Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
De, Gobinda Chandra
- Photocatalytic Hydrogen Production with Cds and Cds/znS Modified by Different Electron Hole Transfer Additives Using Visible Light
Abstract Views :302 |
PDF Views:2
Authors
Affiliations
1 Department of Chemical Technology, Calcutta University, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, IN
1 Department of Chemical Technology, Calcutta University, 92 Acharya Prafulla Chandra Road, Calcutta-700 009, IN
Source
Journal of Surface Science and Technology, Vol 15, No 3-4 (1999), Pagination: 147-158Abstract
Photocatalytic production of hydrogen using CdS suspensions in aqueous solution containing Na2S-Na2SO3 has been studied. CdS prepared from different salts of Cd(II) and Na2S or H2S shows different photocatalytic activity towards generation of hydrogen. Use of excess of Cd2+ or S2- in the preparation of CdS affects its photocatlytic activity. Pt, Pd, Ag2S or RuO2 have been added to CdS in different proportions. In each case, a maximum hydrogen production is observed at a definite composition. In case of CdS/ZnS mixture, the intimate contact of Pt with CdS is absolutely necessaly in exerting the role of Pt for enhancing the hydrogen evolution by the ternary semiconductor system. Attempt has been made to correlate the photocatalytic activity order of the semiconductors to their luminescence property.Keywords
Hydrogen Production, CdS Semiconductor, Mixed Semiconductor, Electron-Hole Transfer, Photoelectro-Chemical Cell.- Study of CdS-ZnS Photocatalyst Loaded with Pd & Pt Embedded on Immobilized Matrix for Decomposition of Na2S-Na2SO3 Solution by Solar Energy using Different Sacrificial Substrates and Photosensitiser
Abstract Views :345 |
PDF Views:2
Authors
Affiliations
1 Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, West Bengal, IN
1 Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, West Bengal, IN
Source
Journal of Surface Science and Technology, Vol 28, No 1-2 (2012), Pagination: 37-54Abstract
Mixed CdS-ZnS photocatalyst (1 : 4 molar ratio) and Pt, Pd loaded mixed semiconductor photocatalysts immobilized on Whatmann No. 1 fitter paper matrix were prepared. Photocatalytic production of hydrogen from Na2S-Na2SO3 solution by immobilized photocatalyst using sacrificial agents like EDTA, oxalate, formate etc. and photosensitiser like Ru(bipy)3Cl2 were studied. The maximum photoproduction of hydrogen obtain when mixed CdS-ZnS loaded with Pt (1.5 wt%) photocatalyst immobilized in Whatman No.1 filter paper matrix was used with Ru (bipy)3Cl2.Keywords
Mixed CdS-ZnS, Hydrogen Production, Electron-Hole Transfer.- Interaction of a Cationic Surfactant with an Oppositely Charged Polymer
Abstract Views :398 |
PDF Views:4
Authors
Soumen Ghosh
1,
Arpan Mal
1,
Tanushree Chakraborty
1,
Gobinda Chandra De
2,
Daniel Gerrard Marangoni
3
Affiliations
1 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata – 700032, West Bengal, IN
2 Department of Chemistry, Alipurduar College, Alipurduar, IN
3 Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, CA
1 Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata – 700032, West Bengal, IN
2 Department of Chemistry, Alipurduar College, Alipurduar, IN
3 Department of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, CA
Source
Journal of Surface Science and Technology, Vol 32, No 3-4 (2016), Pagination: 107–114Abstract
The interactions between the cationic surfactant Dodecyltrimethylammonium Bromide (DTAB) and anionic polymer sodium carboxymethyl cellulose (Na-CMC) in aqueous medium were studied at 300K over different concentrations of Na-CMC by tensiometry, conductometry, viscometry, turbidimetry and fluorimetry. Aggregation of surfactant was attained in two steps, the first being the monomeric adsorption of surfactants on anionic sites of the polymer saturating at lower concentrations of surfactant and the second one being the formation of micelles by surfactants at higher concentrations. Mainly, two types of interactions prevailed throughout namely, electrostatic and hydrophobic interactions. Due to the variation of the interactions depending on the concentrations of polymer, there has been considerable differences in the behavioural pattern of the profiles for the lower concentrations of polymer compared to that of the upper ones.Keywords
Anionic Polymer, Cationic Surfactant, Electrostatic Interaction, Hydrophobic Interaction, Micellization.References
- S. Ghosh, J. Colloid Interface Sci., 244, 128 (2001).
- D. Tikariha, K. K. Ghosh, P. Quagliotto and S. Ghosh, J. Chem. Eng. Data, 55, 4162 (2010).
- S. Ghosh, A. Das Barman, G. C. De and A. R. Das, J. Phys. Chem. B, 115, 11098 (2011).
