Refine your search
Collections
Co-Authors
- Raja V. L. N. Sridhar
- M. V. H. Rao
- K. Kalyani
- Anand Chandran
- Monika Mahajan
- J. D. P. V. Tayaramma
- K. V. S. Bhaskar
- K. B. Pramod
- L. V. Prasad
- P. Chakraborty
- J. A. Kamalakar
- G. Nagendra Rao
- M. Viswanathan
- J. John
- V. Thamarai
- M. M. Mehra
- Teena Choudhary
- M. S. Giridhar
- Ashwini Jambhalikar
- Gogulapati Supriya
- Gaurav Saxena
- K. V. Shila
- B. Ramesh
- T. K. Pratheek
- Deepak Kumar Sharma
- R. Islam
- P. Selvaraj
- A. Kalpana
- S. Ajith Kumar
- K. V. Sriram
- R. V. L. N. Sridhar
- Adwaita Goswami
- K. A. Lohar
- Bijoy Raha
- T. S. Smaran
- B. Krishnamprasad
Journals
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
Laxmiprasad, A. S.
- Lyman Alpha Photometer: a far-ultraviolet sensor for the study of hydrogen isotope ratio in the Martian exosphere
Abstract Views :429 |
PDF Views:150
Authors
Raja V. L. N. Sridhar
1,
M. V. H. Rao
1,
K. Kalyani
1,
Anand Chandran
1,
Monika Mahajan
1,
J. D. P. V. Tayaramma
1,
K. V. S. Bhaskar
1,
K. B. Pramod
1,
L. V. Prasad
1,
A. S. Laxmiprasad
1,
P. Chakraborty
1,
J. A. Kamalakar
1,
G. Nagendra Rao
1,
M. Viswanathan
1
Affiliations
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, IN
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, IN
Source
Current Science, Vol 109, No 6 (2015), Pagination: 1114-1120Abstract
The Lyman Alpha Photometer (LAP), developed for flight on the Mars Orbiter Mission (MOM) spacecraft in 2013, is primarily designed to measure deuterium to hydrogen abundance ratio of the Martian exosphere over a 6-month period from a 263 km × 71,358 km elliptical orbit around Mars. A set of ultrapure (99.999%) hydrogen and deuterium gas-filled cells comprising tungsten filaments, a 25 mm diameter collection lens and a solar-blind photomultiplier tube together with an 8 nm bandpass Lyman alpha filter are the principal electro-optical assemblies of the instrument. This article presents scientific objectives of LAP and its performance specifications along with details of instrument design. The ground characterization techniques to assess LAP operational performance are also presented. End-to-end test results and evaluation matrix of LAP were satisfactory, well within the desired specifications. The first LAP onboard operation was carried out during the cruise phase of MOM spacecraft journey to verify its functionality and all recorded on-board health parameters were satisfactory.Keywords
Absorption gas cell, hydrogen isotope ratio, Martian exosphere, photometerReferences
- Velbel, M., Phoenix first to see silt grains on Mars. Nature, 2012,481(7379), 29–29.
- Williams, H. R. et al., Mars reconnaissance lander: vehicle and missiondesign. Planet. Space Sci., 2011, 59, 1621–1631.
- Arvidson, R. E. et al., Spirit Mars Rover Mission: overview and selectedresults from the northern Home Plate Winter Haven to the sideof Scamander crater. J. Geophys. Res. – Planets, 2010, 115, ArticleNumber: E00F03.
- Grant, M. J., Steinfeldt, B. A., Braun, R. D. and Barton, G. H., Smartdivert: a new Mars robotic entry, descent, and landing architecture. J. Spacecraft Rockets, 2010, 47, 385–393.
- Ball, A. J., Price, M. E., Walker, R. J., Dando, G. C., Wells, N. S. andZarnecki, J. C., Mars Phobos and Deimos Survey (M-PADS) – AMartian Moons orbiter and Phobos lander. Adv. Space Res.,2009, 43, 120–127.
