Refine your search
Collections
Co-Authors
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Deobagkar, Deepti D.
- DNA Methylation Changes in a Gene-Specific Manner in Different Developmental Stages of Drosophila melanogaster
Abstract Views :302 |
PDF Views:135
Authors
Chitra S. Panikar
1,
Mandar S. Paingankar
1,
Saniya Deshmukh
1,
Varada Abhyankar
1,
Deepti D. Deobagkar
1
Affiliations
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
Source
Current Science, Vol 112, No 06 (2017), Pagination: 1165-1175Abstract
Although genomic DNA of Drosophila melanogaster has been shown to contain little cytosine methylation, the distribution of this genome-wide methylation patterns in different life stages remains to be elucidated. We have developed an immunochemical method using cDNA microarray to assess methylation. In the present work, this methylation microarray method was employed to identify DNA methylation in and around the genes in different life stages of D. melanogaster. This led to the identification of methylated genes in three stages of D. melanogaster, viz. embryo, pupa and adult. It is noteworthy that there was differential methylation in genes in different life cycle stages. Remarkably, a few functional annotation clusters showed negative correlation between transcription of a particular gene and its methylation status. In this analysis, some of the genes attributed to characteristic biological processes of particular life stage in D. melanogaster were found to be methylated in other life stages. Our analysis while providing a methylation map also suggests that gene-specific DNA methylation is altered during the life cycle stages of D. melanogaster.Keywords
Developmental Regulation, DNA Methylation, Drosophila Development, Epigenetics, Gene-Specific Methylation, 5 Methyl Cytosine.References
- Attwood, J. T., Yung, R. L. and Richardson, B. C., DNA methylation and the regulation of gene transcription. Cell Mol. Life. Sci., 2002, 59, 241–257.
- Bird, A. P., DNA methylation patterns and epigenetic memory. Gene Dev., 2002, 16, 6–21.
- Robertson, K. D., DNA methylation and chromatin-unravelling the tangled web. Oncogene, 2002, 21, 5361–5379.
- Phalke, S., Nickel, O., Walluscheck, D., Hortig, F., Onorati, M. C. and Reuter, G., Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat. Genet., 2009, 41, 696–702.
- Wang, Y., Jorda, M., Jones, P. L., Maleszka, R., Ling, X. and Robertson, H. M., Functional CpG methylation system in a social insect. Science, 2006, 314, 645–647.
- Suzuki, M. M., Kerr, A. R., De, Sousa. D. and Bird, A., CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res., 2007, 17, 625–631.
- Kronforst, M. R., Gilley, D. C., Strassmann, J. E. and Queller, D. C., DNA methylation is widespread across social Hymenoptera. Curr. Biol., 2008, 18, R287–R288.
- Walsh, T. K., Brisson, J. A., Robertson, H. M., Gordon, K., Jaubert-Possamai, S. and Tagu, D., A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol. Biol., 2010, 19, 215–228.
- Zemach, A., McDaniel, I. E., Silva, P. and Zilberman, D., Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science, 2010, 328, 916–919.
- Rasmussen, E. M., Vågbø, C. B., Münch, D., Krokan, H. E., Klungland, A., Amdam, G. V. and Dahl, J. A., DNA base modifications in honey bee and fruit fly genomes suggest an active demethylation machinery with species-and tissue-specific turnover rates. Biochem. Biophys. Rep., 2016, 6, 9–15.
- Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X. and Li, M., Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol., 2010, 28, 516–520.
- Glastad, K. M., Hunt, B. G., Soojin, V. Y. and Goodisman, M. A., Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proc. R. Soc. B: Biol. Sci., 2014, 281, 20140411.
- Elango, N., Hunt, B. G., Goodisman, M. A. and Soojin, V. Y., DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc. Natl. Acad. Sci. USA, 2009, 106, 11206–11211.
- Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C. and Maleszka, R., The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol., 2010, 8, e1000506.
