Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Mitra, Atanu
- Green Synthesis of Copper Nanoparticles and their Antibacterial Property
Abstract Views :438 |
PDF Views:7
Authors
Gargi Dinda
1,
Dipankar Halder
1,
Carlos Vazquez-Vazquez
2,
M. Arturo Lopez-Quintela
2,
Atanu Mitra
3
Affiliations
1 Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
2 University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, ES
3 Department of Chemistry, Sree Chaitanya College, Habra, West Bengal, IN
1 Department of Food Technology & Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
2 University of Santiago de Compostela, Faculty of Chemistry, Department of Physical Chemistry, Avenida das Ciencias, s/n, 15782 Santiago de Compostela, ES
3 Department of Chemistry, Sree Chaitanya College, Habra, West Bengal, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 117-122Abstract
We report the synthesis of copper nanoparticle using a completely green protocol. Aqueous copper sulphate solution was used as a precursor of copper nanoparticle whereas L-ascorbic acid and starch acted as reducing agent and stabilizer respectively. Formation of copper nanoparticle was confirmed by colour, UV-VIS spectroscopy and X-Ray Diffraction (XRD) results. The as-synthesized copper nanoparticles show characteristic plasmonic band at 590 nm. High-Resolution Electron Microscopy (HRTEM) shows almost spherical particles having average diameters of 5.7 ± 1.8 nm. As-synthesized copper nanoparticle exhibits antibacterial activity for both Gm-positive bacteria, Bacilus subtilis and Gm-negetive bacteria, Escherecia coli. Plate count and Minimum Inhibitory Concentration (MIC) studies show higher susceptibility of B. subtilis towards copper nanoparticleKeywords
Antibacterial Activity, Copper Nanoparticle, Green SynthesisReferences
- T. K. Sau and A. L. Rogach., Adv. Mater., 22 (16), (2010).
- L. L. Beecroft and C. K. Ober, Chem. Mater., 9 (6), 1302,(1997).
- B. C. Gates, Chem. Rev., 95, 511, (1995).
- P. V. Kamat, Chem. Rev., 93, 267 (1993).
- N. A. Dhas, C. P. Raj and A. Gedanken. J. Chem Mater., 10,1446 (1998).
- R. V. Kumar, Y. Mastai, Y. Diamant and A. Gedanken, J.Mater Chem., 11, 1209 (2001).
- B. K. Park, S. Jeong, D. Kim, J. Moon, S. Lim and J. S. Kim,J. Colloid Interface Sci., 311, 417 (2007).
- X. Y. Song, S. X. Sun, W. M. Zhang and Z. L. Yin, Colloid Interface Sci., 273, 463 (2004).
- C. Vázquez-Va?zquez, M. Bañobre-Lo?pez, A. Mitra, M. A. Lo?pez-Quintela and J. Rivas. Langmuir, 25, 8208 (2009).
- W. U. Songping and S. Meng, J. Mat. Lett., 60, 2438 (2006).
- Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou and C. Wong, ACS Appl. Mater. Interfaces, 6, 560 (2014).
- W. Yu, H. Xie, L. Chen, Y. Li and C. Zhang, Nanoscale Res.Lett., 4, 465 (2009).
- M. Biçer and I. ?i?man, Powder Technol., 198, 279 (2010).
- P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc.,125, 13940 (2003).
- L. Behlau and G. Widmann, Thermal Analysis Applications: Food Handbook. Mettler-Toledo International Inc.
- V. K. Sharma, R. A. Yngard and L. Yekatarina, Adv. Colloid Interface Sci., 145, 83 (2009).
- G. Sathishkumar, C. Gobinath, K. Karpagam, V. Hemamalini, K. Premkumar and S. Sivaramakrishnan, Colloids Surf. B: Biointerfaces, 95, 235 (2012).
- S. Kumar, M. Singh, D. Halder and A. Mitra, Colloids and Surf. A: Physicochemical and Engineering Aspects, 449, 82
- (2014).
- S. Pal, Y. K. Tak, and J. M. Song, Appl. Environ. Microbiol., 73, 1712 (2007).
- Z. Lu, K. Rong, J. Li, H. Yang and R. Chen, J. Mater. Sci., 24, 1465 (2013).
