. Sci., 2009, 96(7), 973–978.
- Devi, L. D. and Singh, I., Geochemical study of peridotites from the Manipur Ophiolite Complex, Northeast India with special reference to their PGE concentration. J. Geol. Soc. India, 2011, 77, 273–279.
- Ningthoujam, P. S., Dubey, C. S., Guillot, S., Fagio, A. S. and Shukla, D. P., Origin and serpentinization of ultramafic rocks of Manipur Ophiolite Complex in the Indo-Myanmar subduction zone, Northeast India. J. Asian Earth Sci., 2012, 50, 128–140.
- Singh, A. K., Singh, I., Devi, L. D. and Singh, R. K. B., Geochemistry of Mid-Ocean ridge Mafic intrusive from the Manipur Ophiolitic Complex, Indo-Myanmar Orogenic Belt, NE India. J. Geol. Soc. India, 2012, 80, 231–240.
- Singh, A. K., Petrology and geochemistry of Abyssal peridotites from the Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt, Northeast India: Implication for melt generation in midoceanic ridge environment. J. Earth Sci., 2013, 66, 258–276.
- Singh, I., Devi, L. D. and Chanu, Th. Y., Petrological and geochemical study of serpentinized peridotites from the southern part of Manipur Ophiolite Complex, Northeast India. J. Geol. Soc. India, 2013, 82, 121–132.
- Ghose, N. C., Chatterjee, N. and Fareeduddin, A Petrographic Atlas of an Ophiolite: An Example from the Eastern India-Asia Collision Zone, Springer, New Delhi, 2014, p. 234.
- Ghosh, B., Ray, J. and Morishita, T., Grain-scale plastic deformation of chromite from podiform chromitite of the Naga–Manipur Ophiolite belt, India: implication to mantle dynamics. Ore Geol. Rev., 2014, 56, 199–208.
- Pal, T., Bhattarcharya, A., Nagendran, G., Yanthan, N. M., Singh, R. and Raghumani, N., Petrogenesis of chromites from the Manipur belt, NE India: evidence for a supra-subduction zone setting prior to Indo-Myanmar collision. Mineral. Petrol., 2014, 108, 713–726.
- Khogenkumar, S., Singh, A. K., Singh, R. K. B., Khanna, P. P., Singh, N. I. and Singh, W. I., Coexistence of MORB and OIB-type mafic volcanics in the Manipur Ophiolite Complex, IndoMyanmar Orogenic Belt, Northeast India: Implication for heterogeneous mantle source at the spreading zone. J. Asian Earth Sci., 2016, 116, 42–58.
- Gansser, A., The significance of the Himalayan suture zone in the alpine Himalayan Region (eds Tater, J. M.), Tectonophysics, 1980, 62, 37–52.
- Mitchell, A. H. G., Phanerozoic plate boundaries in mainland SE Asia, the Himalayas and Tibet. J. Geol. Soc. London, 1981, 138, 109–122.
- Acharyya, S. K., Ray, K. K. and Roy, D. K., Tectono-stratigraphy and emplacement history of the ophiolite assemblage from the Naga Hills and Andaman Island arc India. J. Geol. Soc. India, 1989, 33, 4–18.
- Ghose, N. C., Agarwal, O. P. and Singh, R. N., Geochemistry of the ophiolite belt of Nagaland, N.E. India. In Ophiolite and Indian Plate Margin (eds Ghose, N. C. and Varadarajan, S.), Sumna Publ., Patna, 1986, pp. 241–293.
- Acharyya, S. K., Ray, K. K. and Roy, D. K., Tectono-stratigraphy and emplacement history of the ophiolite assemblage from the Naga Hills and Andaman Island Arc, India. J. Geol. Soc. India, 1989, 33(1), 4–18.
- Agarwal, O. P. and Kacker, R. N., Nagaland ophiolite, India: a subduction zone ophiolite complex in Tethyan orogenic belt, In Ophiolites (eds Panayiotoau, A.), Proceedings of International Ophiolite Symposium, Cyprus, 1979, pp. 454–461.
- Bhattacharjee, C. C., The ophiolite of northeast India – a subduction zone ophiolite complex of the Indo-Burman orogenic belt. Tectonophysics, 1991, 191, 213–222.
- Nandy, D. R., Geodynamics of Northeastern India and the Adjoining Regions, ACB Publications, Block-A Lake Town, Kolkata, India, 2001, p. 757.
