Refine your search
Co-Authors
- Stanley Hartland
- S. V. Mohankumar
- Tirtha Pratim Das
- P. Pradeepkumar
- P. Sreelatha
- B. Sundar
- Amarnath Nandi
- Dinakar Prasad Vajja
- M. B. Dhanya
- Neha Naik
- G. Supriya
- R. Satheesh Thampi
- G. Padma Padmanabhan
- Vipin K. Yadav
- A. V. Aliyas
- Bhalamurugan Sivaraman
- P. Janardhan
- Santosh Vadawale
- Bhas Bapat
- K. P. Subramanian
- D. Chakrabarty
- Prashant Kumar
- Aveek Sarkar
- Nandita Srivastava
- Govind G. Nampoothiri
- J. K. Abhishek
- K. Subhalakshmi
- M. Shanmugam
- S. V. Vadawale
- Arpit R. Patel
- Hitesh Kumar Adalaja
- N. P. S. Mithun
- Tinkal Ladiya
- Shiv Kumar Goyal
- Neeraj K. Tiwari
- Nishant Singh
- Sushil Kumar
- Deepak Kumar Painkra
- Y. B. Acharya
- A. K. Hait
- A. Patinge
- Abinandhan Kapoor
- H. N. Suresh Kumar
- Neeraj Satya
- Gaurav Saxena
- Kalpana Arvind
- Abhishek Kumar
- Saleem Basha
- Vivek R. Subramanian
- R. G. Venkatesh
- D. B. Prashant
- Sonal Navle
- S. V. S. Murty
- D. Ray
- A. D. Shukla
- Jayesh Pabari
- Varun Sheel
- K. Durga Prasad
- Dibyendu Misra
- Amitabh
- Megha Bhatt
- G. Ambily
- Sachana Sathyan
- Neeraj Srivastava
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Bhardwaj, Anil
- Influence of Surface Pressure and Partition Coefficient of Demulsifier on Demulsification Rate
Abstract Views :271 |
PDF Views:2
Authors
Affiliations
1 Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, CH-8092, Zurich, CH
1 Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, CH-8092, Zurich, CH
Source
Journal of Surface Science and Technology, Vol 9, No 1-4 (1993), Pagination: 87-97Abstract
Chemicals are used for demulsification of water in crude oil emulsions. Composition of commercially available demulsifiers is seldom clearly known. In this work, demulsification has been studied with chemicals of known composition, like aliphatic and aromatic alcohols, Triton X-45, Triton X-114 and Triton N-101 and commercial ethyleneoxide/propyleneoxide block copolymers. Demulsification performance was correlated with chemical composition, surface pressure and partition coefficient of demulsifiers. High molecular weight, high surface pressure and unit partition coefficient led to best demulsification.Keywords
Surface Tension, Partition Coefficient, Demulsifier, Demulsification Rate.- MENCA experiment aboard India’s Mars Orbiter Mission
Abstract Views :385 |
PDF Views:166
Authors
Anil Bhardwaj
1,
S. V. Mohankumar
1,
Tirtha Pratim Das
1,
P. Pradeepkumar
1,
P. Sreelatha
1,
B. Sundar
1,
Amarnath Nandi
1,
Dinakar Prasad Vajja
1,
M. B. Dhanya
1,
Neha Naik
1,
G. Supriya
1,
R. Satheesh Thampi
1,
G. Padma Padmanabhan
1,
Vipin K. Yadav
1,
A. V. Aliyas
1
Affiliations
1 Vikram Sarabhai Space Centre, Indian Space Research Organisation, Thiruvananthapuram 695 022, IN
1 Vikram Sarabhai Space Centre, Indian Space Research Organisation, Thiruvananthapuram 695 022, IN
Source
Current Science, Vol 109, No 6 (2015), Pagination: 1106-1113Abstract
The Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Indian Mars Orbiter Mission (MOM) is a quadrupole mass spectrometer-based experiment. Making use of the highly elliptical and low inclination (~150°) orbit of MOM, MENCA will conduct in situ measurements of the composition and radial distribution of the Martian neutral exosphere in the 1–300 amu mass range in the equatorial and low latitudes of Mars. The functionality of MENCA has been tested during the Earth-bound and heliocentric phases of MOM before its operation in the Martian orbit. This article describes the scientific objectives, instrument details, design and development, test and evaluation, and calibration of the MENCA instrument.Keywords
Exosphere, Mars Orbiter, mass spectrometer, thermal escape.References
- Lammer, H. et al., Outgassing history and escape of the Martian atmosphereand water inventory. Space Sci. Rev., 2003, 174, 113–154
- Dennerl, K. et al., First observation of Mars with XMM Newton. Highresolution X-ray spectroscopy with RGS. Astron. Astrophys.,2006, 451, 709–722; doi:10.1051/0004-6361:20054253.
