Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Rao, K. K.
- Critical Analysis of Process Cycle by Numerical Modelling for Faster Development of Drives in Hard-Rock Underground Mine–A Case Study
Abstract Views :227 |
PDF Views:38
Authors
Affiliations
1 Tummalapalle Mine, Uranium Corporation of India Ltd,Jharkhand 832 102, IN
2 Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, IN
3 Department of Mining Engineering, Malla Reddy Engineering College, Hyderabad 500 014, IN
1 Tummalapalle Mine, Uranium Corporation of India Ltd,Jharkhand 832 102, IN
2 Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, IN
3 Department of Mining Engineering, Malla Reddy Engineering College, Hyderabad 500 014, IN
Source
Current Science, Vol 118, No 10 (2020), Pagination: 1547-1556Abstract
To extract deep-seated metallic minerals, an underground mine needs to be developed at a faster rate to access the ore body safely. There are various techniques to break the rock butstill drilling and blasting is considered the cheapest. Therefore, an effort was made to reengineer the mine development cycle time in order to achieve high advance rate. This study highlights the requirement of numerical simulation in rock excavation for its stability and design through the reengineered drill and blast operations. Implementation of the findings of numerical modelling and deployment of advanced drilling equipment helped reduce the total drilling time and overall cycle time by 30.70% and 15.90% respectively, in the two cases of drilling length considered, i.e. 3.4 and 4.0 m. Subsequently, in a further modified process, where the supporting activities were avoided till the third advance, there was significant improvement in the process cycle time by 43.10% for 3.4 m drilling and 39.30% for 4.0 m drilling length. We found that 15 m advance per day can be achieved by the deployment of double boom jumbo for drilling length of 3.4 m and drive size of 4.5 m ×3.0 m.Keywords
Drill And Blast, Linear Excavations, Mine Development, Numerical Modelling, Process Cycle Time.References
- Stewart, P., Ramezanzadeh, A. and Knights, P., Benchmark drill and blast and mechanical excavation advance rates for underground hard rock mine development. In Australian Mining Technology Conference, 2006, pp. 45–58.
- Barber J., Mennie, B., Poedjono, R. and Coad, G., Common infra-structure project – Development for the Future of PT Freeport Indonesia. In Proceedings of the Ninth Underground Operators’ Conference, The Australasian Institute of Mining and Metallurgy, Melbourne, 2005, pp. 313–322.
- Kalamaras, G., Carlo, A., Dinu, C., Cirvegna, G., Paolo, P. and Santucci, C., Up-to-date excavation, support, and lining solutions meet timing requirements for the first two tunnels of the 2006 winter Olympic games, Seattle, WA, United States, 2005, pp. 201–212.
- Neumann, M., CAMIRO Safe and Rapid Development Project – Benchmarking of 12 Canadian Mine, Neumann Engineering and Mining Services, 2001.
- http://www.downeredi.com, 2006.
- Bruland, A., Hard-rock tunnel boring, advance rate and cutter wear. Norwegian University of Science and Technology, Trondheim, Norway, 1998.
- Stability of Pillar and Drive Advances in Hard Rock Mine Through Numerical Modelling and Instrumentation
Abstract Views :105 |
PDF Views:32
Authors
Affiliations
1 Tummalapalle Mine, Uranium Corporation of India Ltd, Jharkhand 832 102, IN
2 Department of Mining Engineering, Indian Institute of Technology, Dhanbad 826 004, IN
3 National Institute of Rock Mechanics, Kolar Gold Fields 563 122, IN
1 Tummalapalle Mine, Uranium Corporation of India Ltd, Jharkhand 832 102, IN
2 Department of Mining Engineering, Indian Institute of Technology, Dhanbad 826 004, IN
3 National Institute of Rock Mechanics, Kolar Gold Fields 563 122, IN
Source
Current Science, Vol 120, No 11 (2021), Pagination: 1758-1767Abstract
Rock support systems are used to maintain the stability of underground openings and reinforce disturbed rock masses after creating an excavation. This study, in turn, will help in the selection of an appropriate number of blasts in a drive, from where the support system is required to stop mitigation of the stressdeformation conditions around it. Here, two models have been built and simulated using the RS2D programme, i.e. first to optimize the pillar and gallery size for maximum safety and extraction ratio and second is evaluation by numerical modelling and validation with rock mechanics instruments to study on mining-induced stresses, factor of safety, and displacement around the drive with no rock support system for every blast advance. The interpretation of instrumentation data collected shows that drive stability suffers significantly, with no rock support after third blast in the second model and necessity of proper rock support system is confirmed and validated.Keywords
Factor of Safety, Instrumentation, Mine Development, Mining-Induced Stresses, Numerical Modelling.References
- Abdellah, W. R., Geotechnical Risk Assessment of Mine Haulage Drifts during the Life of a Mine Plan, University of McGill, Montreal, 2013, p. 352.