- Achwal, C. W., Iyer, C. A. and Chandra, H. S., Immunochemical evidence for the presence of 5mC, 6mA and 7mG in human, Drosophila and mealybug DNA. FEBS, Lett., 1983, 158, 353–358.
- Achwal, C. W., Ganguly, P. and Chandra, H. S., Estimation of the amount of 5-methylcytosine in Drosophila melanogaster DNA by amplified ELISA and photoacoustic spectroscopy. EMBO J., 1984, 3, 263–266.
- Lyko, F., Ramsahoye, B. H. and Jaenisch, R., DNA methylation in Drosophila melanogaster. Nature, 2000, 408, 538–540.
- Gowher, H., Leismann, O. and Jeltsch, A., DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J., 2000, 19, 6918–6923.
- Capuano, F., Mulleder, M., Kok, R. M., Blom, H. J. and Ralser, M. Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe and other yeast species. Anal. Chem., 2014, 86, 3697– 3702.
- Takayama, S., Dhahbi, J., Roberts, A., Mao, G., Heo, S. J. and Pachter, L., Genome methylation in Drosophila melanogaster is found at specific short motifs and is independent of DNMT2 acti vity. Genome Res., 2014, 24, 821–830.
- Tweedie, S., Ng, H. H., Barlow, A. L., Turner, B. M., Hendrich, B. and Bird, A., Vestiges of a DNA methylation system in Drosophila melanogaster? Nat. Genet., 1999, 23, 389–390.
- Kunert, N., Marhold, J., Stanke, J., Stach, D. and Lyko, F., A Dnmt2-like protein mediates DNA methylation in Drosophila. Development, 2003, 130, 5083–5090.
- Raddatz, G., Guzzardo, P. M., Olova, N., Fantappie, M. R. and Rampp, M., Dnmt2-dependent methylomes lack defined DNA methylation patterns. Proc. Natl. Acad. Sci. USA, 2013, 110, 8627–8631.
- Goll, M. G., Kirpekar, F., Maggert, K. A., Yoder, J. A., Hsieh, C. L. and Zhang, X., Methylation of tRNA Asp by the DNA methyltransferase homolog Dnmt2. Science, 2006, 311, 395–398.
- Jurkowski, T. P., Meusburger, M., Phalke, S., Helm, M., Nellen, W. and Reuter, G., Human DNMT2 methylates tRNAAsp molecules using a DNA methyltransferase-like catalytic mechanism. RNA, 2008, 14, 1663–1670.
- Panikar, C. S., Rajpathak, S. N., Abhyankar, V., Deshmukh, S. and Deobagkar, D. D., Presence of DNA methyltransferase activity and CpC methylation in Drosophila melanogaster. Mol. Biol. Rep., 2015, 42, 1615–1621.
- Deobagkar, D. D., Panikar, C., Rajpathak, S. N., Shaiwale, N. S. and Mukherjee, S., An immunochemical method for detection and analysis of changes in methylome. Methods, 2012, 56, 260–267.
- Mandrioli, M. and Borsatti, F., DNA methylation of fly genes and transposons. Cell Mol. Life Sci., 2006, 63, 1933–1936.
- Lyko, F. and Maleszka, R., Insects as innovative models for functional studies of DNA methylation. Trends Genet., 2011, 27, 127–131.
- Sarda, S., Zeng, J., Hunt, B. G. and Yi, S. V., The evolution of invertebrate gene body methylation. Mol. Biol. Evol., 2012, 29, 1907–1916.
- Kelkar, A. and Deobagkar, D. D., A novel method to assess the full genome methylation profile using monoclonal antibody combined with the high throughput based microarray approach. Epigenetics, 2009, 4, 415–420.
- Kelkar, A. and Deobagkar, D. D., Methylation profile of genes on the human X chromosome. Epigenetics, 2010, 5, 612–618.
- Mukherjee, S., Sainis, K. B. and Deobagkar, D. D., Identification of methylated genes in BALB/c mice liver using monoclonal ant ibody combined with the high-throughput cDNA microarray approach. Curr. Sci., 2011, 101, 66–72.