- D. Tikariha, B. Kumar, S. Ghosh, A. K. Tiwari, S. K. Saha, N. Barbero, P. Quagliotto, and K. K. Ghosh, J. Nanofluids, 2, 316 (2013).
- S. M. Saleem and A. Hernandez, J. Surf. Sci. Technol., 3, 1 (1987).
- A. Bhattacharyya and J. F. Argillier, J. Surf. Sci. Technol., 21, 161 (2005).
- D. Chandra and A. Bhaumik, Ind. Eng. Chem. Res., 45, 4879 (2006).
- S. Ghosh and S. P. Moulik, Indian J. Chem. Sect. A, 38, 10 (1999).
- S. Ghosh and S. P. Moulik, Indian J. Chem. Sect. A, 38, 201 (1999).
- S. Ghosh and S. P. Moulik, J. Surf. Sci. Technol., 14, 110 (1998).
- J. M. Landry, D. G. Marangoni, D. A. Arden, I. J. MacLennan and J. C. T. Kwak, J. Surfact. Deterg., 12, 155 (2009).
- S. Ghosh, J. Surf. Sci. Technol., 19, 167 (2003).
- J. M. Gohil, A. Bhattacharya and P. Roy, J. Surf. Sci. Technol., 20, 1 (2004).
- D. Varade, R. Sharma, P. Majhi and P. Bahadur, J. Surf. Sci. Technol., 19, 85 (2003).
- A. Rangaraj and A. K. Rakshit, J. Surf. Sci. Technol., 16, 246 (2000).
- S. Chakraborty, A. K. Bera, S. Bhattacharya, S. Ghosh, A. K. Pal, S. Ghosh and A. Banerjee, J. Organomet. Chem., 645, 33 (2002).
- M. Sadeghalvaad and S. Sabbaghi, J. Nanofluids, 4, 435 (2015).
- L. S. Sundar, E. V. Ramana, M. K. Singh, J. Gracio and A. C. M. Sousa, J. Nanofluids, 3, 200 (2014).
- A. Saxena and H. B. Bohidar, J. Surf. Sci. Technol., 13, 32 (1997).
- S. Brojabasi and J. Philip, J. Nanofluids, 2, 237 (2013).
- A. Nag, B. Sadhukhan and D. K. Chattoraj, J. Surf. Sci. Technol., 4, 91 (1988).
- E. Staples, I. Tucker, J. Penfold, N. Warren, R. K. Thomas and D. J. F. Taylor, Langmuir, 18, 5147 (2002).
- T. C. Singh, R. K. Nath, K. Manna and A. K. Panda, J. Surf. Sci. Technol., 29, 101 (2013).
- M. Rodgers, C. Rodgers and R. M. Palepu, J. Surf. Sci. Technol., 20, 33 (2004).
- Y. Kadam, K. Singh, D. G. Marangoni, J. H. Ma, V. K. Aswal and P. Bahadur, J. Colloid Interface Sci., 351, 449 (2010).
- M. S. Kumar and H. N. Singh, J. Surf. Sci. Technol., 8, 381 (1992).
- E. Halder, D. K. Chattoraj and K. P. Das, J. Surf. Sci. Technol., 19, 21 (2003).
- A. A. McLachlan and D. G. Marangoni, Can. J. Chem., 88, 124 (2010).
- T. C. Singh, S. Biswas, S. Dasgupta, A. Mitra, A. K. Panda and R. K. Nath, J. Surf. Sci. Technol., 24, 21 (2008).
- T. Chakraborty. I. Chakraborty and S. Ghosh, Langmuir, 22, 9905 (2006).
- S. Das, I. Mukherjee, B. K. Paul and S. Ghosh, Langmuir, 30, 12483 (2014).
- S. Das, S. Mondal and S. Ghosh, RSC Advances, 6, 30795 (2016).
- N. Jain, S. Trabelsi, S. Guillot, McLoughlin, D. Langevin, P. Letellior, M. Turmine, Langmuir, 20, 8496 (2004).
- Y. Pi, Y. Shang, H. Liu, Y. Hu and J. Jiang, J. Colloid Interface Sci., 306, 405 (2007).
- P. K. Jana, S. Bhattacharyya, S. Ghosh and P. Das, Int. J. Res. Chem. Environ. 5, 12 (2015).
- E. K. Just and T. G. Majewicz, Encyclopedia of Polymer Science and Engineering, John Wiley and Sons, New York, 3, 226 (1985).
- X. Wang, Y. Li, J. Li, J. Wang, Y. Wang, Z. Guo and H. Yan, J. Phys. Chem. B, 109, 10807 (2005).
- S. Trabelsi, E. Raspand and D. Langevin, Langmuir, 23, 10053 (2007).