- A. Panacek, L. Kv?tek, R. Prucek, M. Kolar, R. Vecerova, N. Pizurova, V. K. Sharma, T. Evecna, and R. Zboril, J. Phys.Chem B., 110, 16248 (2006).
- M. Veerapandian and S. Sadhasivam, J. Choi and K. Yun, Chem. Eng. J., 209, 558 (2012).
- Characterization of Silver Nanoparticles Synthesized using Latex of Jatropha curcas and Lannea grandis
Abstract Views :314 |
PDF Views:2
Authors
Affiliations
1 Department of Food Processing Technology, Central Institute of Technology, Kokrajhar, BTAD, Assam - 783370, IN
2 Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
3 Department of Chemistry, Sree Chaitanya College, Habra, IN
1 Department of Food Processing Technology, Central Institute of Technology, Kokrajhar, BTAD, Assam - 783370, IN
2 Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata-700032, IN
3 Department of Chemistry, Sree Chaitanya College, Habra, IN
Source
Journal of Surface Science and Technology, Vol 32, No 3-4 (2016), Pagination: 115–120Abstract
This paper reports rapid and eco-friendly biosynthesis of silver nanoparticles using latex of two different plants Jatropha curcas (Jc) and Lannea grandis (Lg). Latex of these plants act as both reducing as well as capping agent. The surface plasmon resonance (SPR) band of as-synthesized silver nanocolloids (AgNC) appeared at 440 nm and 415 nm for the AgNC synthesized by latex of Jc and Lg, respectively. TEM images show that the latex of Lg produced smaller regular-shaped particles than those produced by latex of Jc. The influence of different synthesis parameters like concentration of latex, concentration of metal ion, time of reaction etc., on the morphology of the particles were also studied by monitoring UV-Vis spectra of the samples.Keywords
Green Synthesis, Latex Extract, Silver Nanoparticle, Surface Plasmon Resonance (SPR).References
- K. M. M. Abou El-Noura, A. Eftaihab, A. Al-Warthanb and R. A. A. Ammarb, Arab. J. Chem., 3, 135 (2010).
- Q. H. Tran, V. Q. Nguyen, and A. T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol., 4, 1 (2013).
- A. Sooresh, H. Kwon, R. Taylor, P. Pietrantonio, M. Pine and C. M. Sayes, ACS Appl. Mater. Interfaces, 3, 3779 (2011).
- M. Severance and P. K. Dutta, J. Phys. Chem. C, 118, 28580 (2014).
- M. Nasrollahzadeh, S.M. Sajadi, F. Babaei and M. Maham, J. Colloid Interface Sci., 450, 374 (2015).
- A. A. Ragachev, M. A. Yarmolenko, J. Xiaohong, R. Shen, P. A. Luchnikov and A. V. Rogachev, Appl Surf. Sci. 351, 811 (2015).
- D. Nayak, S. Pradhan, S. Ashe, P. R. Rauta, M. Kumari and B. Nayak, Mat. Sci. Eng C, 58, 44 (2016).
- X. Cui, C. M. Li, H. Bao, X. Zheng, J. Zang, C. P. Ooi, and J. Guo, J. Phys. Chem. C, 112, 10730 (2008).
- T. K. Sau, and A. L. Rogach, Adv. Mater. 22, 1781 (2010).
- M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Chem. Rev. 111, 3669 (2011).
- H. M. Chen and R. S. Liu, J. Phys. Chem. C. 115, 3513 (2015).
- J. H. Byeon and Y. W. Kim, Ultrason. Sonochem. 19, 209 (2012).
- R. Eluri and B. Paul, Mater. Lett. 76, 36 (2012).
- M. Basuny, I. O. Ali, A. A. El-Gawad, M. F. Bakr and T. M. Salama, J. Sol-Gel Sci. Technol. 75, 530 (2015).
- X. Wang, Y. Lin, F. Gu, Z. Liang and X. F. Ding, J. Alloys Compd. 509, 7515 (2011).
- Y. Zhao, A. Chen and S. Liang, J. Cryst. Growth 372, 116 (2013).
- N. Jayaprakash, J. Judith Vijaya, L. John Kennedy, K. Priadharsini and P. Palani, Mater. Lett. 137, 358 (2014).
- V. K. Shukla, R. P. Singh and A. C. Pandey, J. Alloys Compd. 507, 13 (2010).