- Neir, A. O. et al., Composition and structure of the Martian atmosphere: preliminary results from Viking 1. Science, 1976,193, 786–788.
- Nier, A. O. and McElroy, M. B., Structure of the neutral upper atmosphereof Mars: results from Viking 1 and Viking 2. Science,1976, 194, 1298–1300.
- Kallio, E., Chaufray, J. V., Modolo, R., Snowden, D. and Winglee, R., Modeling of Venus, Mars and Titan. Space Sci. Rev., 2011,162, 267–307.
- Chaufray, J. Y., Bertaux, J. L., Leblanc, F. and Quémerais, E., Observation ofthe hydrogen corona with SPICAM on Mars Express.Icarus, 2008, 195(2), 598–613.
- Chaufray, J. Y., Leblanc, F., Quemerais, E. and Bertaux, J. L., Martianoxygen density at the exobase deduced from O I 130.4- nmobservations by SPICAM on Mars Express. J. Geophys. Res.(Planets), 2009, 114, E02006, doi:10.1029/2008JE003130.
- Bruinsma, S., Forbes, J. M., Marty, J. C., Zhang, X. and Smith, M. D., Long-term variability of Mars’ exosphere based on precise orbital analysisof Mars Global Surveyor and Mars Odyssey. J. Geophys.Res. Planets, 2014, 119, 210–218.
- Feldman, P. D. et al., Rosetta-Alice observations of exospheric hydrogenand oxygen on Mars. Icarus, 2013, 214, 394–399.
- Krasnopolsky, V. A. and Gladstone, G. R., Helium on Mars: EUVEand PHOBOS data and implications for Mars’ evolution. J. Geophys. Res., 1996, 101, 15765–15772.
- Fox, J. L., Response of the Martian thermosphere/ionosphere to enhancedfluxes of solar soft X-rays. J. Geophys. Res., 2004, 109,A11310.
- Chaufray, J. Y., Modolo, R., Leblanc, F., Chanteur, G., Johnson, R. E. and Luhmann, J. G., Mars solar wind interaction: formation ofthe Martian corona and atmospheric loss to space. J. Geophys.Res., 2007, 112, E09009; doi:10.1029/2007JE002915.
- Yagi, M., Leblanc, F., Chaufray, J. Y., Gonzalez-Galindo, F., Hess, S. and Modolo, R., Mars exospheric thermal and nonthermal components: seasonal and local variations. Icarus, 2012,221, 682–693.
- Sridharan, R., Ahmed, S. M., Das, T. P., Sreelatha, P., Pradeepkumar, P., Naik, N. and Supriya, G., Direct evidence of water (H2O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan-1. Planet. Space Sci., 2010, 58, 947–950.
- Sridharan, R., Das, T. P., Ahmed, S. M. and Bhardwaj, Anil, Indicators forlocalized regions of heavier species in the lunar surface fromCHACE on Chandrayaan-1. Curr. Sci., 2013, 105(11), 1470–1472.
- Sridharan, R., Das, T. P., Ahmed, S. M., Supriya, Gogulapati, Bhardwaj, Anil and Kamalakar, J. A., Spatial heterogeneity in the radiogenicactivity of the lunar interior: inferences from CHACE andLLRI on Chandrayaan-1. Adv. Space Res., 2013, 51, 168–178.
- Thampi, S. V., Sridharan, R., Das, T. P., Ahmed, S. M., Kamalakar, J. A. and Bhardwaj, Anil, The spatial distribution of molecular hydrogenin the lunar atmosphere – new results. Planet. Space Sci., 2015, 106, 142–147; http://dx.doi.org/10.1016/j.pss.2014.12.018
- Mars Orbiter Mission environmental level specifications, ISROISAC-MOM-PR-2063. ISRO internal document with restricted access, December 2012.