- Guntumadugu, D. R., Methodology for the Design of Dynamic Rock Supports in Burst Prone Ground, University of McGill, Montreal, 2013, p. 249.
- Deere, D. U., Hendron, A. J., Patton, F. D. and Cording, E. J., Design of surface and near surface construction in rock. Failure and Breakage of Rock. In Proceedings of the 8th US Symposium Rock on Mechanics (ed. Fairhurst, C.), Society of Mining Engineering, American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967, pp. 237–302.
- Barton, N., Lien, R. and Lunde, J., Engineering classification of rock masses for the design of tunnel support. Rock Mech. Rock Eng., 1974, 6, 189–236.
- Grimstad, E. and Barton, N., Updating of the Q-System for NMT. In Proceedings of the International Symposium on Sprayed Concrete – Modern Use of Wet Mix Sprayed Concrete for Underground Support. (eds Kompen, C., Opsahl, S. L. and Berg, S. L.), Norwegian Concrete Association, 1993, pp. 46–66.
- Dianmin, C., Design of Rock Bolting Systems for Underground Excavations, University of Wollongong, New South Wales, 1994, p. 275.
- Murugamoorthy, C., Kho, C. M., Vaidya, B. G., Tang, S. K. and Subramanian, T., Behaviour of various support systems for deep excavations. In Station CAUM, RTS Conference, Changi Airport Underground MRT Station, Singapore, 2003.
- Palmstrom, A. and Broch, E., Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnels Underground Space Technol., 2006, 21(6), 575–593.
- Gharavi, M. and Shafiezadeh, N., A comparison of underground opening support design methods in jointed rock mass. Int. J. Eng. Trans. B: Applications, 2008, 21(3), 235–248.
- Rafiee, R., Development rock behavior index around underground space using a rock engineering system. J. Geol. Min. Res., 2014, 6(4), 46–56; https://doi.org/10.5897/JGMR14.0205
- Martin, C. D. and Maybee, W. G., The strength of hard-rock pillars. Int. J. Rock Mech. Mining Sci., 2000, 37, 1239–1246.
- Hedley, D. G. F. and Grant, F., Stope and pillar design for Ellliot Lake Uranium Mines. Bull. Can. Inst. Mining Metal., 1977, 65, 37–44.
- Carter, T. G., Diederichs, M. S. and Carvalho, J. L., Application of modified Hoek–Brown transition relationships for assessing strength and post yield behaviour at both ends of the rock competence scale. In Proceedings of the 6th International Symposium on Ground Support in Mining and Civil Engineering Construction. (eds Stacey, T. R. and Malan, D. F.), SAIMM, Johannesburg, 2008, pp. 37–60.
- Marinos, V., Geological behaviour of rock masses in underground excavations. Bull. Geol. Soc. Greece, 2010, 43(3), 1238–1247; doi:http://dx.doi.org/10.12681/bgsg.11300.
- Singh, G. S. P. and Murthy, V. M. S. R., Applications of numerical modelling for strata control in mines. Geotech. Geol. Eng., 2010, 28(4), 513–524; https://doi.org/10.1007/s10706-010-9324-6
- Yu, Z. S., Kulatilake, W. and Jiang, F., Effect of tunnel shape and support system on stability of a tunnel in a deep coal mine in China. Geotech. Geol. Eng., 2012, 30(2), 383–394; https://doi.org/ 10.1007/s10706-011-9475-0.
