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.     Abstract 
This paper is concerned with uncoupling the lateral buckling energy functional for thin walled beams of dual symmetric 
sections so that only one solution function would be used in the solution process without appreciable loss of accuracy. This is 
achieved by consideration of equilibrium of forces in the lateral buckling plane as well as equilibrium in the vertical plane, for 
the uncoupled equilibrium state. Examples are presented to show the validity of the proposed functional. Results of analysis 
using the proposed functional are compared with exact values in the literature and are within two percent (2 %) of the exact 
values. It is concluded that the proposed functional is suitable for use in the calculation of lateral buckling strengths for beams 
with dual sections.  

Keywords: Energy functional, Buckling, Lateral, Beams, uncoupled. 
Notations: 
E- Young’s Modulus, G - Shear modulus, I Total potential energy functional, Ix , Iy- Second moments of area about x and y axis, Iw-          
Warping constant, I- Torsion constant, L-  Beam length, M- Applied moment, Mx- Bending moment distribution about x axis, My-        
Bending moment distribution about y axis, Mcr - Critical buckling moment, MT- Torsional moment, P- Applied transverse load, 

Displacement in the horizon (x, z) plane, V-Displacement in the vertical (y, z) plane, X,Y,Z Coordinate axes, -Angle of twist

Introduction 
The usual procedure in solution of problems in 

structural mechanics is to formulate the differential 
equation in terms of displacement or response 
function. The solution obtained is exact if exact 
response function is known. However, in practice, 
it is difficult to obtain the exact solution for most of 
the problems encountered. An approximate or a 
trial solution function is used instead of the exact 
solution function and the result obtained is upper 
bound on the exact solution, depending however on 
the accuracy of the problem formulation (Hsu  & 
Wu, 1998). 

An alternative to formulations using classical 
differential equation methods is to device energy 
functional in terms of displacement or response 
functions (Akhaee et al., 2009). Like the classical 
differential equation methods, the exact solution 
functions in this case are also difficult to obtain the 
trial solution functions are usually substituted into 
the energy functional and a minimisation process 
such as the Rayleigh-Ritz process is carried out to 
furnish equilibrium equations which are solved to 

obtain the parameters of interest. In carrying out 
lateral buckling stability analysis of beams, the 
above problem of finding exact solution functions 
and in addition, coupling of displacements are 
experienced. There is therefore a need to express 
the proposed functional in terms of one solution 
function if possible. 

The problem of lateral buckling of I-section 
beams was examined by Hartz (1965) in which 
discrete elements were used to formulate and solve 
the coupled lateral buckling equations. Attard 
(1990) has developed a general non-dimensional 
equation for lateral buckling in which a general 
thin-walled section was considered but no attention 
was paid to the uncoupling of the coupled energy 
functional. Recently, Jiki (2007) has studied the 
behaviour of pre-cracked beam-columns using 
Liapunov’s second method but did not uncouple 
the dual symmetric beams and beam-columns 
analyzed. Using the energy functional Attard 
(1986) employed the finite element method to solve 
the non-linear lateral buckling (Demanet & Ying, 
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2007). The non-linear effect considered in this case 
was initial curvature but not geometric effect, etc. 
Furthermore, there is limited literature on non-
linear lateral buckling generally and none has been 
found on the solution of uncoupled lateral buckling 
problem in particular (Do  & Vetterli, 2005). 

The purpose of the present paper is to show that 
the lateral buckling energy functional can be 
expressed in terms of only one displacement or 
response function. This will be very useful for 
design applications as the critical moment obtained 
using the uncoupled functional is slightly less than 
that obtained for the coupled functional. But this is 
on the safe side as far as design is concerned. It 
will also be used for finite element analysis and 
computer simulation of large systems. It will also 
ease the problem of looking for exact solution 
functions as only one would be needed for the 
proposed uncoupled functional. The resulting 
energy functional is also nonlinear. 

