Refine your search
Co-Authors
- S. Dharumarajan
- Rajendra Hegde
- N. Janani
- A. S. Rajawat
- K. L. N. Sastry
- S. K. Singh
- K. M. Nair
- K. S. Anil Kumar
- Shivanand
- S. C. Ramesh Kumar
- S. Srinivas
- Arti Koyal
- S. Parvathy
- K. Sujatha
- C. Thamban
- Jeena Mathew
- K. P. Chandran
- Abdul Haris
- V. Krishnakumar
- V. Srinivasan
- Jessy
- James Jacob
- J. S. Nagaraj
- Maria Violet D’Souza
- Y. Raghuramulu
- R. Hegde
- B. Kalaiselvi
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Lalitha, M.
- Information Seeking Behaviour of Medical and Engineering Personnel-A Comparative Study with Reference to their Library Use
Abstract Views :199 |
PDF Views:6
Authors
Affiliations
1 The British Library, YMCA Building, Thiruvananthapuram 695 001, IN
1 The British Library, YMCA Building, Thiruvananthapuram 695 001, IN
Source
Journal of Information and Knowledge (Formerly SRELS Journal of Information Management), Vol 32, No 2 (1995), Pagination: 65-74Abstract
The Information in any field is required to update the knowledge of a seekes. This is especially so incase of practitioners of applied sciences and technologies. Although the case of medical and engineering personnel is no different, the present survey allows for much concern. The information seeking habits of medical and engineering personal at diferent levels - students, teachers, practitioners and research workers are studied. Both the formal and informal approaches to collect information, as practised by the two communities are studied. The findings are analysed and suggestions for improvement are given.Keywords
Information Seeking Behaviours, Medical and Engineering Personnel, Comparative Studies Library Use.- Status of Desertification in South India – Assessment, Mapping and Change Detection Analysis
Abstract Views :332 |
PDF Views:127
Authors
S. Dharumarajan
1,
M. Lalitha
1,
Rajendra Hegde
1,
N. Janani
1,
A. S. Rajawat
2,
K. L. N. Sastry
2,
S. K. Singh
3
Affiliations
1 ICAR-National Bureau of Soil Survey and Land Use Planning, Hebbal, Bengaluru - 560 024, IN
2 ISRO-Space Applications Centre, Ahmedabad - 380 015, IN
3 ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur - 440 033, IN
1 ICAR-National Bureau of Soil Survey and Land Use Planning, Hebbal, Bengaluru - 560 024, IN
2 ISRO-Space Applications Centre, Ahmedabad - 380 015, IN
3 ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur - 440 033, IN
Source
Current Science, Vol 115, No 2 (2018), Pagination: 331-338Abstract
Desertification is the transformation of productive land into a non-productive one due to poor resource management, and unfavourable biophysical and economical factors. Periodical assessment of desertification status is imperative for a suitable comprehensive and combating plan. In the present study, desertification status maps of Andhra Pradesh (AP), Karnataka and Telangana in South India have been prepared using remote sensing data for two time-frames (2003– 2005 and 2011–2013) and change detection analysis has been carried out. The results reveal that 14.35%, 36.24% and 31.40% of the total geographical area in Andhra Pradesh, Karnataka and Telangana were affected by desertification processes respectively, in 2011–2013. Among the desertification processes, vegetal degradation contributes 7.27% of total area in AP, followed by water erosion (4.93%) and waterlogging (0.83%), whereas in Karnataka water erosion (26.29%) is dominant followed by vegetal degradation (8.93%) and salinization (0.45%). Change detection analysis shows that desertification processes of AP and Karnataka have increased by 0.19% and 0.05% respectively, whereas in Telangana it has decreased by about 0.52% from 2003 to 2005 data. The present database will help the scientists, planners and stakeholders to prepare appropriate land reclamation measures to control the increasing trend of desertification.Keywords
Change Detection Analysis, Desertification, Salinization, Vegetal Degradation, Waterlogging.References
- Dharumarajan, S., Bishop, T. F. A., Hegde, R. and Singh, S. K., Desertification vulnerability index – an effective approach to assess desertification processes: a case study in Anantapur district, Andhra Pradesh, India. Land Degra. Dev., 2018, 29, 150–161; doi:10.1002/ldr.2850.