- Rajpathak, S. N. and Deobagkar, D. D., Evidence for epigenetic alterations in Turner syndrome opens up feasibility of new pharmaceutical interventions. Curr. Pharm. Design, 2014, 20, 1778–1785.
- Huang, D. W., Sherman, B. T. and Lempicki, R. A., Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 2009, 37, 1–13.
- Huang, D. W., Sherman, B. T. and Lempicki, R. A., Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc., 2009, 4, 44–57.
- Mi, H., Muruganujan, A., Casagrande, J. T. and Thomas, P. D., Large-scale gene function analysis with the PANTHER classification system. Nature Protoc., 2013, 8, 1551–1566.
- Contrino, S., Smith, R. N., Butano, D., Carr, A., Hu, F. and Lyne, R., ModMine: flexible access to modENCODE data. Nucleic Acids Res., 2012, 40, D1082–D1088.
- Chatterjee, S., Deshpande, A., Kelkar, A. and Deobagkar, D. D., CpC methylation is present in Drosophila melanogaster and undergoes changes during its life cycle. Drosophila Information Service, 2004, 91, 101–103.
- Bird, A. P., Taggart, M. H. and Smith, B. A., Methylated and unmethylated DNA compartments in the sea urchin genome. Cell, 1979, 17, 889–901.
- Bird, A. P. and Taggart, M. H., Variable patterns of total DNA and rDNA methylation in animals. Nucleic Acids Res., 1980, 8, 1485–1497.
- Werren, J. H., Richards, S., Desjardins, C. A., Niehuis, O., Gadau, J. and Colbourne, J. K., Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 2010, 327, 343–348.
- Gao, F., Liu, X., Wu, X. P., Wang, X. L., Gong, D. and Lu, H., Differential DNA methylation in discrete developmental stages of the parasitic nematode Trichinella spiralis. Genome Biol., 2012, 13, R100.
- Zwier, M. V., Verhulst, E. C., Zwahlen, R. D., Beukeboom, L. W. and Van de Zande, L., DNA methylation plays a crucial role during early Nasonia development. Insect Mol. Biol., 2012, 21, 129–138.
- Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B. and Kashlev, M., CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 2011, 479, 74–79.
- Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S. and Rebhan, M., Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat. Genet., 2007, 39, 457–466.
- Zhang, X., The epigenetic landscape of plants. Science, 2008, 320, 489–492.
- Rountree, M. R. and Selker, E. U., DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev., 1997, 11, 2383–2395.
- Zilberman, D., Gehring, M., Tran, R. K., Ballinger, T. and Henikoff, S., Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet., 2007, 39, 61–69.
- Boffelli, D., Takayama, S. and Martin, D., Now you see it: genome methylation makes a comeback in Drosophila. Bioessays, 2014, 36, 1138–1144.
- LePage, D. P., Jernigan, K. K. and Bordenstein, S. R., The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. Peer J., 2014, 2, e678.
- Pollution and Environmental Stressors Modulate the Microbiome in Estuarine Mangroves:A Metagenome Analysis
Abstract Views :318 |
PDF Views:116
Authors
Affiliations
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
Source
Current Science, Vol 115, No 8 (2018), Pagination: 1525-1535Abstract
The microbial communities of mangroves which form important links in elemental cycling and bioremediation have not been elucidated in most parts of the world. Due to urbanization and deforestation mangroves are also under threat. In the present study, high throughput next generation sequencing technology, based on 16S rRNA amplicon analysis using Illumina platform, was employed to unravel the microbial diversity present in different mangrove areas in the west coast of India. It could be seen that in mangroves, Proteobacteria and Bacteroidetes were most common, followed by taxon such as Firmicutes, Spirochaetes, Chloroflexi and Verrucomicrobia. In proteobacteria group, Gammaproteobacteria, Alphaproteobacteria and Deltaproteobacteria were most abundant. Interestingly, bacteria having the capacity to utilize sulphate were present along with methanogens in all samples, suggesting that anaerobic and sulphur- based metabolic pathways play an important role in these mangrove ecosystems. The differences in bacterial diversity can be partly attributed to biotic and abiotic factors such as physico-chemical characteristics of the samples, geographical location and natural and human-induced changes in the locality. The metagenomics analysis of mangrove sediment samples has helped in elucidating the baseline data on bacterial diversity along mangroves in Maharashtra along the west coast of India and can provide pointers for effective measures of conservation.Keywords
Anthropogenic Stressors, Bacterial Communities, Metagenomics, Microbial Ecology, Pollution.References
- Alongi, D. M., Present state and future of the world’s mangrove forests. Environ. Conserv., 2002, 29(3), 331-349.