- Goerke, D., Mission to Mars: 2025: What We Can Do, iUniverse, Inc. 2007, vol. I; ISBN:9780595415878.
- Nair, R. P., Saviour, L. T. and Ponraj, N., A comparative analysis andstudy on Martian satellites. Int. J. Eng. Trends Technol., 2014, 9, 262–266.
- Edberg, N. J. T. et al., Pumping out the atmosphere of Mars throughsolar wind pressure pulses. Geophys. Res. Lett., 2010, 37.
- Valeille, A., Combi, M. R., Bougher, S. W., Tenishev, V. and Nagy, A. F., Three-dimensional study of Mars upper thermosphere/ ionosphereand hot oxygen corona: 2. Solar cycle, seasonal variations, and evolution over history. J. Geophys. Res., 2009, 114, E11006; doi:10.1029/2009JE003389.
- Gillmann, C., Lognonne, P., Chassefiere, E. and Moreira, M., The present-day atmosphere of Mars: where does it come from? Earth Planet. Sci. Lett., 2009, 277, 384–393.
- Machacek, J. R. et al., Production of excited atomic hydrogen and deuteriumfrom H2, HD and D2 photodissociation. J. Phys. B, At Mol. Opt. Phys., 2011, 44, 045201 (7 pp).
- McKechnie, A. E., Wolf, B. O. and Martínez del Rio, C., Deuterium stableisotope ratios as tracers of water resource use: an experimentaltest with rock doves. Oecologia, 2004, 140, 191–200; doi:10.1007/s00442-004-1564-9.
- Owen, T., Maillard, J. P., Debergh, C. and Lutz, B., Deuterium on Mars: the abundance of HDO and the value of D/H. Science, 1988, 240, 1767–1770.
- Bjoraker, G. L., Mumma, M. J. and Larson, H. P., Isotopic abundance ratiosfor hydrogen and oxygen in the Martian atmosphere. Bull. Am. Astron. Soc., 1989, 21, 991.
- Korablev, O. I., Ackerman, M., Krasnopolsky, V. A., Moroz, V. I., Muller, C., Rodin, A. V. and Atreya, S. K., Tentative identification offormaldehyde in the Martian atmosphere. Planet. Space Sci., 1993, 41, 441–451.
- Watson, L. L., Hutcheon, I. D., Epstein, S. and Stolper, E. M., D/H ratios and water contents of amphiboles in magmatic inclusions inChassigny and Shergotty. Meteoritics, 1993, 28, 456.
- Esposito, L. W., Colwell, J. E. and McClintock, W. E., Cassini UVISobservations of Saturn’s rings. Planet. Space Sci., 1998, 46,1221–1235.
- Formisano, V., Grassi, D., Ignatiev, N., Zasova, L. and Maturilli, A., PFS for Mars Express: a new approach to study Martian atmosphere. Adv. Space Res., 2002, 29, 131–142.
- Ito, Yuichi and Fukunish, Hiroshi, A deuterium/hydrogen Lyman alphaabsorption cell photometer developed for the Nozomi spacecraft. TohokuGeophys. J., 2006, 37, 2, 109–123.
- Maki, J., Lawrence, G., Esposito, L., Lauche, H. and Ludwig, M., TheCassini hydrogen deuterium absorption cell: a remote sensing instrumentfor atomic D/H measurements at Titan. Bull. Am.Astron. Soc., 1996, 28, 1132.
- Babichenko, S. I. et al., Measurements in interplanetary space and inthe Martian upper atmosphere with a hydrogen absorption-cell spectrophotometerfor La-radiation on board Mars 4-7 spaceprobes. SpaceSci. Instrum., 1977, 3, 271–286.
- Sridhar Raja, V. L. N. et al., Design and engineering aspects of a compactLyman alpha photometer (LAP) for in situ measurements ofD/H ratio in Martian atmosphere. In 39th COSPAR ScientificAssembly, Mysore, India, C1.1-56-12, 2012, p. 1558.