- Life on Mars: What to Know Before We Go. David A. Weintraub
Abstract Views :472 |
PDF Views:176
Authors
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, India, IN
1 Physical Research Laboratory, Ahmedabad 380 009, India, IN
Source
Current Science, Vol 121, No 8 (2021), Pagination: 1120-1121Abstract
No Abstract.- Probing the Heliosphere Using in Situ Payloads On-Board Aditya-L1
Abstract Views :380 |
PDF Views:162
Authors
P. Janardhan
1,
Santosh Vadawale
1,
Bhas Bapat
2,
K. P. Subramanian
1,
D. Chakrabarty
1,
Prashant Kumar
1,
Aveek Sarkar
1,
Nandita Srivastava
1,
R. Satheesh Thampi
3,
Vipin K. Yadav
3,
M. B. Dhanya
3,
Govind G. Nampoothiri
3,
J. K. Abhishek
3,
Anil Bhardwaj
1,
K. Subhalakshmi
4
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Indian Institute of Science Education and Research, Pashan, Pune 411 008, IN
3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
4 Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Indian Institute of Science Education and Research, Pashan, Pune 411 008, IN
3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, IN
4 Laboratory for Electro-Optics Systems, ISRO, Bengaluru 560 058, IN
Source
Current Science, Vol 113, No 04 (2017), Pagination: 620-624Abstract
Aditya-L1, the first ever Indian scientific space mission dedicated to probe the Sun, our nearest star, is slated for launch by the Indian Space Research Organisation (ISRO) most likely in 2020, the year coinciding with the expected start of the rising phase of solar cycle 25. Of the seven science payloads on-board Aditya-L1, three are in situ instruments, namely the Aditya Solar wind Particle Experiment, the Plasma Analyser Package for Aditya and a magnetometer package. These three payloads will sample heliospheric data from the L1 Lagrangian point of the Sun-Earth system, at a distance of ~1% of the distance to the Sun, along the Sun-Earth line. This is therefore a unique opportunity for the solar physics community to gain a better understanding of the inner heliosphere and predict space weather more accurately.Keywords
Aditya-L1, Heliosphere, Payload, Solar Wind Plasma.References
- Holzer, T. E., In ESA Special Publication, Solar Wind 11/SOHO 16, Connecting Sun and Heliosphere (eds Fleck, B., Zurbuchen, T. H. and Lacoste, H.), 2005, Vol. 592, p. 115.
- Bridge, H. S., Plasmas in space. Phys. Today, 1963, 16, 31.
- Ness, N. F., The Interplanetary Medium. In Introduction to Space Science, 1965, p. 323.
- Parker, E. N., Dynamics of the interplanetary gas and magnetic fields. ApJ, 1958, 128, 664.
- Holzer, T. E. and Axford, W. I., The theory of stellar winds and related flows. Ann. Rev. Astron. Astrophys., 1970, 8, 31.
- Belcher, J. W. and Davis Jr, L., Large-amplitude Alfvén waves in the interplanetary medium 2. JGR, 1971, 76, 3534.
- Leer, E. and Holzer, T. E., Energy addition in the solar wind, JGR, 1980, 85, 4681.
- Bame, S. J., Asbridge, J. R., Feldman, W. C., Montgomery, M. D. and Gary, S. P., Evidence for local ion heating in solar wind high speed streams. GRL, 1975, 2, 373.
- Kasper, J. C., Lazarus, A. J. and Gary, S. P., Hot solar-wind helium: direct evidence for local heating by Alfven-cyclotron dissipation. Phys. Rev. Lett., 2008, 101, 261103.
- Pilipp, W. G. et al., Variations of electron distribution functions in the solar wind. JGR, 1987, 92, 1103.
- Marsch, E. et al., Solar wind protons – three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. JGR, 1982, 87, 52.
- Bale, S. D. et al., Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett., 2009, 103, 211101.
- Lie-Svendsen, Ø., Holzer, T. E. and Leer, E., Electron heat conduction in the solar transition region: validity of the classical description. ApJ, 1999, 525, 1056.
- Rosenbauer, H. et al., A survey on initial results of the HELIOS plasma experiment. J. Geophys., 1977, 42, 561.
- Pierrard, V., Maksimovic, M. and Lemaire, J., Electron velocity distribution functions from the solar wind to the corona. JGR, 1999, 104, 17021.
- Vocks, C. and Mann, G., Generation of suprathermal electrons by resonant wave–particle interaction in the solar corona and wind. ApJ, 2003, 593, 1134.