- Middleton, L. and Thomas, D. (eds), World Atlas of Desertification, United Nations Environment Programme (UNEP), Arnold, London, 1997, 2nd edn, p. 182.
- United Nations Convention for Combating Desertification (UNCCD), Desertification, the invisible frontline, 2014; http://www.unccd.int/Lists/SiteDocumentLibrary/Publications
- Reynolds, J. F., Smith, D. M. S. and Lambin, E. F., Global desertification: building a science for dryland development. Science, 2007, 316, 847–851; doi:10.1126/science.1131634.
- UNCCD, Max Planck Yearbook of United Nations Law, 2008, vol. 12, pp. 287–300; http://www.unccd.int/convention/ratif/doeif.php
- Okin, G. S., Murray, B. and Schlesinger, W. H., Degradation of sandy arid shrubland environments: observations, process modelling, and management implications. J. Arid Environ., 2001, 47(2), 123–144; doi:10.1006/jare.2000.0711.
- Land desertification, 2005; http://www.biox.cn/content/20050414/10407.htm
- Duanyang, X., Kang, X., Qiu, D., Zhuang, D. and Pan, J., Quantitative assessment of desertification using Landsat data on a regional scale – a case study in the Ordos Plateau, China. Sensors, 2009, 9(3), 1738–1753; doi:10.3390/s90301738.
- Hill, H., Stellmes, M., Udelhoven, Th., Roder, A. and Sommer. S., Mediterranean desertification and land degradation. Mapping related land use change syndromes based on satellite observations. Global Planet. Change, 2008, 64(3–4), 146–157; doi:10.1016/j.gloplacha.2008.10.005.
- Kundu, A., Patel, N. R., Saha, S. K. and Dutta, D., Desertification in western Rajasthan (India): an assessment using remote sensing derived rain-use efficiency and residual trend methods. Nat. Hazards, 2017, 86, 297–313; doi:10.1007/s11069-016-2689y.
- Dhargawe, S. D., Sastry, K. L. N., Gahlod, N. S. and Arya, V. S., Desertification change analysis study using multi-temporal Awifs data: Uttarakhand State. Universal J. Environ. Res. Technol., 2016, 6(2), 73–81.
- Sharma, K. D., The hydrological indicators of desertification. J. Arid Environ., 1998, 39(2), 121–132; doi:10.1006/jare.1998.0403.
- Jain, S. K., Kumar, S. and Varghese. J., Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resour. Manage., 2001, 15, 41–54; doi:10.1023/A:1012246029263.
- Mouat, D., Lancaster, J., Wade, T., Wickham, J., Fox, C., Kepner, W. and Ball, T., Desertification evaluated using an integrated environmental assessment model. Environ. Monit. Assess., 1997, 48(2), 139–156; doi:10.1023/A:1005748402798.
- Geist, H. J. and Lambin. E. F., Dynamic causal patterns of desertification. BioScience, 2004, 54(9), 817–829; doi:10.1641/00063568.
- Tripathy, G. K., Ghosh, T. K. and Shah, S. D., Monitoring of desertification process in Karnataka state of India using multitemporal remote sensing and ancillary information using GIS. Int. J. Remote Sensing, 1996, 17, 2243–2257; doi:10.1080/ 01431169608948771.
- Kosmas, C., Gerontidis, S., Detsis, V., Zafiriou, T. and Marathianou, M., Application of the proposed methodology for defining ESAs: the island of Lesvos (Greece). In Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification (eds Kosmas, C., Kirkby, M. J. and Geeson, N.), European Commission Publication 18882, 1999, pp. 66–73.
- Lin, M.-L. et al., Fuzzy model-based assessment and monitoring of desertification using MODIS satellite imagery. Eng. Comput., 2009, 26(7), 745–760; doi:10.1108/02644400910985152.
- Dhinwa, P. S., Dasgupta, A. and Ajai, Monitoring and assessment of desertification using satellite remote sensing. J. Geomat., 2016, 10(2), 210–216.