- Eberhardt, P., Reber, M., Krankowsky, D. and Hodges, R. R., The D/H and 18O16/O ratios in water from comet P/Halley. Astron. Astrophys., 1995, 302, 301–316.
- Bockelée-Morvan, D. et al., Deuterated water in comet C/1996 B2 (Hyakutake) and its implications for the origin of comets. Icarus,1998, 193, 147–162.
- Lécuyer, C., Gillet, Ph. and Robert, F., The hydrogen isotope composition ofsea water and the global water cycle. Chem. Geol.,1998, 145, 249–261.
- Kawahara, T. D., Okano, S., Abe, T., Fukunishi, H. and Ito, K., Glass-type hydrogen and deuterium absorption cells developed for DyHratio measurements in the Martian atmosphere. Appl. Opt.,1997, 36, 2229–2237.
- Kawahara, T. D. et al., Development of hydrogen and deuterium absorptioncells for D/H ratio measurements of planetary atmospheres. TohokuGeophys. J., 1993, 34, 35–54.
- Instrument for Lunar Seismic Activity Studies on Chandrayaan-2 Lander
Abstract Views :3225 |
PDF Views:191
Authors
J. John
1,
V. Thamarai
1,
M. M. Mehra
1,
Teena Choudhary
1,
M. S. Giridhar
1,
Ashwini Jambhalikar
1,
Gogulapati Supriya
1,
Gaurav Saxena
1,
K. V. Shila
1,
B. Ramesh
1,
T. K. Pratheek
1,
Deepak Kumar Sharma
1,
R. Islam
1,
P. Selvaraj
1,
A. Kalpana
1,
S. Ajith Kumar
1,
K. V. Sriram
1,
A. S. Laxmiprasad
1
Affiliations
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Peenya 1st Stage, 1st Cross, Bengaluru 560 058, IN
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Peenya 1st Stage, 1st Cross, Bengaluru 560 058, IN
Source
Current Science, Vol 118, No 3 (2020), Pagination: 376-382Abstract
Instrument for Lunar Seismic Activity Studies (ILSA) is a science payload with the objective of studying seismic activities at the landing site of Vikram, the Lander of Chandrayaan-2. ILSA will be deployed to the lunar surface by a specially built mechanism. It is an indigenously developed instrument based on microelectro mechanical systems technology. High sensitivity silicon micro-machined accelerometer is the heart of the instrument that measures ground acceleration due to lunar quakes. The instrument has the capability of resolving acceleration better than 100 nano-g Hz–1/2 up to a range of 0.5 g over bandwidth of 40 Hz. This paper presents the basic concepts in the design, realization, characterization and the performance test results of the space qualified strong motion seismic sensors.Keywords
Lunar Quakes, MEMS, Seismometer, Strong Motion Sensors.References
- Bulow, R. C. et al., New events discovered in the Apollo lunar seismic data. J. Geophys. Res., 2005, 110, E10003.
- Yamada, R., The description of Apollo seismic experiments; www.darts.isas.jaxa.jp/planet.seismology.
- Watters, T. R. et al., Shallow seismic activity and young thrust faults on the Moon. Nature Geosci., 2019, 12, 411–417; https://www.nature.com/articles/s41561-019-0362-2.pdf
- Lognonne, P. et al., SEIS: insight’s seismic experiment for internal structure of mars. Space Sci. Rev., 2019, 215, 12; https:// doi.org/10.1007/s11214-018-0574-6
- Measuring seismic activity on Venus: a real challenge; https://www.seis-insight.eu/en/public-2/planetary-seismology/venus
- Hunter, G. et al., Development of a high temperature Venus seismometer and extreme environment testing chamber. International Workshop on Instrumentation for Planetary Missions, 2012.
- Havskov, J. and Alguacil, G., Instrumentation in Earthquake Seismology, Springer, June 2002; doi:10.1007/978-3-319-21314-9, ISBN 1402029683.
- Kumar, S., Design and Fabrication of Micromcahined Silicon Suspensions, Ph D thesis, Imperial College, London, 2007.