- B. Mohapatra, S. Kuriakose and S. Mohapatra, J. Alloys Compd. 637, 119 (2015).
- A. Vanaamudan, H. Soni and P. Padmaja Sudhakar, J. Mol. Liq. 215, 787 (2016).
- J. Das, M. Paul Das and P. Velusamy, Spectrochim. Acta Part A 104, 265 (2013).
- S. Kumar, M. Singh, D. Halder and A. Mitra, Colloids Surf A: Physicochem. Eng. Aspects, 449, 82 (2014).
- J. S. Valli and B. Vaseeharan, Mater. Lett. 82, 171 (2012).
- A. Saxena, R. M. Tripathi, F. Zafar and P. Singh, Mater. Lett. 67, 91 (2012).
- S. Kumar, M. Singh, D. Halder and A. Mitra, Appl Nanosci. 6, 1001 (2016).
- R. Kumari, G. Brahma, S. Rajak, M. Singh and S. Kumar, Orient Pharm. Exp. Med., 16, 195 (2016)
- F. A. Basir, S. Datta and P. K. Roy, Fuel ,158, 503 (2015).
- H. Bar, K. D. Bhui, P. G. Sahoo, P. Sarkar, S. P. Dey and A. Misra, Colloids Surf A: Physicochem. Eng. Aspects 339, 134 (2009).
- A. J. Van den Berg, S. F. Horsten, J. J. Kettenes-van den Bosch, B. H. Kroes, C. J. Beukelman, B. R. Leeflang, R. P. Labadie, FEBS Letters 358, 215 (1995).
- O. Osoniyi and F. Onajobi, J. Ethnopharmacol. 89, 101 (2003).
- P. Mulvaney, Langmuir, 12, 788 (1996).
- R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, C. A. Mirkin, Nature, 425, 487 (2003).
- Study of Adsorption of Malachite Green on Dried Aspergillus versicolor (MTCC280) Biomass
Abstract Views :340 |
PDF Views:8
Authors
Affiliations
1 Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata, IN
2 Department of Chemistry, Sree Chaitanya College, Habra, North 24-Parganas, West Bengal, IN
1 Department of Food Technology & Bio-Chemical Engineering, Jadavpur University, Kolkata, IN
2 Department of Chemistry, Sree Chaitanya College, Habra, North 24-Parganas, West Bengal, IN
Source
Journal of Surface Science and Technology, Vol 33, No 1-2 (2017), Pagination: 70–78Abstract
Dyes are extensively used in textile, tannery, food, paper and pulp, printing industries to color their products. About 10-15% of the annual global production (2,80,000 tons) of dyes are discharged as effluent mainly by textile and paint industries. The majority of the dyes are toxic and cause damage to aquatic life. In this study biosorption of Malachite Green (MG) onto the lyophilised Aspergillus versicolor Biomass (AVB) was investigated with variation in pH, temperature, contact time, biosorbent concentration and dye concentration. Characterization of the dye-biosorbent interaction was studied by scanning electron microscopy. It was observed from the present study that the biosorption of Malachite green was maximum at pH 5.0, temperature of 30°C, and adsorbent concentration of 2g/L. The rate of adsorption was found to be very fast at the initial phase and the equilibrium reached within 270 min following the pseudo-second order rate kinetics. The adsorption process followed Freundlich Isotherm model. The treated and untreated AVB was characterized for the investigation of possible dye-biosorbent interaction and surface morphology by Fourier Transform Infrared (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) respectively. The results show that the present study may help designing a promising route towards bioremediation of the hazardous chemical MG.Keywords
Biosorption, Isotherm, Kinetics, Malachite Green, SEM.References
- X. J. Wang, X. Y. Gu, D. X. Lin, F. Dong, X. F. Wan, Dyes Pigm. 74(3), 736 (2007).
- H. Zollinger, “Colour chemistry-synthesis, properties and applications of organic dyes and pigments”. VCH, New York, 92(1987).
- C. O’Neill, F. R. Hawkes, D. L. Hawkes, N. D. Lourenyo, H. M. Pinheiro, W. Delee, J. Chem. Technol. Biotechnol., l74,1009-1018(1999).
- H. Ali, Water Air Soil Pollut., doi l007/s 11270-010-03824(2010).
- Q. Husain, Crit. Rev. Biotechnol., 26, 201-221 (2006).