- Vourlidas, A. et al., Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. ApJ, 2010, 722, 1522.
- Howard, R. A., Michels, D. J., Sheeley Jr, N. R. and Koomen, M. J., The observation of a coronal transient directed at earth. ApJL, 1982, 263, L101.
- Hirshberg, J., Asbridge, J. R. and Robbins, D. E., Velocity and flux dependence of the solar–wind helium abundance. JGR, 1972, 77, 3583.
- Lepri, S. T. and Zurbuchen, T. H., Iron charge state distributions as an indicator of hot ICMEs: possible sources and temporal and spatial variations during solar maximum. JGR, 2004, 109, A01112.
- Lepri, S. T. et al., Iron charge distribution as an identifier of interplanetary coronal mass ejections. JGR, 2001, 106, 29231.
- Henke, T. et al., Ionization state and magnetic topology of coronal mass ejections. JGR, 2001, 106, 10597.
- Marsch, E., Yao, S. and Tu, C.-Y., Proton beam velocity distributions in an interplanetary coronal mass ejection. Ann. Geophys., 2009, 27, 869.
- Reames, D. V., Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 1999, 90, 413.
- Feynman, J. and Gabriel, S. B., On space weather consequences and predictions. JGR, 2000, 105, 10543.
- Barth, J. L., Dyer, C. S. and Stassinopoulos, E. G., Space, atmospheric and terrestrial radiation environments. Nucl. Sci., IEEE Trans., 2003, 50, 466.
- Gargate, L., Fonseca, R. A., Silva, L. O., Bamford, R. A. and Bingham, R., SEP acceleration in CME driven shocks using a hybrid code. ApJ, 2014, 792, 9.
- Asbridge, J. R., Bame, S. J. and Strong, I. B., Outward flow of protons from the Earth’s bow shock. JGR, 1968, 73, 5777.
- Anagnostopoulos, G. C., Kaliabetsos, G., Argyropoulos, G. and Sarris, E. T., High energy ions and electrons upstream from the Earth’s bow shock and their dependence on geomagnetic conditions: statistical results between years 1982–1988. GRL, 1999, 26, 2151.
- Desai, M. I. et al., Characteristics of energetic (>30 keV/nucleon) ions observed by the Wind/STEP instrument upstream of the Earth’s bow shock. JGR, 2000, 105, 61.
- Janardhan, P., Bisoi, S. K. and Gosain, S., Solar polar fields during cycles 21–23: correlation with meridional flows. Solar Phys., 2010, 267, 267.
- Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Tokumaru, M. and Fujiki, K., The prelude to the deep minimum between solar cycles 23 and 24: interplanetary scintillation signatures in the inner heliosphere. GRL, 2011, 38, L20108.
- Bisoi, S. K., Janardhan, P., Chakrabarty, D., Ananthakrishnan, S. and Divekar, A., Changes in quasi-periodic variations of solar photospheric fields: precursor to the deep solar minimum in cycle 23? Solar Phys., 2014, 289, 41.
- Janardhan, P., Bisoi, S. K., Ananthakrishnan, S., Sridharan, R. and Jose, L., Solar and interplanetary signatures of a Maunder-like grand solar minimum around the corner – implications to near-earth space. Sun Geosphere, 2015, 10, 147.
- Janardhan, P. et al., A 20 year decline in solar photospheric magnetic fields: inner-heliospheric signatures and possible implications. JGR, 2015, 120, 5306.
- Rout, D., Chakrabarty, D., Janardhan, P., Sekar, R., Maniya, V. and Pandey, K., Solar wind flow angle and geoeffectiveness of co-rotating interaction regions: first results. GRL, 2017, 44, 4532.
- Cane, H. V., Reames, D. V. and von Rosenvinge, T. T., The role of interplanetary shocks in the longitude distribution of solar energetic particles. JGR, 1988, 93, 9555.