- Salvati, L., Bajocco, S., Ceccarelli, T., Zitti, M. and Perini, L., Towards a process-based evaluation of land vulnerability to soil degradation in Italy. Ecol. Indic., 2011, 11, 1216–1227; doi:10.1016/j.ecolind.2010.12.024.
- Elias, S., Karathanasis, N., Koukoulas, S. and Panagopoulos, G., Monitoring sensitivity to land degradation and desertification with the environmentally sensitive area index: the case of Lesvos Island. Land Degrad. Dev., 2016, 27, 1562–1573; doi:10.1002/ldr.2285.
- Sehgal, J. and Abrol, I. P., Soil Degradation in India: Status and Impact, Oxford and IBH, New Delhi, 1994, p. 80.
- Ajai, Arya, A. S., Dhinwa, P. S., Pathan, S. K. and Ganesh Raj, K., Desertification/land degradation status mapping of India. Curr. Sci., 2009, 97, 1478–1483.
- Singh, G., Salinity-related desertification and management strategies: Indian experience. Land Degrad. Dev., 2009, 20(4), 367–385; doi:10.1002/ldr.933.
- Maji, A. K., Reddy, G. P. O. and Sarkar, D., Degraded and wastelands of India: status and spatial distribution. Directorate of Information and Publications of Agriculture, Indian Council of Agricultural Research, New Delhi and National Academy of Agricultural Sciences, New Delhi, 2010, p. 158.
- Budihal, S. L. et al., Assessment and mapping of desertification status in Bellary district, Karnataka State, using IRS data. In ISPRS Commission IV International Symposium on Geospatial Databases for Sustainable Development, Goa, 25–30 September 2006.
- Reddy, R. S., Nalatwadmath, S. K. and Krishnan, P., Soil erosion in Andhra Pradesh. National Bureau of Soil Survey and Land Use Planning, Publication No. 114, NBSSLUP, Nagpur, 2005, p. 76.
- Naidu, L. G. K. et al., Evaluation of soil and climatic characteristics for identifying constraints and potentials for forest development in Andhra Pradesh, India. Indian J. Dryland Agric. Res. Dev., 2017, 32(1), 63–70; doi:10.5958/2231-6701.2017.00011.2.
- Surface Soil and Subsoil Acidity in Natural and Managed Land-Use Systems in the Humid Tropics of Peninsular India
Abstract Views :323 |
PDF Views:127
Authors
K. M. Nair
1,
K. S. Anil Kumar
1,
M. Lalitha
1,
Shivanand
1,
S. C. Ramesh Kumar
1,
S. Srinivas
1,
Arti Koyal
1,
S. Parvathy
1,
K. Sujatha
1,
C. Thamban
2,
Jeena Mathew
2,
K. P. Chandran
2,
Abdul Haris
2,
V. Krishnakumar
2,
V. Srinivasan
3,
Jessy
4,
James Jacob
4,
J. S. Nagaraj
5,
Maria Violet D’Souza
5,
Y. Raghuramulu
5,
R. Hegde
1,
S. K. Singh
1
Affiliations
1 Regional Centre, ICAR-National Bureau of Soil Survey and Land Use Planning, Hebbal, Bengaluru 560 024, IN
2 ICAR-Central Plantation Crops Research Institute, Kasaragod 671 124, IN
3 ICAR-Indian Institute of Spices Research, Kozhikode 673 012, IN
4 Rubber Research Institute of India, Kottayam 686 009, IN
5 Coffee Research Institute, Chikmagalur 577 117, IN
1 Regional Centre, ICAR-National Bureau of Soil Survey and Land Use Planning, Hebbal, Bengaluru 560 024, IN
2 ICAR-Central Plantation Crops Research Institute, Kasaragod 671 124, IN
3 ICAR-Indian Institute of Spices Research, Kozhikode 673 012, IN
4 Rubber Research Institute of India, Kottayam 686 009, IN
5 Coffee Research Institute, Chikmagalur 577 117, IN
Source
Current Science, Vol 116, No 7 (2019), Pagination: 1201-1211Abstract