- Beck, M. W. et al., The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: a better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience, 2001, 51, 633-641.
- McLusky, D., The Estuarine Ecosystem, Springer Science and Business Media, 2013.
- Field, C. et al., Mangrove biodiversity and ecosystem function. Global Ecol. Biogeogr. Lett., 1998, 7, 3-14.
- Duke, N. C. et al., A world without mangroves. Science, 2007, 317, 41.
- Gomes, N. C. M., Borges, L. R., Paranhos, R., Pinto, F. N., MendonjaHagler, L. C. and Smalla, K., Exploring the diversity of bacterial communities in sediments o f urban mangrove forests. FEMS Microbiol. Ecol., 2008, 66(1), 96-109.
- DeLong, E. F. et al., Community genomics among stratified microbial assemblages in the ocean’s interior. Science, 2006, 311, 496-503.
- Konstantinidis, K. T., Braff, J., Karl, D. M. and DeLong, E. F., Comparative metagenomic analysis of a microbial community residing at a depth of 4000 meters at station ALOHA in the North Pacific subtropical gyre. Appl. Environ. Microbiol., 2009, 75(16), 5345-5355.
- Shi, Y., Tyson, G. W., Eppley, J. M. and DeLong, E. F., Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J., 2010, 5(6), 9991013.
- Quaiser, A., Zivanovic, Y., Moreira, D. and Lopez-Garcia, P., Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara. ISME J., 2011, 5(2), 285-304.
- Kimes, N. E. et al., Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill. Front. Microbiol., 2013, 4, 50; doi:10.3389/fmicb.2013.00050.
- Tringe, S. G. et al., Comparative metagenomics of microbial communities. Science, 2005, 308, 554-557.
- De Angelis, K. M. et al., Strategies for enhancing the effectiveness of metagenomic based enzyme discovery in lignocellulolytic microbial communities. Bioenergy Res., 2010, 3(2), 146-158.
- Baldrian, P. et al., Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J , 2012, 6, 248-258.
- Fierer, N. et al., Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl. Acad. Sci. USA, 2012, 109, 21390-21395.
- Simon, C., Wiezer, A., Strittmatter, A. W. and Daniel, R., Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl. Environ. Microbiol., 2009, 75(23), 75197526.
- Bodaker, I. et al., Comparative community genomics in the Dead Sea, an increasingly extreme environment. ISME J., 2010, 4, 399407.
- Inskeep, W. P. et al., Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS ONE, 2010, 5(3), e9773.
- Amaral-Zettler, L. A. et al., Microbial community structure across the tree of life in the extreme Rio Tinto. ISME J., 2011, 5(1), 4250.
- Taketani, R. G., Yoshiura, C. A., Dias, A. C. F., Andreote, F. D. and Tsai, S. M., Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. A van Leeuw J. Microb., 2010, 97(4), 401411.
- Ghosh, A., Dey, N. and Bera, A., Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarbans, India. Saline Syst., 2010, 6(1), 1; http://dx.doi.org/ 10.1186/1746-1448-6-1.
- Gomes, N. C. M. et al., Taking ischolar_main, enduring effect of rhizosphere bacterial colonization in mangroves. PLoS ONE, 2010, 5(11), e14065.