- Solar X-ray Monitor Onboard Chandrayaan-2 Orbiter
Abstract Views :431 |
PDF Views:190
Authors
M. Shanmugam
1,
S. V. Vadawale
1,
Arpit R. Patel
1,
Hitesh Kumar Adalaja
1,
N. P. S. Mithun
1,
Tinkal Ladiya
1,
Shiv Kumar Goyal
1,
Neeraj K. Tiwari
1,
Nishant Singh
1,
Sushil Kumar
1,
Deepak Kumar Painkra
1,
Y. B. Acharya
1,
Anil Bhardwaj
1,
A. K. Hait
2,
A. Patinge
2,
Abinandhan Kapoor
3,
H. N. Suresh Kumar
3,
Neeraj Satya
3,
Gaurav Saxena
4,
Kalpana Arvind
4
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U. R. Rao Satellite Centre, Bengaluru 560 017, IN
4 Laboratory for Electro Optics Systems, Bengaluru 560 058, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U. R. Rao Satellite Centre, Bengaluru 560 017, IN
4 Laboratory for Electro Optics Systems, Bengaluru 560 058, IN
Source
Current Science, Vol 118, No 1 (2020), Pagination: 45-52Abstract
Solar X-ray Monitor (XSM) is one of the scientific instruments onboard Chandrayaan-2 orbiter. The XSM along with instrument CLASS (Chandra’s Large Area soft X-ray Spectrometer) comprise the remote X-ray fluorescence spectroscopy experiment of Chandrayaan- 2 mission with an objective to determine the elemental composition of the lunar surface on a global scale. XSM instrument will measure the solar X-rays in the energy range of 1–15 keV using state-of-the-art silicon drift detector. The flight model of the XSM payload has been designed, realized and characterized for various operating parameters. XSM provides energy resolution of ~180 eV at 5.9 keV with high time cadence of one second. The X-ray spectra of the Sun observed with XSM will also contribute to the study of solar corona. The detailed description and the performance characteristics of the XSM instrument are presented in this article.Keywords
Lunar X-Rays, Silicon Drift Detector, Solar X-Rays, X-Ray Spectrometer.References
- Bhardwaj, A. et al., X-rays from solar system objects. Planet. Space Sci., 2007, 55(9), 1135–1189.
- Bhardwaj, A., Lisse, C. M. and Dennerl, K., X-rays in the solar system. Chapter 48. In Encyclopedia of the Solar System (eds Tilman Spohn, Doris Breuer and Torrence Johnson), Elsevier Press, 2014, 3rd edn, pp. 1019–1045.
- Crawford, I. A. et al., The scientific rationale for the C1XS X-ray spectrometer on India’s Chandrayaan-1 mission to the moon. Planet. Space Sci., 2009, 57(7), 725–734.
- Nittler, L. R. et al., The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 2011, 333(6051), 1847–1850.
- Weider, S. Z. et al., Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray spectrometer. J. Geophys. Res., 2012, 117, E00L05.
- Narendranath, S. et al., Lunar X-ray fluorescence observations by the Chandrayaan-1 X-ray spectrometer (C1XS): results from the nearside southern highlands. Icarus, 2011, 214(1), 53–66.
- Grande, M., The D-CIXS X-ray spectrometer on ESA’s SMART-1 mission to the Moon. Earth Moon Planets, 2001, 85, 143–152.
- Ogawa, K., Okada, T., Shirai, K. and Kato, M., Numerical estimation of lunar X-ray emission for X-ray spectrometer onboard SELENE. Earth Planets Space, 2008, 60, 283–292.
- Grande, M. et al., The Chandrayaan-1 X-ray spectrometer. Curr. Sci., 2009, 96(4), 517–519.
- Narendranath, S. et al., Mapping lunar surface chemistry: new prospects with the Chandrayaan-2 large area soft X-ray spectrometer (CLASS). Adv. Space Res., 2014, 54(10), 1993–1999.
- Vadawale, S. V. et al., Solar X-ray monitor (XSM) onboard Chandrayaan-2 orbiter. Adv. Space Res., 2014, 54(10), 2021–2028.
- Golub, L. and Pasachoff, J. M., The Solar Corona, Cambridge University Press, Cambridge, 2010.
- Rieder, R. et al., The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res., 2003, 108, 8066.
- Gellert, R. et al., The Alpha particle X-ray spectrometer (APXS) for the Mars Science Laboratory (MSL) rover mission. Lunar and Planetary Science Conference, Abstract no 2364, 2009.
- Moore, C. S. et al., The Instruments and capabilities of the miniature X-ray solar spectrometer (MinXSS) Cubesats. Solar Physics, 2018, 293, 21.
- Gendreau, K. C. et al., The neutron star interior composition exploreR (NICER): design and development. Proc SPIE 9905, 2016.