Natural forests and managed plantations constitute the largest land-use systems in the humid tropics of southwestern parts of Peninsular India comprising the Western Ghats and coastal plain. Soils therein are naturally acidic and the acidity is enhanced in managed land-use systems through inputs of chemical fertilizers. Plant nutrient deficiencies and mineral toxicities constrain crop production in acid soils. Surface soil and subsoil acidity in forest, coffee, rubber and coconut land-use systems was evaluated. The spatial pattern of surface soil and subsoil acidity pointed to low intensity of acidification in Malnad region of Karnataka, moderate acidity in northern Kerala and strong acidity in southern Kerala. Among the land-use systems studied, soils under natural forests and coffee plantations were only slightly acidic in surface soil and subsoil, whereas rubber- and coconut-growing soils were strongly acidic. Both natural and managed land-use systems, however, had strongly acid reaction in surface soil and subsoil in southern Kerala. Biomass production and crop yield are constrained in strongly acid soil by toxic levels of aluminium (Al) on soil exchange complex (>0.5 cmol (+) kg–1 soil) and depletion of basic cations of calcium, magnesium and potassium (base saturation less than 50% or Al saturation more than 50%). Surface soil acidity can be ameliorated by incorporating liming materials into surface soils. In case of subsoil acidity gypsum too should be incorporated. Under humid climate partial solubility of gypsum permits movement of calcium into the subsoil layers, wherein calcium replaces the aluminium on exchange complex and sulphate radical precipitates the aluminium by formation of aluminium sulphate.Keywords
Base Saturation, Humid Tropics, Land-Use Systems, Surface Soil and Subsoil Acidity.References
- Von Uexkull, H. R. and Mutert, E., Global extent, development and economic impact of acid soils. Plant Soil, 1995, 171, 1–5.
- Van Wambeke, A., Formation, distribution and consequences of acid soils in agricultural development. In Proceedings of the Workshop on Plant Adaptation to Mineral Stress in Problem Soils (eds Wright, M. J. and Ferrari, S. A.), Special Publication Cornell University, Agric. Exp. Stn., Ithaca, NY, USA, 1976, pp. 15–24.
- Eswaran, H., Soil and site characterization for soil-based research network. In Soil Management Under Humid Conditions in Asia (ASIALAND), IBSRAM, Bangok, 1987, p. 169.
- Maji, A. K., Obi Reddy, G. P. and Meshram, S., Acid soil map of India. Annual Report, ICAR-National Bureau of Soil Survey and Land Use Planning (ICAR-NBSS&LUP), Nagpur, 2008.
- Hede, A. R., Skovmand, B. and Lopez-Cesati, J., Acid soil and aluminium activity toxicity, In Application of Physiology in Wheat Breeding. International Maize and Wheat Improvement Center (eds Reynolds, M. P., Ortiz-Monasterio, J. J. and Mchab, A.), CIMMYT, Mexico, 2001, pp. 172–182.
- Rengel, Z., Uptake of aluminium by plant cells. New Phytol., 1996, 134, 389–406.
- Mora, M. L., Alfaro, M. A., Jarvis, S. S., Demanet, R. and Cartes, P., Soil aluminium availability in Andisols of southern Chile and its effect on forage production and animal metabolism. Soil Use Manage., 2006, 22, 95–101.
- Adams, F., Soil Acidity and Liming, American Society. Agronomy, Crop Science Society of America (CSSA) and Soil Science Society of America (SSSA), Madison, Wisconsin, USA, 1984, 2nd edn.
- Sumner, M. E., Aluminium toxicity – growth limiting factor in some Natal sands. Proc. Suga. Afr. Su. Technol. Assoc., 1970, 44, 1–6.
- Reeve, N. G. and Sumner, M. E., Amelioration of subsoil acidity in Natal Oxisols by leaching of surface applied amendments. Agrochemophysica, 2006, 4, 1–6.
- Clark, R. B., Physiological aspects of calcium, magnesium and molybdenum deficiencies in plants. In Soil Acidity and Liming (ed. Adams, F.), Agron. Monograph, ASA, CSSA and SSSA, Madison, WI, USA, 1984, vol. 12, pp. 99–170.
- Kumar Roy, A., Sharma, A. and Talukder, G., Some aspects of aluminium toxicity in plants. Bot. Rev., 1988, 54, 145–178.