- Rao, K. K., Choudhary, B. S. and Ghade, A., Critical analysis of process cycle by numerical modelling for faster development of drives in hard rock underground mines – a case study. Curr. Sci., 2020, 118, 1547–1556.
- Kimmelmann, M. R., von Hyde, B. and Madgwick, R. J., The use of computer applications at BCL Limited in planning pillar extraction and design of mining layouts. In Proceedings of the ISRM Symposium Design and Performance of Underground Excavations (eds Brown, E. T. and Hudson, J. A.), British Geomechanics Society, London, 1984, pp. 53–63.
- Krauland, N. and Soder, P. E., Determining pillar strength from pillar failure observations. Eng. Mining J., 1987, 8, 34–40.
- Potvin, Y., Hudyama, M. R. and Miller, H. D. S., Design guidelines for open stope support. Can. Mining Metal. Bull., 1989, 82, 53–62.
- Sjoberg, J., Failure modes and pillar behavior in the Zinkgruvan mine. In Proceedings of 33 US Rock Mechanics Symposium (eds Tillerson, J. A. and Wawersik, W. R.), Santa Fe, Rotterdam, AA Balkema, 1992, pp. 491–500.
- Lunder, P. J. and Pakalnis, R. C., Determination of the smngth of hard-rock mine pillars. Bull. Can. Bst. Min. Metall., 1997, 90(1013), 51–55.
- Techno-economic Analysis for Development of a Drive in View of Geo-mining Conditions – a Case Study
Abstract Views :40 |
PDF Views:0
Authors
Affiliations
1 Tummalapalle Mine, UCIL,, IN
2 Department of Mining Engineering, IIT (ISM) Dhanbad., IN
1 Tummalapalle Mine, UCIL,, IN
2 Department of Mining Engineering, IIT (ISM) Dhanbad., IN
Source
Journal of Mines, Metals and Fuels, Vol 66, No 6 (2018), Pagination: 339-346Abstract
This paper presents all the rock mechanics studies carried out at an underground metal mine in Kadapa, Andhra Pradesh. The rock mechanics investigations in this mine include optimization of pillar dimensions by numerical modelling, the feasibility of hangwall lode mining at shallow depth, support design for deeper levels, instrumentation to monitor the strata for an experimental hangwall stope. The main aim is to improve extraction ratio and the mine safety levels from these rock mechanics studies to develop a mine. The effect on the linear advance in both footwall lode and hangwall lode is studied, monitored and found that there is almost 25% increase in total cost per round of blast due to difficult geo-mining conditions and affecting total cost per tonne of ore extracted from hangwall in contrast to footwall lode development and safety aspects. A critical case study with techno-economic cost analysis in view of their geo-mining conditions has been discussed.Keywords
Metal mine; rock mechanics; development; supports; linear progress; blasting.References
- Rupprecht, S. M. (2012): Mine Development – Access to Deposit, The Southern African Institute of Mining and Metallurgy, Platinum 2012, pp. 11-121.
- Barton, N. R., Lien, R. and Lunde, J. (1974): “Engineering classification of rock masses for the design of tunnel support.” Rock Mech. 6(4), 189-239.
- Bieniawski, Z. T. (1989): Engineering rock mass classifications. New York: Wiley.
- Nagaraj, C., Renaldy, T Amrith and Venkateswarlu, V. (2014): A report on Study on mineability of Hang wall lode between 2 levels at Tummalapalle Mine, UCIL. GC – 15- 05-c, p. 20.