- M. Sastri, A. Ahmad, M.I. Khan, R. Kumar, Curr. Sci. 85, 162-170 (2003).
- Li, N., Bai, R., Sep. Purif. Technol. 42, 237-247 (2005).
- S. K. Das, J. Bhowal, A. R. Das, A. K. Guha, Langmuir. 22, 7265-7272 (2006).
- K. Gupta, Om P. Khatri J. Colloid Interface Sci. 501, 11–21(2017) .
- T. O’Mahony, E. Guibal, J. M. Tobin, Enzyme Microb. Technol. 31, 456–463 (2002).
- A. Ozer, G. Akkaya, M. Turabik, J. Hazard. Mater. B.126, 119–127 (2005).
- Z. DonmezAksu, A. Ozturk, T. A. Kutsal, Process Biochem. 34,885-92 (1999).
- X. F. Sun, S. G. Wang, X. W. Liu, W. X. Gong, N. Bao, B. Y. Gao, H. Y. Zhang, Bioresour. Technol. 99, 3475–3483 (2008).
- F. Deniz , R. A. Kepekci, J. Mol. Liq. 219,194–200 (2016).
- P. Saha, S. Chowdhury, S. Gupta, I. Kumar, R. Kumar, Clean. 38(5–6), 437 (2010).
- M. Hema, S. Arivoli, J. Appl. Sci. Environ. Manage. 12, 43 (2008).
- C. Y. Tan, G. Li, X. Q. Lu, Z. L. Chen, Ecol. Eng. 36, 1333– 1340 (2010).
- E. Daneshvar, A. Vazirzadeh, A. Niazi, M. Sillanpää, A. Bhatnagar, Chem. Eng. J. 307, 435–446 (2017).
- M. S. Mahmoud, M. K. Mostafa, S. A. Mohamed, N. A. Sobhy, M. Nasrd, J. Environ. Chem. Eng. 5, 547–554 (2017).
- G. C. Imelda, M. B. Liliana, C. U. Eliseo J. Environ. Manage 152, 99-108 (2015).
- Y.S Ho, G. McKay, Water Res. 33(2), 578 (1999).
- Y.S. Ho, G. McKay, Chem. Eng. J. 70, 115 (1998).
- K.V. Kumar, S. Sivanesan, V. Ramamurthi, Process Biochem. 40, 2865–2872 (2005).
- H. Bairagia, M. M. R. Khan, L. Raya, A. K. Guha, J. Hazard. Mater. 186, 756–764 (2011).
- F. Deniz, E.T. Ersanli, Microchem. J. 128, 312-319 (2016).
- S. Agarwal, I. Tyagi , V. K. Gupta, N. Ghasemi, M. Shahiv, M. Ghasemi, J. Mol. Liq. 218, 208–218 (2016).
- A. Sari, M. Tuzen, D. Citak, M. Soylak, J. Hazard. Mater. 149, 283–291 (2007).
- R. Rakhshaee, M. Khosravi, M.T. Ganji, J. Hazard. Mater. 134, 120–129 (2006).
- T. Akar, I. Tosun, Z. Kaynak, E. Kavas, G. Incirkus, S. T. Akar, J. Hazar. Mater. 171, 865–871( 2009).
- L. Jin, R. Bai, Langmuir. 18, 9765–9770 (2002).
- J. R. Heber, R. Stevenson, O. Boldman, Science. 116, 111– 116 (1952).
- E. Guibal. C. Roulph, P. Cloirec, Environ. Sci. Technol. 29, 2496–2503 (1995).
- J. Schmitt, H. C. Flemming, Int. Biodeterior. Biodegrad. 41, 1–11 (1998).
- G. Naja, C. Mustin, J. Berthelin, B. Volesky, J. Colloid Interface Sci. 292, 537–543 (2005).
- J. Mao, S. W. Won, S. B. Choi, M. W. Lee, Y. S. Yun, Biochem. Eng. J. 46, 1–6 (2009).
- K. Vijayaraghavan, S. W. Won, J. Mao, Y. S. Yun, Chem. Eng. J. 145, 1–6 (2008).
- M. H. Han, Y. S. Yun, Biochem. Eng. J. 36, 2–7 (2007).
- Z. Chen, H. Deng, C. Chen, Y. Yang, H. Xu, J. Environ. Health Sci. Eng. 12, 63 (2014).