- Panda, S. K., Singha, L. B. and Khan, M. H., Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata). J. Plant Physiol., 2003, 29, 77–86.
- Poschenrieder, C., Gunse, B., Corrales, I. and Barcelo, J., A glance into aluminium toxicity and resistance in plants. Sci. Total Environ., 2008, 400, 356–368.
- Fouche, P. S. and du Sautoy, N., Influence of surface applied lime and gypsum on subsoil acidity, extractable calcium and nutrient accumulation in Avacoado (Persea Americana Mill.). In South African Avocado Grower’s Association Yearbook, 1995, vol. 18, pp. 12–16.
- Blue, W. G. and Dantzman, C. L., Soil chemistry and ischolar_main development in acid soils. Soil Crop Sci. Fla. Proc., 1976, 36, 9–15.
- Rechcigl, J. E., Reneau Jr, R. R. and Starner, D. E., Effect of subsurface amendments and irrigation on alfalfa growth. Agron. J., 1985, 77, 72–75.
- Raji, B., Improving the ischolar_main environment in the subsurface. In Boas Practicas para USO Eficiente de Fertilizantes (eds Prochnow, L. I. et al.), International Plant Nutrition Institute, United States, 2010, pp. 349–382.
- Nair, K. M. et al., Agro-Ecology of Kerala, NBSS Publ. No. 1038, NBSS&LUP, Nagpur, 2011.
- Anil Kumar, K. S. et al.,. Soil Quality Monitoring Sites (SQMS) for Traditional Rubber-Growing Areas of South India, NBSS Publ. No., NBSS&LUP, Nagpur, 2016.
- Nair, K. M. et al., Soil Quality Monitoring Sites (SQMS) for Traditional Coffee-Growing Areas of India, NBSS Publ. No., National Bureau of Soil Survey and land Use Planning, Nagpur, 2016.
- Soil Survey Staff, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys. United States Department of Agriculture-National Resources Conservation Services, Agriculture Handbook, 436, US Government Printing Office, Washington DC, USA, 1999, 2nd edn.
- Jackson, M. L., Soil Chemical Analysis, Prentice Hall of India (Pvt) Ltd, New Delhi, 1973.
- Piper, C. S., Soil and Plant Analysis, Hans Publishers, Bombay, 2002.
- Sparks, Methods of Soil Analysis Part-II: Chemical Methods, Soil Science Society of America, USA, 1996.
- Chandran, P., Ray, S. K., Bhattacharyya, T., Srivastava, P., Krishnan, P. and Pal, D. K., Laterite soils of Kerala, India: their mineralogy, genesis and taxonomy. Aust. J. Soil Res., 2005, 43, 839–852.
- Sposito, G., The Environmental Chemistry of Aluminum, CRC Press, Florida, USA, 2000.
- Herrera, R., Jordan, C. F., Klinge, H. and Medina, E., Amazon ecosystems. Thei structure and functioning with particular emphasis on nutrients. Intersciencia, 1978, 3(4), 223–231.
- Herrera, R., Jordan, C. F., Medina, E. and Klinge, H., How human activities disturb nutrient cycles of a tropical rainforest in Amazonia. Ambio., 1981, 10(2–3), 109–114.
- Kannan, K. P., Agricultural development in an emerging non-agrarian regional economy: Kerala’s challenges. Econ. Polit. Wkly. XLVI, 2011, 9, 64–70.
- Kemmit, S. J., Wright, D., Goulding, K. W. T. and Jones, D. L., pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem., 2006, 38, 898–911.
- Rousk, J., Brooks, P. C. and Baath, E., Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol., 2009, 75(6), 1589–1596.
- Bru, D., Ramette, A., Saby, N. P. A., Dequidt, S., Ranjard, L., Jolivet, C. and Arrouays, D., Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale. ISME J., 2011, 5, 532–542.
- Lavelle, P., Chauvel, A. and Fragoso, C., Faunal activity in acid soils. In Plant Soil Interactions at Low pH (eds Date, R. A. et al.), Kluwer, The Netherlands, 1955, pp. 201–211.