- Alpha Particle X-ray Spectrometer onboard Chandrayaan-2 Rover
Abstract Views :428 |
PDF Views:163
Authors
M. Shanmugam
1,
S. V. Vadawale
1,
Arpit R. Patel
1,
N. P. S. Mithun
1,
Hitesh Kumar Adalaja
1,
Tinkal Ladiya
1,
Shiv Kumar Goyal
1,
Neeraj K. Tiwari
1,
Nishant Singh
1,
Sushil Kumar
1,
Deepak Kumar Painkra
1,
A. K. Hait
2,
A. Patinge
2,
Abhishek Kumar
3,
Saleem Basha
3,
Vivek R. Subramanian
3,
R. G. Venkatesh
3,
D. B. Prashant
3,
Sonal Navle
3,
Y. B. Acharya
1,
S. V. S. Murty
1,
Anil Bhardwaj
1
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U.R. Rao Satellite Centre, Bengaluru 560 017, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Space Applications Centre, Ahmedabad 380 015, IN
3 U.R. Rao Satellite Centre, Bengaluru 560 017, IN
Source
Current Science, Vol 118, No 1 (2020), Pagination: 53-61Abstract
Alpha Particle X-ray Spectrometer (APXS) is one of the two scientific experiments on Chandrayaan-2 rover named as Pragyan. The primary scientific objective of APXS is to determine the elemental composition of the lunar surface in the surrounding regions of the landing site. This will be achieved by employing the technique of X-ray fluorescence (XRF) spectroscopy using in situ excitation source 244Cm emitting both X-rays and alpha particles. These radiations excite characteristic X-rays of the elements by the processes of particle induced X-ray emission and XRF. The characteristic X-rays are detected by the ‘state-of-the-art’ X-ray detector known as Silicon Drift Detector, which provides high energy resolution, as well as high efficiency in the energy range of 1–25 keV. This enables APXS to detect all major rock forming elements such as, Na, Mg, Al, Si, Ca, Ti and Fe. The flight model of the APXS payload has been completed and tested for various instrument parameters. The APXS provides energy resolution of ~135 eV at 5. 9keV for the detector operating temperature of about –35°C. The design details and the performance measurement of APXS are presented in this paper.Keywords
Alpha Particle X-Ray Spectrometer, CSPA, Silicon Drift Detector, X-Ray Spectrometer.References
- McSween, H. Y. and Huss, G. R., Cosmochemistry, Cambridge University Press, Cambridge, 2010.
- Laxmiprasad, A. S. et al., An in situ laser induced breakdown spectroscope (LIBS) for Chandrayaan-2 rover: ablation kinetics and emissivity estimates. Adv. Space Res., 2013, 52, 332–341.
- Rieder, R. et al., Determination of the chemical composition of Martian soil and rocks: the alpha proton X-ray spectrometer. J. Geophys. Res., 1997, 102, 4027–4044.
- Rieder, R. et al., The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers. J. Geophys. Res.: (Planets), 2003, 108, 8066.
- Gellert, R. et al., The alpha-particle X-ray spectrometer (APXS) for the mars science laboratory (MSL) rover mission. Lunar and Planetary Science Conference, abstract no. 2364, 2009.
- Bridges, N. T., Crisp, J. A. and Bell, J. F., Characteristics of the pathfinder APXS sites: implications for the composition of Martian rocks and soils. J. Geophys. Res., 2001, 106, 14621–14665.
- Gellert, R. et al., Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res., 2006, 111; E02S05; doi:10.1029/2005JE002555.
- O’Connell-Cooper, C. D. et al., APXS derived chemistry of the Bagnold dune sands: comparisons with gale crater soils and the global Martian average. J. Geophys. Res.: Planets, 2017, 122, 2623–2643.
- Klingelhofer, G. et al., The Rosetta alpha particle X-ray spectrometer (APXS). Space Sci. Rev., 2007, 128, 383–396.
- Turkevich, A. L., Franzgrote, E. J. and Patterson, J. H., Chemical analysis of the moon at the surveyor 5 landing site. Science, 1967, 158, 635–637.
- Chunlai, L. et al., The Chang’e 3 mission overview. Space Sci. Rev., 2015, 190, 85–101.
- Ye, P. J. et al., An overview of the mission and technical characteristics of Chang’e 4 lunar probe. Sci. China Technol. Sci., 2017, 60, 658–667.
