Refine your search
Collections
Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Arturo Lopez-Quintela, M.
- Green Synthesis of Copper Nanoparticles and their Antibacterial Property
Abstract Views :530 |
PDF Views:7
Authors
Gargi Dinda
1,
Dipankar Halder
1,
Carlos Vazquez-Vazquez
2,
M. Arturo Lopez-Quintela
2,
Atanu Mitra
3
Affiliations
1 Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
2 University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, ES
3 Department of Chemistry, Sree Chaitanya College, Habra, West Bengal, IN
1 Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
2 University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, ES
3 Department of Chemistry, Sree Chaitanya College, Habra, West Bengal, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 117-122Abstract
We report the synthesis of copper nanoparticle using a completely green protocol. Aqueous copper sulphate solution was used as a precursor of copper nanoparticle whereas L-ascorbic acid and starch acted as reducing agent and stabilizer respectively. Formation of copper nanoparticle was confirmed by colour, UV-VIS spectroscopy and X-Ray Diffraction (XRD) results. The as-synthesized copper nanoparticles show characteristic plasmonic band at 590 nm. High-Resolution Electron Microscopy (HRTEM) shows almost spherical particles having average diameters of 5.7 ± 1.8 nm. As-synthesized copper nanoparticle exhibits antibacterial activity for both Gm-positive bacteria, Bacilus subtilis and Gm-negetive bacteria, Escherecia coli. Plate count and Minimum Inhibitory Concentration (MIC) studies show higher susceptibility of B. subtilis towards copper nanoparticleKeywords
Antibacterial Activity, Copper Nanoparticle, Green SynthesisReferences
- T. K. Sau and A. L. Rogach., Adv. Mater., 22 (16), (2010).
- L. L. Beecroft and C. K. Ober, Chem. Mater., 9 (6), 1302,(1997).
- B. C. Gates, Chem. Rev., 95, 511, (1995).
- P. V. Kamat, Chem. Rev., 93, 267 (1993).
- N. A. Dhas, C. P. Raj and A. Gedanken. J. Chem Mater., 10,1446 (1998).
- R. V. Kumar, Y. Mastai, Y. Diamant and A. Gedanken, J.Mater Chem., 11, 1209 (2001).
- B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim,J. Colloid Interface Sci., 311, 417 (2007).
- X. Y. Song, S. X. Sun, W. M. Zhang and Z. L. Yin, Colloid Interface Sci., 273, 463 (2004).
- C. Vázquez-Va?zquez, M. Bañobre-Lo?pez, A. Mitra, M. A. Lo?pez-Quintela and J. Rivas. Langmuir, 25, 8208 (2009).
- W. U. Songping and S. Meng, J. Mat. Lett., 60, 2438 (2006).
- Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou and C. Wong, ACS Appl. Mater. Interfaces, 6, 560 (2014).
- W. Yu, H. Xie, L. Chen, Y. Li and C. Zhang, Nanoscale Res.Lett., 4, 465 (2009).
- M. Biçer and I. ?i?man, Powder Technol., 198, 279 (2010).
- P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc.,125, 13940 (2003).
- L. Behlau and G. Widmann, Thermal Analysis Applications: Food Handbook. Mettler-Toledo International Inc.
- V. K. Sharma, R. A. Yngard and L. Yekatarina, Adv. Colloid Interface Sci., 145, 83 (2009).
- G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar and S. Sivaramakrishnan, Colloids Surf. B: Biointerfaces, 95, 235 (2012).
- S. Kumar, M. Singh, D. Halder and A. Mitra, Colloids and Surf. A: Physicochemical and Engineering Aspects, 449, 82
- (2014).
- S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007).
- Z. Lu, K. Rong, J. Li, H. Yang and R. Chen, J. Mater. Sci., 24, 1465 (2013).
- A. Panacek, L. Kv?tek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Evecna, and R. Zboril, J. Phys.Chem B., 110, 16248 (2006).
- M. Veerapandian and S. Sadhasivam, J. Choi and K. Yun, Chem. Eng. J., 209, 558 (2012).