- Kempe, V., Inertial MEMS Principles and Practice, Cambridge University Press.
- Kulah, H. et al., Noise analysis and characterization of a sigmadelta capacitive microaccelerometer. IEEE J. Solid-State Circuits, 2006, 41(2), 352–361.
- John, J. et al., Design and fabrication of silicon micro structure for seismometer, ISSS International Conference on Smart Materials, Structures and Systems, Bengaluru, 2014.
- IEEE standard specification format guide and test procedure for linear single axis nongyroscopic accelerometers IEEE Std 1293, 1998 (R2008).
- Laser Induced Breakdown Spectroscope on Chandrayaan-2 Rover:A Miniaturized Mid-UV to Visible Active Spectrometer for Lunar Surface Chemistry Studies
Abstract Views :416 |
PDF Views:149
Authors
A. S. Laxmiprasad
1,
R. V. L. N. Sridhar
1,
Adwaita Goswami
1,
K. A. Lohar
1,
M. V. H. Rao
1,
K. V. Shila
1,
Monika Mahajan
1,
Bijoy Raha
1,
T. S. Smaran
1,
B. Krishnamprasad
1
Affiliations
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, IN
1 Laboratory for Electro-Optics Systems, Indian Space Research Organisation, Bengaluru 560 058, IN
Source
Current Science, Vol 118, No 4 (2020), Pagination: 573-581Abstract
Laser Induced Breakdown Spectroscope (LIBS) instrument flown in Chandrayaan-2 mission to the Moon, is one of the scientific instruments on the Pragyaan rover. It is primarily developed to carry out in situ investigations for the elemental composition study of lunar regolith and pebbles on the Moon surface in a previously unexplored high latitude area in the southern polar region. A pulsed laser source, a set of optical lenses and mirrors, an aberrationcorrected concave holographic grating and a linear detector, are the principal electro-optical accessories of the instrument. The developed LIBS is a lightweighted (~1.1 kg) and low power consuming (≤1.2 W) compact instrument. This paper presents the system engineering and development aspects of the LIBS instrument along with results from environmental tests. Performance evaluation of the instrument during endto- end testing is satisfactory and within desired specifications. Details on ground calibration techniques used to evaluate the instrument capability are also presented.Keywords
Chandrayaan-2 Mission, Laser-Induced Ablation, Moon, Plasma Emission, Spectroscopy.References
- Reider, R. et al., The chemical composition of Martian soil and rocks returned by the mobile alpha proton X-ray spectrometer: preliminary result from the X-ray mode. Science, 1997, 278(5344), 1771–1774.
- Priestley, T., Clark, B. C., Baird, A. K., Keil, K. and Rose, H. J., Preliminary results from the viking X-ray fluorescence experiment: the first sample from Chryse Plantia, Mars. Science, 1976, 194(4260), 81–84.
- Radziernski, L. J., Loree, T. R., Cremers, D. A. and Hoffman, N. M., Time-resolved laser-induced breakdown spectroscopy (LIBS): a new method for spectrochemical analysis. LANL Report, LAUR-82487, Los Alamos National Laboratory, NM, 1982.
- Fang, Y. Y., Jagdish, P. S. and Hansheng, Z., Laser-induced breakdown spectroscopy, elemental analysis. Ency. Anal. Chem. (ed. Meyers, R. A.), Copyright @ John Wiley, 2000, 0066–2087.
- Knight, A. K., Scherbarth, N. L., Cremers, D. A. and Ferris, M. J., Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration. Appl. Spectrosc., 2000, 54, 331–339.
- Wiens, R. C., Arvidson, R. E., Cremers, D. A., Ferris, M. J., Blacic, J. D., Seelos IV, F. P. and Deal, K. S., Combined remote mineralogical and elemental identification from rovers – field and laboratory tests using reflectance and laser-induced breakdown spectroscopy, J. Geophys. Res. (Planets), 2002, 107, 8003; doi:10.1029/2000JE001439.