- Adams, F., Nutrient importance and constraints in acid soils. J. Plant Nutr., 1981, 444, 81–88.
- Nair, K. M. and Chamuah, G. S., Exchangeable aluminium in soils of Meghalaya and management of Al3+ related productivity constraints. J. Indian Soc. Soil Sci., 1993, 41, 331–334.
- Bloom, P. R., McBride, M. B. and Weaver, R. M., Aluminium organic matter interactions in acid soils: salt-extractable aluminiun. Soil Sci. Soc. Am. J., 1979, 43, 813–815.
- Koltz, F. and Hortz, W. J., Genotype differences in aluminium tolerance of soybean (Glycine max. L.) as affected by ammonium and nitrate nitrogen nutrition. J. Plant Physiol., 1988, 132, 702–707.
- Foy, C. D., Chaney, R. L. and White, M. C., The physiology of metal toxicity in plants. Annu. Rev. Plant Physiol., 1978, 29, 511– 566.
- Foy, C. D., Physiological effects of hydrogen, aluminium and manganese toxicities in acid soil. In Soil Acidity and Liming (ed. Adams, F.), American Society of Agronomy, Madison, WI, USA, 1984, pp. 57–97.
- Marchner, H., Mechanisms of adaption of plants to acid soils. Plant Soil, 1991, 134, 1–24.
- Huang, J. W., Shaff, J. E., Grunes, D. L. and Kochian, L. V., Aluminium effects on calcium fluxes at the ischolar_main apex of aluminium tolerant and aluminium sensitive wheat cultivars. Plant Physiol., 1992, 98, 230–237.
- Rengel, Z. and Robinson, D. L., Aluminium effects on growth and macronutrient uptake by annual ryegrass. Agron. J., 1989, 81, 208–215.
- Thomas, G. W., Historical developments in soil chemistry: ion exchange. Soil Sci. Soc. Am. J., 1977, 41, 230–238.
- Coleman, N. T., Kamprath, E. J. and Weed, S. B., Liming. Adv. Agron., 1959, 10, 475–522.
- Thomas, G. W. and Hargrove, W. I., The chemistry of soil acidity. In Soil Acidity and Liming (ed. Adams, F.), American Society of Agronomy, Madison, WI, USA, 1984, pp. 3–56.
- Shainberg, I., Sumner, M. E., Miller, W. P., Farina, M. P. W., Pavan, M. A. and Fey, M. V., Use of gypsum on soils: a review. Adv. Soil Sci., 1989, 9, 1–111.
- Farina, M. P. W. and Channon, P., Acid subsoil amelioration, 1. A comparison of several mechanical procedures. Soil Sci. Soc. Am. J., 1988, 52, 169–175.
- Jayawardane, N. S., Barrs, H. D., Muirhead, W. A., Blackwell, J., Murray, E. and Kirchof, G., Lime slotting technique to ameliorate subsoil acidity in clay soil: II Effect on medic ischolar_main growth, water retention and yield. Aust. J. Soil Res., 1995, 33, 443–459.
- Richey, K. D., Souza, D. M. G., Lobato, E. and Correa, O., Calcium leaching to increase ischolar_maining depth in Brazilian Savanna Oxisol. Agron. J., 1980, 72, 41–44.
- Pavan, M. A., Bingham, F. T. and Pratt, P. F., Redistribution of exchangeable calcium, magnesium and aluminium following lime or gypsum application to Brazilian Oxisol. J. Soil Sci. Soc. Am., 1984, 48, 33–38.
- Ritchy, K. D., Feldhake, C. M., Clark, R. B. and Sousa, D. M. G., Improved water and nutrient uptake from subsurface layers of gypsum amended soils. In Agricultural Utilization of Urban and Industrial By-products, ASA Spec. Publ. 58. ASA, Madison, WI, USA, 1995, pp. 157–181.
- Farina, M. P. W., Management of subsoil acidity in environments outside humid tropics. In Plant–Soil Interactions at Low pH: Sustainable Agriculture and Forestry Production (eds Moniz, A. C. et al.), Brazilian Soil Science Society, Campinas, Brazil, 1997, pp. 179–190.