- Ghose, N. C., Agarwal, O. P. and Chatterjee, N., Geological and mineralogical study of eclogite and glucophane schists in the Naga Ophiolite, Northeast India. Island Arc, 2010, 10, 336–356.
- Puga, E., Nieto, J. M., Diaz de Federico, A., Bodinier, J. L. and Morten, L., Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos, 1999, 49, 23–56.
- Peltonen, P., Kontinen, A. and Huhma, H., Petrogenesis of the mantle sequence of Jormua Ophiolite (Finland): Melt migration in the Upper Mantle during Paleoproterozoic continental break-up. J. Petrol., 1998, 39(2), 297–329.
- Morimoto, N. and Kitamura, M., Q–J diagram for classification of pyroxenes. J. Japanese Assoc. Mineral., Petrol. Ecol. Geol., 1983, 78, 141.
- Morimoto, N., Fabries, J., Ferguson, A. K., Ginzburg, I. V., Ross, M., Seifert, F. A. and Zussman, J., Nomenclature of pyroxenes. Am. Mineral., 1988, 73, 1123–1133.
- Beccaluva, L., Macciotta, G., Piccardo, G. B. and Zeda, O., Clinopyroxene composition of ophiolite basalts as petrogenetic indicator. Chem. Geol., 1989, 77(3), 165–182.
- D’Antonio, M. and Kristensen, M. B., Serpentine and brucite of ultramafic clasts from the South Chamorro Seamount (Ocean Drilling Program Leg 196, Site1200): inferences for the serpent inization of the Mariana forearc mantle. Min. Mag., 2004, 68, 887–904.
- Lindsley, D. H., Pyroxene thermometry. Am. Mineral., 1983, 68, 477–493.
- Nimis, P., A clinopyroxene geobarometer for basaltic systems based on crystal–structure modeling. Contrib. Mineral. Petrol., 1995, 121, 115–125.
- Barnes, S. J. and Roeder, P. L., The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol., 2001, 42, 2279–2302.
- Ohara, Y., Stern, R. J., Ishii, T., Yurimoto, H. and Yamazaki, T., Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contrib. Mineral. Petrol., 2002, 143, 1–18.
- Bonatti, E. and Michael, P. J., Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth Planet. Sci., 1989, 91, 297–311.
- Arai, S., Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem. Geol., 113, 191–204.
- Varfalvy, V. and Hebert, R., Petrology and geochemistry of the pyroxenite dykes in the upper mantle peridotites of the Northern Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland: implication for the genesis of boninitic and related magmas. Can. Mineral., 1997, 135, 543–570.
- Schwartz, S. et al., Pressure-temperature estimates of the lizardite/ antigorite transition in high pressure serpentinites. Lithos, 2013, 178, 197–210.
- Saccani, E. and Photiades, A., Mid-ocean ridge and suprasubduction affinities in the Pindos ophiolites (Greece): implication for magma genesis in a forearc setting. Lithos, 2004, 73, 229–253.
- Dick, H. J. B. and Bullen, T., Cr-spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 1984, 86, 54–76.
- Jan, M. Q. and Windley, B. F., Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Northwest Pakistan. J. Petrol., 1990, 31, 667–715.
- Arai, S., Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag., 1992, 56, 173–184.
- Ishii, T., Robinson, P. T., Maekawa, H. and Fisk, R., Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125, Proceedings of the Ocean Drilling Program, Scientific Results, 1992, 125, 445–485.
- Hirose, K. and Kawamoto, T., Hydrous partial melting of lherzolite at 1 Gpa: the effect of H2O on the genesis of basaltic magmas. Earth Planet. Sci. Lett., 1995, 133, 463–473.
- Kamenetsky, V. S., Crawford, A. J. and Meffre, S., Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol., 2001, 42, 655–671.