- Mishra, R. R., Swain, M. R., Dangar, T. K. and Thatoi, H., Diversity and seasonal fluctuation of predominant microbial communities in Bhitarkanika, a tropical mangrove ecosystem in India. Rev. Biol. Trop., 2012, 60(2), 909-924.
- Jiang, X. T., Peng, X., Deng, G. H., Sheng, H. F., Wang, Y. and Zhou, H. W., Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol., 2013, 66, 96-104.
- Basak, P. et al., Spatiotemporal analysis o f bacterial diversity in sediments of Sundarbans using parallel 16S rRNA gene tag sequencing. Microb. Ecol., 2014, 69, 500-511.
- Prakash, S. et al., Influence of physicochemical and nutritional factors on bacterial diversity in mangrove sediments along the southwest coast of Tamil Nadu, India. Environ. Monit. Assess., 2015, 187, 562.
- Basak, P. et al., Bacterial diversity assessment of pristine mangrove microbial community from Dhulibhashani, Sundarbans using 16S rRNA gene tag sequencing. Genom. Data, 2016, 7, 7678.
- Upadhyay, V. P., Ranjan, R. and Singh, J. S., Human-mangrove conflicts: the way out. Curr. Sci., 2002, 83, 1328-1336.
- Giri, C. et al., Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr., 2011, 20, 154-159.
- Sahu, S. C., Suresh, H. S., Murthy, I. K. and Ravindranath, N. H., Mangrove area assessment in India, implications of loss of mangroves. J. Earth Sci. Clim. Change, 2015, 6, 280; doi:10.4172/ 2157-7617.1000280.
- Kulkarni, R., Deobagkar, D. and Zinjarde, S., Metals in mangrove ecosystems and associated biota: a global perspective. Ecotoxicol. Environ. S a f, 2018, 153, 215-228.
- Jha, S. K., Chavan, S. B., Pandit, G. G., Negi, B. S. and Sadasivan, S., Behaviour and fluxes of trace and toxic elements in creek sediment near Mumbai, India. Environ. Monit. Assess., 2002, 76, 249-262.
- Fernandes, L., Nayak, G. N., Ilangovan, D. and Borole, D. V., Accumulation o f sediment, organic matter and trace metals with space and time, in a creek along Mumbai coast, India. Estuar. Coast S h e lf Sci., 2011, 91, 388-399.
- Kandasamy, K. A., Review o f studies on Pichavaram mangrove, Southeast India. Hydrobiologia, 2000, 430(1), 185-205.
- Ragavan, P., Mohan, P. M., Saxena, A., Jayaraj, R. S. C., Ravichandran, K. and Saxena, M., Mangrove floristics of the Andaman and Nicobar Islands: critical review and current scenario Mar. Biodivers., 2016, 48, 1291-1311; https://doi.org/10.1007/s12526-0160581-3.
- Andreote, F. D. et al., The microbiome o f Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE, 2012, 7(6), e38600.
- Alzubaidy, H. et al., Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene, 2016, 576, 626-636.
- Salter, S. J. et al., Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol., 2014, 12(1), 87.
- Bagwell, C. E., La Rocque, J. R., Smith, G. W., Polson, S. W., Friez. M. J., Longshore, J. W. and Lovell, C. R., Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. E col, 2002, 39, 113-119.
- Bird, C., Martinez, J. M., O’Donnell, A. G. and Wyman, M., Spatial distribution and transcriptional activity of an uncultured clade of planktonic diazotrophic y-proteobacteria in the Arabian Sea. Appl. Environ. Microbiol., 2005, 71, 2079-2085.
- Church, M. J., Short, C. M., Jenkins, B. D., Karl, D. M. and Zehr, J. P., Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl. Environ. Microbiol., 2005, 71, 5362-5370.
- Kim, S. J. and Kwon, K. K., Bacteroidetes, Handbook of Hydrocarbon and Lipid Microbiology, 2010, pp. 1813-1817.