- Zhang, G.-L. et al., Laboratory verification of the active particleinduced X-ray spectrometer (APXS) on the Chang’e-3 mission. Res. Astron. Astrophys., 2015, 15, 1893.
- Shanmugam, M. et al., Alpha particle X-ray spectrometer (APXS) onboard Chandrayaan-2 rover. Adv. Space Res., 2014, 54, 1974– 1986.
- Goyal, S. K. et al., Laboratory XRF measurements using alpha particle X-ray spectrometer of Chandrayaan-2 rover: comparison with GEANT4 simulation results. IEEE proc. NSS/MIC/RTSD1695, 2013.
- Radchenko, V. M. and Ryabinin, M. A., Research sources of ionizing radiation based on transplutonium elements, IOP Conference Series: Materials Science and Engineering, 2010.
- Meteorite Fall in Bhojade Village, Kopargaon Taluk, Ahmednagar District, Maharashtra, India
Abstract Views :309 |
PDF Views:137
Authors
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, India., IN
1 Physical Research Laboratory, Ahmedabad 380 009, India., IN
Source
Current Science, Vol 124, No 10 (2023), Pagination: 1138-1139Abstract
No Abstract.References
- Van Schmus, W. R. and Wood, J. A., Geo-chim. Cosmochim. Acta, 1967, 31, 747–765.
- Stoffler, D., Keil, K. and Scott, E. R. D., Geo-chim. Cosmochim. Acta, 1991, 55, 3845–3867.
- Yoshikawa, M. A., Fujiwara, A. and Kawa-guchi, J., Proc. Int. Astron. Union, 2006, 2(14), 323–324.
- Venus Science Conference
Abstract Views :272 |
PDF Views:123
Authors
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
Source
Current Science, Vol 125, No 4 (2023), Pagination: 360-361Abstract
No Abstract.Keywords
No Keywords.- Chandrayaan-3 Alternate Landing Site: Pre-landing Characterization
Abstract Views :126 |
Authors
K. Durga Prasad
1,
Dibyendu Misra
2,
Amitabh
3,
Megha Bhatt
1,
G. Ambily
4,
Sachana Sathyan
5,
Neeraj Srivastava
1,
Anil Bhardwaj
1
Affiliations
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Physical Research Laboratory, Ahmedabad 380 009, India; Indian Institute of Technology Gandhinagar, Gandhinagar 382 055, IN
3 Space Applications Centre (Indian Space Research Organization), Ahmedabad 380 015, IN
4 Physical Research Laboratory, Ahmedabad 380 009, India; Andhra University, Visakhapatnam 530 003, IN
5 Physical Research Laboratory, Ahmedabad 380 009, India; University of Kerala, Thiruvananthapuram 695 581, IN
1 Physical Research Laboratory, Ahmedabad 380 009, IN
2 Physical Research Laboratory, Ahmedabad 380 009, India; Indian Institute of Technology Gandhinagar, Gandhinagar 382 055, IN
3 Space Applications Centre (Indian Space Research Organization), Ahmedabad 380 015, IN
4 Physical Research Laboratory, Ahmedabad 380 009, India; Andhra University, Visakhapatnam 530 003, IN
5 Physical Research Laboratory, Ahmedabad 380 009, India; University of Kerala, Thiruvananthapuram 695 581, IN
Source
Current Science, Vol 126, No 7 (2024), Pagination: 774-780Abstract
India’s third Moon mission Chandrayaan-3, has successfully deployed a lander and a rover at a high-latitude location on the Moon to conduct in situ scientific studies that will potentially improve our understanding on the primary crust formation and subsequent modification processes. While the primary landing site (PLS) was situated at 69.367621°S lat., 32.348126°E long., an alternate landing site (ALS) was selected at nearly the same latitude but ~450 km west of PLS, as a contingency. We carried out a detailed study of the geomorphology, composition and temperature characteristics of ALS using the best-ever high-resolution digital elevation models (DEMs) and ortho-images, and datasets obtained from Chandrayaan-1 and the on-going Lunar Reconnaissance Orbiter along with a well-established thermophysical model. Results indicate that like PLS, ALS is also an interesting site for carrying out in situ scientific studies from any future lunar-landing mission.Keywords
Geomorphology, lander, Moon mission, rover, surface composition, temperatureFull Text