- Mineral Chemistry Perspective of Nain Ophiolite Mélange, Central Iran
Abstract Views :127 |
PDF Views:12
Authors
Alireza Eslami
1,
Jyotisankar Ray
2,
Madhuparna Paul
2,
Sonia Sarkar
2,
Mousumi Banerjee
2,
Moussa Noghreyan
3,
Payel Dey
2
Affiliations
1 Department of Economic Geology, Tarbiat Modares University, Tehran 14115-175, IR
2 Department of Geology, University of Calcutta, Kolkata 700 019, IN
3 Department of Geology, University of Isfahan, Isfahan 81744, IR
1 Department of Economic Geology, Tarbiat Modares University, Tehran 14115-175, IR
2 Department of Geology, University of Calcutta, Kolkata 700 019, IN
3 Department of Geology, University of Isfahan, Isfahan 81744, IR
Source
Current Science, Vol 116, No 10 (2019), Pagination: 1742-1747Abstract
The present study documents detailed mineral chemi-stry perspective of Nain ophiolite mélange (NOM) of Central Iran with an aim of deciphering the mineral systematics and understanding geothermobarometric equilibration. The NOM covers ~600 km2 and is located at the northwest margin of Central Iranian Microcontinental block. NOM is represented by a sheared, tectonized and serpentinized peridotite in-truded by coarse-grained pegmatitic gabbroic dykes, layered gabbro, sheeted dolerite dykes (with typical rodingite alteration) and pillow basalts. Plagioclase in pillow basalt is albitic and indicates its spilitic affinity, while pyroxene is typically quad pyroxene (augite to diopside). Amphiboles belong to calcic group and range from actinolite to magnesio hornblende. Ilme-nite is the characteristic opaque phase. Clinopyroxene thermometry records a temperature span of 1100–1300C, while amphibole thermometry records 979–1145C. Two-feldspar thermometry also records a similar thermometric range. Amphibole barometry shows higher pressure of equilibration for mantle pegmatite in general and a very low equilibration pressure for sheeted dyke. Pyroxene compositions typically indicate a calc-alkaline basaltic (orogenic) parentage. NOM signifies lherzolite ophiolite type in a chromite-free environment and it is analogous to an idealized ophiolite succession, but has been emplaced in the form of discrete tectonic mélange.Keywords
Amphibole Barometry, Mineral Chemistry, Ophiolite Mélange, Orogenic Setting, Quad Pyroxene.References
- Ghazi, J. M., Rahgoshay, M., Shafaii Moghadam, H. and Mo-azzen, M., Geochemistry of Gabbroic pockets of a mantle se-quence in the Nain ophiolite (Central Iran): constraints on petrogenesis and tectonic setting of the ophiolite. J. Mineral. Geo-chem., 2010, 187, 49–62.
- Dilek, Y. and Furnes, H., Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic litho-sphere. Geol. Soc. Am. Bull., 2011, 123, 387–411.
- Shojaat, B., Hassanipak, A. A., Mobasher, K. and Ghazi, A. M., Petrology, geochemistry and tectonics of the Sabzevar ophiolite, North Central Iran. J. Asian Earth Sci., 2003, 21, 1053–1067.
- Takin, M., Iranian geology and continental drift in the Middle East. Nature, 1972, 23, 147–150.
- Stöcklin, J., Possible ancient continental margin in Iran. In The Geology of Continental Margins (eds Burke, C. A. and Drake, C. L.), Springer, Berlin, 1974, pp. 873–887.
- McCall, G. J. H., The geotectonic history of the Makran and adja-cent areas of southern Iran. J. Asian Earth Sci., 1997, 15, 517–531.
- Ruttner, A. W., Southern borderland of Triassic Laurasia in north-east Iran. Int. J. Earth Sci., 1993, 82, 110–120.
- Moazzen, M., Omrani, H., Oberhänsli, R., Moayyed, M., Tsu-jimori, T. and Bousequet, R., Shanderman eclogites from northern Iran, P–T path and paleotethys geodynamics from subduction to exhumation. In MSA Meeting, Tectonic Crossroads: Evolving Orogens of Eurasia–Africa–Arabia Conference, Ankara Turkey, October 2010.
- Lanphere, M. A. and Pamić, J., 40Ar/39Ar Age and tectonic setting of ophiolites from Neyriz area, south-east Zagros ranges, Iran. Tectonophysics, 1983, 96, 245–256.
- Ghazi, A. M., Hassanipak, A. A., Mahoney, J. J. and Duncan, R. A., Geochemical characteristics, 40Ar–39Ar ages and original tec-tonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran Accretionary Prism, south-east Iran. Tectonophysics, 2004, 393, 175–196.
- Berberian, M. and King, G. C. P., Towards paleogeography and tectonic evolution of Iran. Can. J. Earth Sci., 1981, 18, 210–265.
- Davoudzadeh, M., Geology and petrology of the area north of Nain, Central Iran. Geological Survey of Iran, Report No. 1, 1972.
- Arvin, M. and Robinson, P. T., The petrogenesis and tectonic setting of lavas from the Baft ophiolitic mélange, south-west of Kerman, Iran. Can. J. Earth Sci., 1994, 31, 824–834.