- Soil organic carbon fractions, carbon stocks and microbial biomass carbon in different agroforestry systems of the Indo-Gangetic Plains in Bihar, India
Abstract Views :44 |
PDF Views:16
Authors
Nongmaithem Raju Singh
1,
A. Raizada
2,
K. K. Rao
3,
Kirti Saurabh
3,
Kumari Shubha
3,
Rachana Dubey
3,
L. Netajit Singh
4,
Ashish Singh
5,
A. Arunachalam
6
Affiliations
1 ICAR Research Complex for Eastern Region, Patna 800 014, India; ICAR Research Complex for North Eastern Hill Region, Umiam 793 103, India, IN
2 ICAR-Mahatma Gandhi Integrated Farming Research Institute, Motihari 845 429, India, IN
3 ICAR Research Complex for Eastern Region, Patna 800 014, India, IN
4 College of Agriculture University, Jodhpur 342 304, India, IN
5 ICAR Research Complex for North Eastern Hill Region, Umiam 793 103, India, IN
6 ICAR-Central Agroforestry Research Institute, Jhansi 284 003, India, IN
1 ICAR Research Complex for Eastern Region, Patna 800 014, India; ICAR Research Complex for North Eastern Hill Region, Umiam 793 103, India, IN
2 ICAR-Mahatma Gandhi Integrated Farming Research Institute, Motihari 845 429, India, IN
3 ICAR Research Complex for Eastern Region, Patna 800 014, India, IN
4 College of Agriculture University, Jodhpur 342 304, India, IN
5 ICAR Research Complex for North Eastern Hill Region, Umiam 793 103, India, IN
6 ICAR-Central Agroforestry Research Institute, Jhansi 284 003, India, IN
Source
Current Science, Vol 124, No 8 (2023), Pagination: 981-987Abstract
A study was undertaken in the Vaishali district of Bihar, India, in 2020 to assess the effect of various agroforestry systems (AFS) on the distribution of different pools of soil organic carbon (fraction I – very labile, fraction II – labile, fraction III – less labile and fraction IV – non-labile), carbon stocking and soil microbial activity. The mean (0–45 cm) total organic carbon (TOC) in different AFS ranged from 5.55 to 6.64 Mg C ha–1, with the highest under poplar-based AFS (PB-AFS). Across the AFS studied, the C stocks (0–45 cm) varied from 36.24 (mango-based AFS) to 41.43 Mg C ha–1 (PB-AFS). Overall, the magnitude of C fractions showed the order: fraction I > fraction IV > fraction III > fraction II. Significantly higher soil microbial biomass carbon was recorded under PB-AFS (219.36 mg g–1) in 0–15 cm depth. Basal respiration was also the highest under PB-AFS (0.54 mg CO2-C g–1 h–1), followed by TB-AFS (0.50 mg CO2-C g–1 h–1) in 0–15 cm depth. Principal component analysis result showed that PC 1 and PC 2 represented about 97% of the total variation. TOC and active carbon pool had the maximum loading in PC 1, while microbial metabolic quotient and bulk density had the maximum value in PC 2Keywords
Agroforestry system, basal respiration, princi-pal component analysis, soil microbial activity, total orga-nic carbon.References
- Lal, R., Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677), 1623–1627.
- Zhang, H. et al., Changes in soil microbial biomass, community composition, and enzyme activities after half-century forest restora-tion in degraded tropical lands. Forests, 2019, 10(12), 1124.
- Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J. and Dokken, D. J., In Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2000.
- Das, D. K. and Chaturvedi, O. P., Structure and function of Populus deltoides agroforestry systems in eastern India: 1. Dry matter dynamics. Agrofor. Syst., 2005, 65(3), 215–221.
- Nair, P. K. R., Classification of agroforestry systems. Agrofor. Syst., 1985, 3(2), 97–128.
- Allen, S. E., Grimshaw, H. M., Parkinson, J. A. and Quarnby, C., Chemical Analysis of Ecological Materials, Blackwell Scientific, Oxford, UK, 1974, p. 565.
- Heanes, D. L., Determination of total organic‐C in soils by an im-proved chromic acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal., 1984, 15(10), 1191–1213.
- Chan, K. Y., Bowman, A. and Oates, A., Oxidizible organic carbon fractions and soil quality changes in an oxic paleustalf under dif-ferent pasture leys. Soil Sci., 2001, 166(1), 61–67.
- Nunan, N., Morgan, M. A. and Herlihy, M., Ultraviolet absorbance (280 nm) of compounds released from soil during chloroform fumigation as an estimate of the microbial biomass. Soil Biol. Biochem., 1998, 30(12), 1599–1603.
- Parihar, C. M. et al., Long term effect of conservation agriculture in maize rotations on total organic carbon, physical and biological properties of a sandy loam soil in north-western Indo-Gangetic Plains. Soil Till. Res., 2016, 161, 116–128.
