Refine your search
Collections
Co-Authors
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Biswas, Ashis
- Structural Features of Molecular Chaperones: A Possible Micellar Connection
Abstract Views :243 |
PDF Views:2
Authors
Affiliations
1 Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla, Chandra Road, Kolkata-700 009, IN
1 Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla, Chandra Road, Kolkata-700 009, IN
Source
Journal of Surface Science and Technology, Vol 18, No 1-2 (2002), Pagination: 1-24Abstract
Molecular chaperones are generally proteins, which assist other unrelated proteins to achieve their correct fate in vivo, be that proper folding, oligomeric assembly, subcellular localization, etc. It is not yet known what features of a protein make it a chaperone. Since both protein and non-protein molecules are now known to function as chaperones, we have compared the structural features of many known chaperones to identify common distinctive feature. Our study reveals that many known chaperones have a micelle type organization as a common feature. Even non-protein chaperones have similar structural features. Other factors such as possession of hydrophobic and hydrophilic domains, flexibility of the structure and solubilising capacity of the protein are also important. Based on these features we predicted that tubulin and a random coil protein, αs-casein may possess chaperone-like activity. These predictions have been verified by experiments in our laboratory and our results clearly show that both tubulin and casein acts as effective molecular chaperones.- Structural Stabilization and Functional Enhancement of Miceller Protein α-Crystallin by ATP and Zn2+
Abstract Views :364 |
PDF Views:2
Authors
Affiliations
1 Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata - 700 009, West Bengal, IN
1 Protein Chemistry Laboratory, Department of Chemistry, Bose Institute, 93/1 A.P.C. Road, Kolkata - 700 009, West Bengal, IN
Source
Journal of Surface Science and Technology, Vol 31, No 1-2 (2015), Pagination: 13-20Abstract
α-Crystallin is the most abundant protein of the eye lens. It has a micelle like associated structure and has a special chaperone- like property to prevent aggregation of other proteins. This function of α-crystallin plays a crucial role in maintaining the transparency of eye lens. Because of the absence of protein turn over in the lens, the proteins in the lens must survive the entire lifetime of the living species. This requires high structural stability of α-crystallin. In this article we present a brief review of our work on the mechanism of stabilization of α-crystallin by Zn. We have shown that some metal ions, Zn in particular play a very important role in enhancing the function of α-crystallin by enhancing its exposed hydrophobic surface. We have also characterized the Zn binding to α-crystallin by MALDI mass spectrometry and have shown that the structural stabilization occurs through intersubunit bridging by Zn. The binding region in the α-crystallin sequence has also been identified. The physiological relevance of enhanced chaperone function and structural stability is discussed.Keywords
Alpha Crystallin, Chaperone Function, Eye Lens Protein, Metal Binding, Miceller Protein, Protein AggregationReferences
- J. Harding, “Cataract : Biochemistry, Epidemiology and Pharmacology”, Chapman and Hall, London, 1991.
- J. Forrester, A. Dick, P. McMenamin and W. Lee, “The Eye: Basic Sciences in Practice”, W. B. Saunders Company Ltd., London, 1996, pp. 28.
- H. J. Hoenders and H. Bloemendal, “Molecular and Cellular Biology of the Eye Lens”, ed. H. Bloemendal, John Wiley & Sons, New York, 1981, 279.
- J. Horwitz, Alpha-crystallin can function as a molecular chaperone, Proc. Natl. Acad. Sci. U.S.A., 89, 10449 (1992).
- B. Raman and C. M. Rao, J. Biol. Chem., 26, 27264 (1994).
- B. Raman, T. Ramakrishna and C. M. Rao, FEBS Lett., 365,133 (1995).
- K. P. Das and W. K. Surewicz, FEBS Lett. 369, 321 (1995).
- K. P. Das and W. K. Surewitz, Biochem. J., 311, 367 (1995).
- K. P. Das, J. M. Petrash and W. K. Surewicz, J. Biol. Chem. 271, 10449 (1996).
- J. Bhattacharyya, and K. P. Das, Biochem. Mol. Biol. Int., 46,249 (1998).
- G. B. Reddy, K. P. Das, J. M. Petrash and W. K. Surewicz, J.Biol. Chem., 275, 4565 (2000).
- K. P. Das, L. P. Choo-Smith, J. M. Petrash and W. K. Surewicz, J. Biol. Chem. 274, 33209 (1999).
- M. Maiti, M. Kono and B. Chakroborty, FEBS Lett. 236, 109 (1988).
- J. G. Bindles, R. J. Sizen, H. J. Hoenders, Opthalmic Res., 11,441 (1979).
- M. T. Walsh, A. C. Sen and B. Chakroborty, J. Biol. Chem.266, 20079 (1991).
- R. C. Augusteyn and J. F. Koretz, FEBS Lett., 222, 1 (1987).
- G. Wistow, Exp. Eye. Res., 56,729 (1993).
- A. Biswas, S. Saha and K. P. Das, J. Surface. Sci. Technol., 18,1 (2002).
- F. U. Hart, Nature, 381, 571(1996).
- K. Braig, Z. Otwinowski, R. Hedge, D. C. Boisvert, A. Joachimik, A. L. Horwich and P. B. Singler, Nature, 371, 578 (1994).
- D. C. Boisvert, J. Wang, Z. Otwinowski, A. L. Horwich and P. B. Singler, Nature. Struc. Biol., 3, 170 (1996).
- P. J. Muchowski and J. I. Clark, Proc. Natl. Acad. Sci. U. S. A.,95, 1004 (1998).