- Ghazi, J. M., Moazzen, M., Rahgoshay, M. and Shafaii Moghadam, H., The geodynamic setting of the Nain ophiolites, Central Iran: evidence from chromian spinels in the chromitites and associated rocks. Ofioliti, 2011, 36, 59–76.
- Rahmani, F., Nogreyan, M. and Khalili, M., Geochemistry of sheeted dikes in the Nain ophiolite (Central Iran). Ofioliti, 2007, 32, 119–129.
- Shafaii Moghadam, H., Rahgoshay, M. and Banitaba, A., Geo-chemistry and petrogenesis of basaltic flows in the Nain–Dehshir ophiolites, Iran. Iran. J. Crystallogr. Mineral., 2009, 16, 602–611.
- Shafaii Moghadam, H., Whitechurch, H., Rahgoshay, M. and Monsef, I., Significance of Nain–Baft ophiolitic belt (Iran): short-lived, transitional Cretaceous back-arc oceanic basins over the Tethyan Subduction Zone. C. R. Geosci., 2009, 341, 1016–1028.
- Ghazi, J. M., Moazzen, M., Rahgoshay, M. and Shafaii Moghadam, H., Mineral-chemical composition and geodynamic significance of peridotites from Nain ophiolite, Central Iran. J. Geodyn., 2010, 49, 261–270.
- Foudazi, M. and Mahabadi, S. A., Petrography and mineralogy study of the ultramafic rocks in Separou peridotites, Nain ophio-lite, Central Iran. Geophys. Res. Abstr., 2010, 12, EGU2010-5602-3.
- Shirdashtzadeh, N., Torabi, G. and Arai, S., Metamorphism and metasomatism in the Jurassic Nain ophiolitic mélange, Central Iran. Neues. Jahrb. Geol. Palaeontol., 2010, 255, 255–275.
- Morimoto, N. et al., Nomenclature of pyroxenes. Am. Mineral., 1988, 73, 1123–1133.
- Morimoto, N., Nomenclature of pyroxenes. Can. Mineral., 1989, 27, 143–156.
- Leake, B. E., Nomenclature of amphiboles. Mineral. Mag., 1978, 42, 533–563.
- Leake, B. E. et al., Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can. Mineral., 1997, 35, 219–246.
- Lindsley, D. H., Pyroxene thermometry. Am. Mineral., 1983, 68, 477–493.
- Nabelek, C. R. and Lindsley, T. H., Tetrahedral Al in amphibole: a potential thermometer for some mafic rocks. Annual Meeting, Ge-ological Society of America, Orlando, Fla, USA, 1985, p. 673.
- Brown, W. L. and Pearsons, I., Calorimetric and phase diagram approaches to two-feldspar geothermometry: a critique. Am. Min-eral., 1985, 70, 356–361.
- Hammarstrom, J. M. and Zen, E., Aluminum in hornblende: an empirical igneous geobarometer. Am. Mineral., 1986, 71, 1297–1313.
- Leterrier, J., Maury, R. C., Thonon, P., Girard, D. and Marchal, M., Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet. Sci. Lett., 1982, 59, 139–154.
- Nicolas, A., Structure and petrology of peridotites. Rev. Geophys., 1986, 24, 875–895.
- Nicolas, A. and Azri, H. A., Chromite-rich and chromite-poor ophiolites: the Oman case. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds Tj. Peters, Nicolas, A. and Coleman, R. G.), Kluwer Academic, Dordrecht, The Netherlands, 1991, pp. 261–274.
- Roberts, S., Ophiolitic chromitite formation: a marginal basin phenomenon? Econ. Geol., 1988, 83, 1034–1036.
- Shastry, A., Srivastava, R. K., Chandra, R. and Jenner, G. A., Fe–Ti-enriched mafic rocks from south Andaman ophiolite suite: implication of late stage liquid immiscibility. Curr. Sci., 2001, 80, 453–454.
- Coleman, R. G., Ophiolites: Ancient Oceanic Lithosphere? Springer-Verlag, Berlin, 1977, p. 229.
- Emami, M. H., Sadegi, M. M. and Omrani, S. J., Magmatic map of Iran. Scale 1 : 1,00,000. Geological Survey of Iran, 1993.
- Le Bas, M. J., The role of aluminum in igneous clinopyroxenes with relation to their parentage. Am. J. Sci., 1962, 260, 267–288.