Fundamental differential equations 
An I-beam, representing a dual symmetric 

beam with a general loading, coordinate axes and a 
force system is shown in Fig. 1. The x and y 
coordinates coincide with the principal coordinates 
of the beam section are also shown in figure 1 and 
the z-coordinate coincides with the longitudinal 
axis of the beam (Jayalakshmi et al., 2001). After 
buckling, the beam undergoes a vertical 
displacement v, a lateral displacement u and a twist 
about the z axis whose angle is given by . The 
beam can also warp longitudinally. At buckling, the 
differential equations of equilibrium are (Winter, 
1943, Timoshenko and Gere, 1961): 

Equation (1) shows that bending in the vertical 
plane, i.e. y axis is uncoupled with the other 
deformation modes and hence can be solved 
separately. This means that for doubly symmetric 
sections, two equilibrium states exist. The first 
equilibrium state exists in the vertical bending and 
the second state exists in the lateral buckling. This 
simplifies the analysis for lateral buckling of beams 
of symmetric sections as any loading combination 
can be applied and once the moment distribution on 
the beam can be found, it would be used as a load 
or disturbance for lateral buckling analysis using 
equations (2) and (3) respectively. See also Fig. 2 
and 3 below. 

Existing energy functional for lateral buckling 
of dual symmetric Sections 

A thin-walled beam of a dual symmetric 
section that has undergone lateral buckling may be 
subjected to the following forms of energies 
(Timoshenko and Gere, 1961). 
(a) Bending energy due to bending in the vertical 

plane and potential energy due to applied loads. 

Fig. 1:  Shows vertical bending of an I-beam with end 
restraints against lateral buckling. This bending represents the 
first equilibrium state of beam. 
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Fig. 2a: Shows section of the beam at the second 
equilibrium state. The beam bends laterally as well as 
twists. Fig. 2b: Shows contribution of vertical bending 
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(b) Lateral bending energy. 
(c) Shear deformation energy due to twist of the 

beam. 
(d) Warping deformation energy due to lateral   
flexural bending and twisting of the beam. The 
warping deformation energy however, depends on 
the end fixity condition of the beam. 

The main contribution and of the energy 
functional is the bending moment distribution and 
of course the position of the applied force i.e. 
whether it is on top flange or on the bottom flange. 
It is possible to apply loads through the bottom 
flange of the beam. It is assumed in the present 
article that the load is applied to the neutral axis of 
the beam. 
The total potential energy functional for a dual 
symmetric beam section in this case is given as: 

 

 

in which primes denote partial differentiation with 
respect to . Equation (4) is coupled in  and . In 
practice, the  exact form of  and  may be 
difficult to obtain; so the fewer the solution 
functions are, the easier or the better for the analyst 

as he has to worry for lesser solution functions. In 
the next section, the uncoupled form of equation 
(4) will be derived. 

Proposed uncoupled lateral buckling energy 
functional for beams of dual symmetric Sections 

Starting with equation (1) and following the 
argument that equation (1) is uncoupled and does 
not affect lateral buckling directly but through the 
bending moment distribution, the first term of 
equation (4) can be dropped to get: 

 

 

from equation (2) the variable  can be obtained 
as: 

 

Substitution of equation (6) into equation (5) gives 
the energy functional uncoupled as:  

 

 

 

Equation (8) is the required lateral buckling energy 
functional with one variable viz . It must be 
emphasized here that the only advantage gained in 
using equation (8) instead of equation (5) is the 
ease of solution of equation (8) by using only  as 
a solution function. 
Minimization of the total potential energy 
functional by the Rayleigh-Ritz Method 

It has been said in the introductory section 
that substitution of an approximate solution 
function i.e. a trial solution function, into the total 

Fig. 3:  Shows the beam at the second equilibrium state. 
The beam bends laterally as well as twists. The fibres at the 
middle of the beam may also warp. 
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potential energy functional results in an 
approximate analysis in addition to that, it will be 
noticed that if a generalised trial solution function 
is used the result obtained will describe generalised 
conditions on the solution domain. The unknowns 
in this case are the generalised constants 
coefficients of the solution function. This is one of 
the differences between classical Rayleigh-Ritz and 
finite element method of analysis. In finite element 
analysis only nodal quantities are considered as the 
unknowns in the solution process and hence such 
quantities are no longer generalised. 