- Farina, M. P. W., Channon, P. and Thibaud, G. R., A comparison of strategies for ameliorating subsoil acidity. I. Long term growth effects. Soil Sci. Soc. Am. J., 2000, 64, 646–651.
- Juo, A. S. R. and Kamprath, E. J., Copper chloride as an extractant for estimating potentially reactive aluminium pools in acid soils. Soil Sci. Soc. Am. J., 1979, 43, 35.
- Pedotransfer Functions for Predicting Soil Hydraulic Properties in Semi-Arid Regions of Karnataka Plateau, India
Abstract Views :332 |
PDF Views:113
Authors
Affiliations
1 ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bengaluru 560 024, IN
2 ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur 440 033, IN
1 ICAR-National Bureau of Soil Survey and Land Use Planning, Regional Centre, Hebbal, Bengaluru 560 024, IN
2 ICAR-National Bureau of Soil Survey and Land Use Planning, Amaravati Road, Nagpur 440 033, IN
Source
Current Science, Vol 116, No 7 (2019), Pagination: 1237-1246Abstract
Soil hydraulic properties are important for irrigation scheduling and proper land-use planning. Field capacity, permanent wilting point and infiltration rate are the three vital hydraulic properties which determine the availability and retention of water for crop growth. These properties are difficult to measure and time-consuming, but can be easily predicted from the available information like soil texture, bulk density, organic carbon content, etc. through pedotransfer functions (PTFs). PTFs were developed for field capacity and permanent wilting point for two different regions of Karnataka, viz. Northern Karnataka Plateau (512 soil samples) and Southern Karnataka Plateau (228 soil samples), separately. PTF for infiltration rate was developed using 100 soil samples for the entire Karnataka. Cross-validation techniques were used to validate the PTFs, and the results are satisfactory with low RMSE and higher R2. The developed PTFs are useful in determining soil hydraulic properties of the semi-arid regions of southern India.Keywords
Pedotransfer Functions, Field Capacity, Permanent Wilting Point, Infiltration Rate, Semi-Arid Regions.References
- Santra, P., Mahesh Kumar, Kumawat, R. N., Painuli, D. K., Hati, K. M., Heuvelink, G. B. M. and Batjes, N. H., Pedotransfer functions to estimate water content at field capacity and permanent wilting point in hot arid western India. J. Earth Syst. Sci., 2018, 127, 35.
- Simpson, J. A. and Weiner, E. S. C., The Oxford English Dictionary, Clarendon Press, Oxford University Press, Oxford, UK, 1989, 2nd edn.
- Ferré, T. P. A. and Warrick, A. W., Infiltration. In Encyclopedia of Soils in the Environment, 2005, pp. 254–260.
- Romano, N. and Palladino, M., Prediction of soil water retention using soil physical data and terrain attributes, J Hydrol., 2002, 265, 56–75.
- Parasuraman, K., Elshorbagy, A. and Bing, C. S., Estimating saturated hydraulic conductivity using genetic programming, Soil Sci. Soc. Am. J., 2007, 71, 1676–1684.
- Vereecken, H., Weynants, M., Javaux, M., Pachepsky, Y., Schaap, M. G. and van Genuchten, M. Th., Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review. Soil Sci. Soc. Am. J., 2010, 9, 795–820; doi:10.2136/ vzj2010.0045.
- Dharumarajan, S., Singh, S. K., Bannerjee, T. and Sarkar, D., Water retention characteristics and available water capacity in three cropping system of lower Indo Gangetic alluvial plain. Commun. Soil Sci. Plant Anal., 2001, 4, 2734–2745.
- Bouma, J., Using soil survey data for quantitative land evaluation, Adv. Soil Sci., 1989, 9, 177–213.
- Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. and Bloodworth, H., Effect of soil organic carbon on soil water retention. Geoderma, 2003, 116, 61–76.
- Tóth, B., Makó, A., Guadagnini, A. and Tóth, G., Water retention of salt affected soils: quantitative estimation using soil survey information. Arid Land Res. Manage., 2012, 26, 103–121.
- Keshavarzi, A., Sarmadian, F. and Labbafi, R., Developing pedotransfer functions for estimating field capacity and permanent wilting point using fuzzy table look up scheme. Comput. Inf. Sci., 2011, 4(1), 130–141.