- D. Nath, U. Rawat and M. Rao, Protein Sci., 119, 2727 (2002).
- K. Wang and A. Spector, Eur. J. Biochem., 267, 4705 (2000).
- F. Narberhaus, Mol. Biol. Rev., 66, 64(2002).
- J. Horwitz, Exp. Eye Res., 76, 145 (2003).
- A. Biswas and K. P. Das, J. Biol. Chem., 279, 42648 (2004).
- A. Biswas and K. P. Das, Biochemistry, 47, 804 (2008).
- S. Karmakar and K. P. Das, Biopolymers, 95, 105 (2011).
- S. Karmakar and K. P. Das, Protein J., 31, 623 (2012).
- A. Biswas, S. Karmakar, A. Chowdhury and K. P. Das, Biochim. Biophys. Acta. General, in press, (2015).
- A. Biswas, S. Karmakar, V. Banerjee, S. Saha, M. Kundu, J. Bhattacharyya, D. C. Konar and K. P. Das. J. Indian Chem.Soc., 88, 1827 (2011).
- J. V. Greiner, S. J. Kopp and T. Glonek, Invest. Ophthalmol. Vis. Sci., 26, 537 (1985).
- B. S. Khakh and G. Burnstock, Sci. Am., 301, 84 (2009).
- A. Spector, R. Chiesa, J. Sredy and W. Garner, Proc. Natl.Acad. Sci. U S A., 82, 4712 (1985).
- C. E. Vooter, J. W. Mulders, H. Bloemendal and W. W. de Jong, A, Eur. J. Biochem., 160, 203 (1986).
- M. C. Reddy, D. V. Palmisano, B. Groth-Vasselli and P. N. Farnsworth, Biochem. Biophys. Res. Commun., 189, 1578 (1992).
- D. V. Palmisano, B. Groth-Vasselli, P. N. Farnsworth and M. C. Reddy, Biochim. Biophys. Acta, 1246, 91 (1995).
- M. Kantorow and J. Piatigorsky, Proc. Natl. Acad. Sci. U. S. A., 91, 3112 (1994).
- M. Kantorow, J. Horwitz, M. A. M. Van Boekel. W. W. de Jong and J. Piatigorosky, J. Biol. Chem., 270, 17215 (1995).
- K. Wang and A. Spector, Eur. J. Biochem., 268, 6335 (2001).
- K. Wang, W. Ma and A. Spector, Exp. Eye Res., 61, 115 (1995).
- B. H. Grahn, P. G. Paterson, K. T. Gottschall-Pass and Z. Zhang, J. Am. Coll. Nutr., 20, 106 (2001).
- J. S. Fabe, B. H. Grahn and P. G. Paterson, Biol. Trace. Elem. Res., 75, 43 (2000).
- H. Birkedal-Hansen, W. G. Moore, M. K. Bodden, L. J. Windsor, B. Birkedal-Hansen, A. DeCarlo and J. A. Engler, Crit. Rev. Oral Biol. Med., 4, 197 (1993).
- E. Koumantakis, D. Alexiou, A. Grimanis, D. Kaskarelis and A. Bouzas, Ophthalmologica, 186, 41 (1983).
- S. Okuyama, S. Hashimoto, H. Aihara, W. M. Willingham and J. R. Sorenson, Agents Actions, 21, 130 (1987).
- Y. Sharma, C. M. Rao, M. L. Narasu, S. C. Rao, T. Somasundaram, A. Gopalakrishna and D. Balasubramanian, J. Biol. Chem. 264, 12794 (1989).
- B. Rajini, P. Shridas, C. S. Sundari, D. Muralidhar, S. Chandani, F. Thomas, and Y. Sharma, J. Biol. Chem., 276,38464 (2001).
- L. J. del Valle, C. Escribano, J. J. Perez, and P. Garriga, Biochim. Biophys. Acta, 1601, 100 (2002).
- I. Marini, L. Bucchioni, M. Voltarelli, A. Del Corso, and U. Mura, Biochem. Biophys. Res. Commun., 212, 413 (1995).
- A. Coi, A. M. Bianucci, M. L. Ganadu, and G. M. Mura, Int. J. Biol. Macromol., 36, 208 (2005).
- M. L. Ganadu, M. Aru, G. M. Mura, A. Coi, P. Mlynarz and H. Kozlowski, J. Inorg. Biochem., 98, 1103 (2004).
- T. X. Sun, N. J. Akhtar and J. J. Liang, J. Biol. Chem. 274, 34067 (1999).
- B. K. Das, T. Bhattacharyya and S. Roy, Biochemistry, 34, 5242 (1995).
- A. Biswas and K. P. Das, Biopolymers, 85, 189 (2007).
- M. Holmgren, K. S. Shin and G. Yellen, Neuron, 21, 617 (1998).
- S. M. Webster, D. C. Del, J. P. Dekker and G. Yellen, Nature, 428, 864 (2004).
- E. J. Neale, D. J. Elliot, M. Hunter and A. J. Sivaprasadrao, Biol. Chem., 278, 29079 (2003).
- O. P. Srivastava, K. Srivastava and C. Silney, Curr. Eye Res., 5, 511 (1996).
- P. Santhoshkumar, P. Udupa, R. Murugesan, K. K. Sharma, J. Biol. Chem., 283, 8477 (2008).
- P. Santhoshkumar, M. Raju, K. K. Sharma, PLoS One 6, e19291 (2011).