- Lyimo, T. J., Pol, A. and Op den Camp, H. J. M., Methane emission, sulphide concentration and redox potential profiles in Mtoni mangrove sediment, Tanzania. Western Indian Ocean J. Mar. Sci., 2002, 1, 71-80.
- Lyimo, T. J., Pol, A. and Op den Camp, H. J. M., Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Ambio, 2002, 31, 614-616.
- Muyzer, G. and Stams, A. J., The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol., 2008, 6(6), 441-454.
- Alongi, D. M., Boto, K. G. and Robertson, A. I., Nitrogen and Phosphorus Cycles in Tropical Mangrove Ecosystems, Am Geophys Univ, Washington DC, 1992, vol. 41, pp. 251-292.
- Rodriguez, H. and Fraga, R., Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv., 1999, 17(4-5), 319-339.
- Microbial Diversity Analysis in the Oxygen Minimum Zones of the Arabian Sea using Metagenomics Approach
Abstract Views :367 |
PDF Views:127
Authors
Affiliations
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
2 ISRO Chair Professor, ISRO Space and Techn ology Cell, Savitribai Phule Pune University, Pune 411 007, IN
1 Molecular Biology Research Laboratory, Centre for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune 411 007, IN
2 ISRO Chair Professor, ISRO Space and Techn ology Cell, Savitribai Phule Pune University, Pune 411 007, IN
Source
Current Science, Vol 118, No 7 (2020), Pagination: 1042-1051Abstract
Large oxygen-depleted areas known as oxygen minimum zones (OMZs) have been reported from the Arabian Sea, and recent reports indicate that these areas are expanding at an alarming rate. In marine waters, oxygen depletion may also be related to global warming and temperature rise. The acidification and deoxygenation due to OMZs can lead to major consequences wherein the plants, fish and other biota will struggle to survive in the ecosystem. The present study has identified the microbial community structure using next generation sequencing-based metagenomics analysis in water sa mples collected at different depths from the OMZs and non-OMZs of the Arabian Sea. Environmental variables such as depth, site of collection and oxygen concentration might influence species richness and evenness among microbial communities in these locations. Our observations suggest that population dynamics of microbes consisting of nitrate reducers accompanied by sulphate reducers and sulphur oxidizers influences the interconnected geoche mical cycles of OMZs. In addition to providing baseline data related to the diversity and microbial community dynamics in waters in the OMZs; such analysis can provide insight into processes regulating productivity and ecological co mmunity structure of the ocean.Keywords
Bacterial Diversity, Metagenomics, Microbial Communities, Oxygen Minimum Zones.References
- Naqvi, S. W. A., Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea. J. Mar. Res., 1987, 45, 1049–1072.
- McCreary, J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R., Ishida, A. and Richards, K. J., Dynamics of the Indian Ocean oxygen minimum zones. Prog. Oceanogr., 2013, 112, 15– 37.
- Morrison, J. M., Codispoti, L. A., Gaurin, S., Jones, B., Manghnani, V. and Zheng, Z., Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep Sea Res. II, 1998, 45, 2053–2101.
- Naqvi, W. A., Geographical extent of denitrification in the Arabian Sea in relation to some physical processes. Oceanol. Acta, 1991, 143, 281–290.
- Stramma, L., Johnson, G. C., Sprintall, J. and Mohrholz, V., Ex-panding oxygen-minimum zones in the tropical oceans. Science, 2008, 320, 655–658.
- Sarmiento, J. L., Hughes, T. M., Stouffer, R. J. and Manabe, S., Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature, 1998, 393, 245–249.
- Keeling, R. F., Körtzinger, A. and Gruber, N., Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2010, 2, 199–229.
- DeSousa, S. N., Dileepkumar, M., Sardessai, S., Sarma, V. V. S. S. and Shirodkar, P. V., Seasonal variability in oxygen and nutrients in the central and eastern Arabian Sea. Curr. Sci., 1996, 71, 847–851.