For the beam problem considered herein, the 
variation of the total potential energy functional of 
either equations (5) or (8) is taken after which trial 
solution functions or function is substituted into the 
functional of either equation (5) or equation (8). 
Rayleigh-Ritz minimization condition is applied to 
obtain the parameter of interest. In the present case, 
the critical buckling moment is obtained. However, 
care is usually taken to select a solution function 
that satisfies both the geometric and essential 
boundary conditions for the problem. 

Applications 
Example 1: 

In this example we study the lateral buckling 
behaviour of  a simply supported beam loaded with 
a constant moment M. The beam has a rectangular 
section; and that warping is prevented. Also the 
following displacement functions are assumed: 
(Timoshenko and Gere, 1961): 

 

 

In which a and b are displacement amplitudes. 
Substitution of equation (9) and (10) into the 
coupled functional of equation (5) and carrying out 
the Rayleigh-Ritz minimisation process, the critical 
moment is obtained as: 

 

This is 31.84% higher than exact value of 

for the same problem presented by 

Timoshenko and Gere [5]. 

Appendix contains details of the Rayleigh-Ritz 
process. 
Example 2: 

In this example the sample problem of 
example 1 is solved using the proposed uncoupled 
functional of equation (8) and with one 
displacement function  of equation (10). 
Therefore substitution of equation (10) into 
equation (8) and carrying out the Rayleigh-Ritz 
minimisation process gives the critical moment  
as: 

 
This is only 1.84% higher that the exact value of 

 (Timoshenko and Gere, 1961). 

Comparing equation (11) and equation (12) it 
is seen that equation (12) which is the result from 
the proposed uncoupled functional is 8.67% less 
than that of the coupled functional given in 
equation (11). Again details of the Rayleigh-Ritz 
minimisation process is given in example (2) of 
appendix 1. 

Conclusion 
In this paper it has been shown that the 

coupled lateral buckling energy functional can be 
uncoupled without adversely reducing the accuracy 
of the solution for lateral buckling of dual 
symmetric beams. The view point was confirmed 
when a simply supported beam loaded with a 
constant moment was analysed using the existing 
coupled functional and the proposed uncoupled 
functional. It was found, however, that the two 
results differ by about 8.67% and that the result of 
the proposed functional was on the safe side as far 
as design was concerned, that is, it was lower than 
that obtained for the coupled functional. 
Thus the proposed functional is therefore 
acceptable as results using the functional are closer 
to the exact values and are on the safe side as far as 
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design is concerned. We therefore recommend the 
use of the functional proposed herein for the 
calculation of the lateral buckling strengths of dual 
symmetric beams. 
Appendix 
Example 1. 

Consider a simply supported beam loaded 
with a constant movement . The beam considered 
in the present investigation is fabricated from a 
thin-walled rectangular section and that warping is 
prevented. The following displacement functions 
are taken from (Timoshenko and Gere, 1961). 

 
 

in which the primes represent differentiation with 
respect to z and L is the length of the beam. 
In variational notation, the functional of equation 
(5) becomes: 

 

 

in which 

 

 

Substitution of  and  into equation (A1.3) and 
differentiating partially with respect to  and b we 
have: 

 

 

 

 

Equations (A1.7) to (A1.10) are written in matrix 
form as: 

 

For a non trivial solution to exist, the determinant 
of the equation (A1.11) should vanish, i.e. 

 

Solving for  gives: 

 

or  

 

This is 31.84% higher than exact value of 

for the same problem presented by 

Timoshenko and Gere 1961). 

Example 2 
For the purpose of comparison,the same 

problem of example (1) above is solved using the 
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proposed uncoupled energy functional of equation 
(8). By taking variations of equation (8), the 
uncoupled total potential energy functional for 
lateral buckling being considered becomes: 

 

                       
)16.1(43 AII   

Substitution of the function  or its appropriate 
derivatives from equation (A1.2) and 
differentiating partially with respect to  gives: 

 

 

The equilibrium equation is: 

 

or  

 

This is only 1.84% higher that the exact value of 
 (Timoshenko and Gere, 1961). The 

result of equation (A1.14) is obtained in example 
(1) for the coupled functional. The proposed 
functional is therefore worth testing further for 
design applications. 
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