- Grisi, B. M., The chemical method of the measurement of soil respiration. Ciência e Cultura, 1978, 30, 82–88.
- Anderson, T. H. and Domsch, K. H., Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem., 1990, 22(2), 251–255.
- Blair, G. J., Lefroy, R. D. and Lisle, L., Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res., 1995, 46(7), 1459–1466.
- Ramesh, T., Manjaiah, K. M., Mohopatra, K. P., Rajasekar, K. and Ngachan, S. V., Assessment of soil organic carbon stocks and fractions under different agroforestry systems in subtropical hill agro-ecosystems of north-east India. Agrofor. Syst., 2015, 89(4), 677–690.
- Lal, R., Carbon sequestration. Philos. Trans. R. Soc. London, Ser. B, 2008, 363(1492), 815–830.
- Rathore, A. C. et al., Performance of mango based agrihorticultural models under rainfed situation of Western Himalaya, India. Agro-for. Syst., 2013, 87(6), 1389–1404.
- Singh, N. R., Arunachalam, A. and Devi, N. P., Soil organic carbon stocks in different agroforestry systems of south Gujarat. Range Manage. Agrofor., 2019, 40(1), 89–93.
- Lal, R., Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci., 2009, 60, 1–12.
- Franzluebbers, A. J., Soil organic matter as an indicator of soil quali-ty. Soil Till. Res., 2002, 66, 95–106.
- Anantha, K. C., Majumder, S. P., Badole, S., Padhan, D., Datta, A., Mandal, B. and Sreenivas, C. H., Pools of organic carbon in soils under a long-term rice–rice system with different organic amendments in hot, sub-humid India. Carbon Manage., 2020, 11(4), 331–339.
- Samal, S. K. et al., Evaluation of long-term conservation agriculture and crop intensification in rice–wheat rotation of Indo-Gangetic Plains of South Asia: carbon dynamics and productivity. Eur. J. Agron., 2017, 90, 198–208.
- Benbi, D. K., Brar, K., Toor, A. S., Singh, P. and Singh, H., Soil carbon pools under poplar-based agroforestry, rice–wheat, and maize–wheat cropping systems in semi-arid India. Nutr. Cycling Agroecosyst., 2012, 92(1), 107–118.
- Singh, G., Carbon sequestration under an agri-silvicultural system in the arid region. Indian For., 2005, 147, 543–552.
- Seneviratne, G., Litter quality and nitrogen release in tropical agri-culture. Biol. Fertil. Soils, 2000, 3(1), 60–64.
- Kaur, T., Brar, B. S. and Dhillon, N. S., Soil organic matter dynamics as affected by long-term use of organic and inorganic fertilizers under maize–wheat cropping system. Nutr. Cycling Agroecosyst., 2008, 81(1), 59–69.
- Debnath, S., Patra, A. K., Ahmed, N., Kumar, S. and Dwivedi, B. S., Assessment of microbial biomass and enzyme activities in soil under temperate fruit crops in north western Himalayan region. J. Soil Sci. Plant Nutr., 2015, 15(4), 848–866.
- Yang, K., Zhu, J., Zhang, M., Yan, Q. and Sun, O. J., Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J. Plant Ecol., 2010, 3(3), 175–182.
- Bastida, F., Zsolnay, A., Hernández, T. and García, C., Past, present and future of soil quality indices: a biological perspective. Geo-derma, 2008, 147(3–4), 159–171.
- Naik, S. K., Maurya, S. and Bhatt, B. P., Soil organic carbon stocks and fractions in different orchards of eastern plateau and hill region of India. Agrofor. Syst., 2016, 91(3), 541–552.
- Kumar, A. et al., Soil organic carbon pools under Terminalia chebula Retz. based agroforestry system in Himalayan foothills, India. Curr. Sci., 2020, 118(7), 1098–1103.
- Six, J., Feller, C., Denef, K., Ogle, S., de Moraes Sa, J. C. and Al-brecht, A., Soil organic matter, biota and aggregation in temperate and tropical soils effects of no-tillage. Agronomie, 2002, 22(7–8), 755–775.