- Morrison, J. M. et al., The oxygen minimum zone in the Arabian Sea during 1995. Deep Sea Res. II, 1999, 468, 1903–1931.
- Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S. and Kumar, D., Controlling factors of the oxygen balance in the Arabian Sea’s OMZ. Biogeosciences, 2012, 9, 5095–5109.
- Gilly, W. F., Beman, J. M., Litvin, S. Y. and Robison, B. H., Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu. Rev. Mar. Sci., 2013, 5, 393–420.
- Thamdrup, B., Dalsgaard, T., Jensen, M. M., Ulloa, O., Farias, L. and Escribano, R., Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile. Limnol. Oceanogr., 2006, 51, 2145–2156.
- Cohen, Y. and Gordon, L. I., Nitrous oxide in the oxygen min i-mum of the eastern tropical North Pacific: evidence for its con-sumption during denitrification and possible mechanisms for it s production. Deep-Sea Res., 1978, 25, 509–524.
- Diaz, R. J. and Rosenberg, R., Spreading dead zones and consequences for marine ecosystems. Science, 2008, 321, 926–929.
- Lam, P. and Kuypers, M. M., Microbial nitrogen cycling processes in oxygen minimum zones. Annu. Rev. Mar. Sci., 2011, 3, 317–345.
- Ward, B. and Zafiriou, O., Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific. Deep-Sea Res., 1988, 35, 1127–1142.
- Ward, B., Glover, H. and Lipschultz, F., Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru . Deep-Sea Res., 1989, 36, 1031–1051.
- Füssel, J. et al., Nitrite oxidation in the Namibian oxygen minimum zone. ISME J., 2011, 6, 1200–1209.
- Hamersley, M. R. et al., Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr ., 2007, 52, 923–933.
- Lam, P. et al., Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. USA, 2009, 106, 4752–4757.
- Stewart, F. J., Ulloa, O. and DeLong, E. F., Microbial meta-transcriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol., 2012, 14, 23–40.
- Ganesh, S., Parris, D. J., Delong, E. F. and Stewart, F. J., Meta-genomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J., 2014, 8, 187–211.
- Hawley, A. K., Brewer, H. M., Norbeck, A. D., Paša-Toliae, L. and Hallam, S. J., Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc. Natl. Acad. Sci. USA, 2014, 111, 11395–11400.
- Ganesh, S., Bristow, L. A., Larsen, M., Sarode, N., Thamdrup, B. and Stewart, F. J., Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J., 2015, 9, 2682–2696.
- Jayakumar, D. A., Francis, C. A., Naqvi, S. W. A. and Ward, B. B., Diversity of nitrite reductase genes nirS in the denitrifying water column of the coastal Arabian Sea. Aquat. Microbiol. Ecol., 2004, 34, 69–78.
- Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B. and Mulhol-land, M. R., Diversity, distribution, and expression of diazotroph nifH genes in oxygen-deficient waters of the Arabian Sea. FEMS Microbiol. Ecol., 2012, 82, 597–606.
- Kalvelage, T. et al., Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS ONE, 2015, 107, e0133526.
- Stevens, H. and Ulloa, O., Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol., 2008, 10, 1244–1259.
- Glass, J. B. et al., Metaomic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Front. Microbiol., 2015, 6, 1–13.
- Carlson, C. A., Morris, R., Parsons, R., Treusch, A. H., Giovannoni, S. J. and Vergin, K., Seasonal dynamics of SAR11 populations in the euphotic and mesopelagic zones of the northwestern Sargas-so Sea. ISME J., 2009, 3, 283–295.
- Gonsalves, M. J. et al., Predominance of anaerobic bacterial community over aerobic community contribute to intensify ‘oxygen minimum zone’ in the eastern Arabian Sea. Continent. Shelf Res., 2011, 31, 1224–1235.
- Pitcher, A., Villanueva, L., Hopmans, E. C., Schouten, S., Reichart, G. J., Sinninghe, J. and Damsté, S., Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J., 2011, 5, 1896–1904.