- Colao, F. et al., Investigation of LIBS feasibility for in situ planetary exploration: an analysis on martian rock analogues. Planet. Space Sci., 2004, 52, 117–123.
- Jobin Antony, K., Gurneesh, S. J., Nilesh Vasa, J., Sridhar Raja, V. L. N., Laxmiprasad, A. S., Modelling of laser-induced breakdown spectroscopy for very low pressure conditions, Appl. Phys. A, 2010; doi.org/10.1007/s00339-010-5782-1.
- Lasue, J. et al., Remote laser induced breakdown spectroscopy (LIBS) for lunar exploration. J. Geophys. Res. Planets, 2012, 117, 1; https://doi.org/10.1029/2011JE003898.
- Wiens, R. C. et. al., Chemcam science objectives for the mars science laboratory (MSL) rover. Lunar Planet. Sci. XXXVI, 2005, p. 1580.
- Wiens, R. C., Maurice, S. and the ChemCam team, The ChemCam instrument suite on the Mars science Laboratory Rover curiosity: remote sensing by laser-induced plasmas. Geochem. News, 2011, 145, 41–48.
- Mylaswamy Annadurai, Alex, T. K., Krishnan, A. and Rama Murali, G. K., Chandrayaan-2 mission: India’s first soft landing mission onto Moon, 63rd International Astronautical Congress, 2012, 12634.
- Venkatesan Sundararajan, Overview and technical architecture of India's Chandrayaan-2 mission to the Moon. AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, 2018, p. 2178; https://doi.org/10.2514/6.2018-2178.
- Goswami, J. N. and Annadurai, M., Chandrayaan-1: India’s first planetary science mission to the moon. Curr. Sci., 2009, 96, 486– 491.
- Amitabh, K., Suresh and Srinivasan, T. P., Potential landing sites for Chandrayaan-2 lander in southern hemisphere of Moon, 49th Lunar and Planetary Science Conference, 2018, 1975.
- Sridhar Raja, V. L. N., Laxmiprasad, A. S., Adwaita Goswami, Lohar K. A. and Rao, M. V. H., Surya Menon and Kamalakar, J. A., Design, development and performance facets of a prototype laser induced breakdown spectroscope (LIBS) instrument for Chandrayaan-2 rover, 62nd International Astronautical Congress, 2011, IAC-11.A3.2A.10.
- Laxmiprasad, A. S., Adwaita Goswami, V. L. N. Sridhar Raja, Lohar, K. A., Rao, M. V. H., Monika Mahajan and Bijoy Raha, The LIBS instrument for Chandrayaan-2 rover: engineering model development aspects, 67th International Astronautical Congress, 2016, IAC-16.A3.2B.8.
- Lerner, J. M., Chambers, R. J. and Passereau, G., ‘Flat field imaging spectroscopy using aberration corrected holographic gratings. Proceedings of the. SPIE 0268, Imaging Spectroscopy I, 1981; doi.org/10.1117/12.959934.
- Qian Zhou, Jinchao Pang and Kai Ni, A portable flat-field concave grating spectrometer with high resolution. Proceedings of the SPIE 9271, Holography, Diffractive Optics, and Applications VI, 2014, 92711K; doi.org/10.1117/12.2072035.
- Miziolek, A., Palleschi, V. and Schechter, I., Laser-Induced Breakdown Spectroscopy (LIBS) Fundamental and Applications, Cambridge University Press, New York, 2006.
- Laxmiprasad, A. S., Sridhar, Raja V. L. N., Surya Menon, Adwaita Goswami, Rao, M. V. H. and Lohar, K. A., An in situ laser induced breakdown spectroscope (LIBS) for Chandrayaan-2 rover: ablation kinetics and emissivity estimations. Adv. Space Res., 2013, 52, 332–341; http://dx.doi.org/10.1016/j.asr.03.021.
- Ray, C. S., Reis, S. T., Sen, S. and Dell, J. S. O., JSC-1A lunar soil simulant: characterization, glass formation and selected glass properties. J. Non-Cryst. Solids, 2010, 356(44–49), 2369– 2374.