- Santra, P. and Das, B. S., Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of eastern India. Geoderma, 2008, 146, 439–448.
- Chakraborty, D., Mazumdar, S. P., Garg, R. N., Banerjee, S., Santra, P., Singh, R. and Tomar, R. K., Pedotransfer functions for predicting points on the moisture retention curve of Indian soils. Indian J. Agric. Sci., 2011, 81, 1030–1036.
- Patil, N. G. and Chaturvedi, A., Pedotransfer functions based on nearest neighbour and neural networks approach to estimate available water capacity of shrink–swell soils. Indian J. Agric. Sci., 2012, 82, 35–38.
- Cornelis, W. M., Ronsyn, J., van Meirvenne, M. and Hartmann, R., Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J., 2001, 65, 638–648.
- Kaur, R., Kumar, S., Gurung, R. P., Rawat, J. S., Singh, A. K., Prasad, S. and Rawat, G., Evaluation of pedotransfer functions for predicting field capacity and wilting point moisture content from routinely surveyed soil texture and organic carbon data. J. Indian Soc. Soil Sci., 2002, 50, 205–208.
- Patil, N. et al., Soil water retention characteristics of black soils of India and pedotransfer functions using different approaches. J. Irrig. Drain Eng., 2013, 139, 313–324.
- Tiwary, P. et al., Pedotransfer functions: a tool for estimating hydraulic properties of two major soil types of India. Curr. Sci., 2014, 107, 1431–1439.
- NBSS Publication, Soils of Karnataka. In Soils of Karnataka for Optimizing Land Use, ICAR-NBSS&LUP, Nagpur, Maharashtra, Publ. No. 47, 1998.
- Hegde, R., Niranjana, K. V., Srinivas, S., Danorkar, B. A. and Singh. S. K., Site-specific land resource inventory for scientific planning of Sujala watersheds in Karnataka. Curr. Sci., 2018, 115(4), 645–652.
- ASTM, D3385-03 Standard test method for infiltration rate of soils in field using double-ring infiltrometer. In Annual Book of ASTM Standards 04.08, American Society of Testing Materials, West Conshohocken, PA, USA, 2003.
- Liaw, A. and Wiener, M., Classification and regression by randomForest. R News, 2002, 2, 18–21.
- Breiman, L., Random forests, Machine Learn, 2001; doi:10.1023/ A:1010933404324.
- Dharumarajan, S., Bishop, T. F. A., Hegde, R. and Singh, S. K., Desertification vulnerability index – an effective approach to assess desertification processes: a case study in Anantapur District, Andhra Pradesh, India. Land Degrad. Dev., 2018, 29, 150–161; https://doi.org/10.1002/ldr.2850.
- Dharumarajan, S. et al., Biophysical and socio-economic causes for increasing fallow lands in Tamil Nadu. Soil Use Manage., 2017, 33, 487–498.
- Adhikary, P. P. et al., Pedotransfer functions for predicting the hydraulic properties of Indian soils. Aust. J. Soil Res., 2008, 46, 476–484.
- Mohanty, M., Sinha, N. K., Painuli, D. K., Bandyopadhyay, K. K., Hati, K. M., Reddy, K. S. and Chaudhary, R. S., Pedotransfer functions for estimating water content at field capacity and wilting point of Indian soils using particle size distribution and bulk density. J. Agric. Phys., 2014, 14(1), 1–9.
- Dabral, P. P. and Pandey, P. K., Models to estimate soil moisture retention limits and saturated hydraulic conductivity. J. Indian Water Resour. Soc., 2016, 36(1), 50–55.
- Shwetha, P. and Varija, K., Soil water-retention prediction from pedotransfer functions for some Indian soils. Arch. Agron. Soil Sci., 2013, 59(11), 1529–1543.
- Mahdian, M. H., Oskoee, R. S., Kamali, K., Angoshtari, H. and Kadkhodapoor, M. A., Developing pedotransfer functions to predict infiltration rate in flood spreading stations of Iran. Res. J. Environ. Sci., 2009, 3(6), 697–704.