- Wyman, M., Hodgson, S. and Bird, C., Denitrifying Alphaproteo bacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Appl. Environ. Microbiol., 2013, 798, 2670–2681.
- Lüke, C., Speth, D. R., Kox, M. A. R., Villanueva, L. and Jetten, M. S. M., Metagenomic analysis of nitrogen and methane cycling in the Arabian Sea oxygen minimum zone. Peer J., 2016, 4,e1924; doi:10.7717/peerj.1924.
- Kim, O. S. et al., Introducing EzTaxon -e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol ., 2012, 62, 716–721; doi:10.1099/ijs.0.038075-0.
- Langille, M. G. et al., Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotechnol., 2013, 31, 814–821.
- Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M., Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 2014, 42(D1), D199– D205.
- Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S. and Hutten, C., Metagenomic biomarker discovery and explanation. Genome Biol., 2011, 12, R60.
- Labrenz, M., Sintes, E., Toetzke, F., Zumsteg, A., Herndl, G. J., Seidler, M. and Jürgens, K., Relevance of a crenarchaeotal su b-cluster related to Candidatus Nitrosopumilus maritimus 830 to ammonia oxidation in the suboxic zone of the central Baltic Sea. ISME J., 2010, 412, 1496–1508.
- Walker, C. B. et al., Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine Crenarchaea. Proc. Natl. Acad. Sci. USA, 2010, 107, 8818–8823.
- Konneke, M. E., de la Torre, J.R., Walker, C. B., Waterbury, J. B. and Stahl, D. A., Isolation of an autotrophic ammonia -oxidizing marine archaeon. Nature, 2005, 437, 543–546.
- Naqvi, S. W. A., Kumar, M. D., Narvekar, P. V., de Souza, S. N., George, M. D. and D’Silva, C., An intermediate nepheloid layer associated with high microbial metabolic rates a nd denitrification in the Northwest Indian Ocean. J. Geophys. Res., 1993, 98, 16469–16479.
- Koppelmann, R., Zimmermann-Timm, H. and Weikert, H., Bacterial and zooplankton distribution in deep waters of the Arabian Sea. Deep-Sea Res. I, 2005, 52, 2184–2192.
- LokaBharathi, P. A. and Chandramohan, D., Sulfate-reducing bacteria from the Arabian Sea – their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria. Bull. Mar. Sci., 1990, 47, 622–630.
- LokaBharathi, P. A., Nair, S. and Chandramohan, D., Anaerobic sulfide-oxidation in marine colorless sulfur-oxidizing bacteria. J. Mar. Biotechnol., 1997, 52(3), 172–177.
- Jayakumar, A., O’Mullan, G. D., Naqvi, S. W. A. and Ward, B. B., Denitrifying bacterial community composition changes associated with stages of denitrification in oxygen minimum zones. Microb. Ecol., 2009, 58, 350–362.
- Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A. and Jayakumar, A., Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature, 2009, 461, 78–81.
- Lavik, G. et al., Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature, 2009, 457, 581–586.
- Walsh, D. A. et al., Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science, 2009, 326, 578–582.
- Canfield, D. E. et al., A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 2010, 330, 1375–1378.
- Wang, L. P., Wang, W. P., Lai, Q. L. and Shao, Z. Z., Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ. Microbiol., 2010, 12, 1230–1242.
- Wang, W. and Shao, Z., Diversity of flavin-binding monooxygenase genes (almA) in marine bacteria capable of d egradation long-chain alkanes. FEMS Microbiol. Ecol., 2012, 80, 523–533.
- Rajpathak, S. N., Banerjee, R., Mishra, P. G., Khedkar, A. M., Patil, Y. M., Joshi, S. R. and Deobagkar, D. D., An exploration of microbial and associated functional diversity in the OMZ and non-OMZ areas in the Bay of Bengal. J. Biosci., 2018, 43, 635–648; https://doi.org/10.1007/s12038-018-9781-2.