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Abstract

Objectives: We review two algorithms developed for simulating macroscopic systems.
The first is the Metropolis and the second is the Wang-Landau algorithm.
Methods: Metropolis algorithm has been extensively employed for simulating a canonical
ensemble and estimating macroscopic properties of a closed system at any desired tem-
perature. A mechanical property, like energy can be calculated by averaging over a large
number of micro states of the stationary Markov chain generated by the Metropolis algo-
rithm. However thermal properties like entropy, and free energies are not easily accessible.
A method called umbrella sampling was proposed some forty years ago for this purpose.
Ever since, umbrella sampling has undergone several metamorphoses and we have now
multi canonical Monte Carlo, entropic sampling, flat histogram methods, Wang-Landau
algorithm etc.

Findings: In this paper we review Metropolis algorithm for estimating mechanical prop-
erties and Wang-Landau algorithm for estimating both mechanical and thermal properties
of an equilibrium system.
Applications: We shall make the review as pedagogical and as self-contained as possible.
These algorithms can be applied to a variety of problems in physics, astrophysics, chem-
istry, biology, soft matter, computer science, etc.
Keywords : Monte Carlo simulation; Metropolis algorithm; entropic sampling; flat-
histogram methods; detailed balance; Markov Chain.

1 Some Preliminaries

The subject of statistical mechanics helps us go from the micro world of atoms and molecules obeying
laws of classical and quantum mechanics to the macro world of thermodynamics, describing matter
in bulk. In one single stroke Ludwig Eduard Boltzmann (1844 - 1906) connected physics at the
length scales of atoms and molecules to phenomenon happening on on the length scales of solids,
liquids, gases, polymers, magnets, etc. The micro-macro synthesis proceeds, very generally along the
following lines.

First, we identify a random variable that corresponds to a thermodynamic property. We shall be
concerned with equilibrium systems only. The average of the random variable over a suitable and well
defined statistical ensemble1 gives the value of the thermodynamic property. As an example, consider
internal energy2 of a thermodynamic system. This property is usually denoted by the symbol U .

1e.g. micro canonical ensemble for an isolated system; canonical ensemble for a closed system; and grand canonical
ensemble for an open system.

2see Appendix - A on Internal Energy and the First Law of Thermodynamics
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Corresponding to this property, we have, in statistical mechanics, energy E - the kinetic energy and
the interaction energy of the atoms and molecules of the macroscopic object. A numerical value for
E can be assigned to each micro state3 of the macroscopic system. The value of E will fluctuate
when the equilibrium system goes from one micro state to another. These fluctuations are an integral
part of an equilibrium descriptions. The average of E gives the internal energy : 〈E〉 = U , and the
fluctuations give the heat capacity :

〈E2〉 − 〈E〉2 = kBT
2CV .

The symbol 〈(·)〉 denotes averaging of the property (·) over a canonical ensemble.

Energy

The computation of average energy is now straight forward : Generate a canonical ensemble employ-
ing, for example, a Monte Carlo method based on Metropolis algorithm; a simple arithmetic average
of E over a Monte Carlo sample of reasonably large size, gives the required answer. The statistical
error associated with the finite-sample average can also be calculated from the data obtained in the
simulation. Such a neat computational scheme is possible because a numerical value for energy can
be assigned to each micro state of the macroscopic system.

Entropy

How does one calculate entropy ?
We can not assign a numerical value for entropy to any single micro state. Entropy is a property

that belongs collectively to all the micro states. While energy is a private property (of each micro
state), entropy is a social or a pubic property, see below.

Let Ω denote the set of micro states of an equilibrium system; the micro states are discrete,
distinct and finite in number. Let Ω̂ denote the number of micro states in the set Ω. Formally, let
{p(Cν) : ν = 1, 2, · · · , Ω̂} denote the probabilities of the micro states. We use script C to
denote micro states of the system and regular Roman C to denote micro states of an ensemble or of
a Monte Carlo sample or of a Markov chain. The Boltzmann-Gibbs-Shannon entropy is given by

S = −kB

Ω̂∑

ν=1

p(Cν) ln p(Cν).

In the above, kB is the Boltzmann constant4.

Entropy of an Isolated System

For an isolated system, the micro states are equally probable5. We have,

p(Cν) =
1

Ω̂(E, V,N)
∀ ν.

3For example three positions (q1, q2, q3) and three momenta (p1, p2, p3) are required to specify a single point
particle. For N particles, we need a string of 6N numbers and this string denotes a micro state of the macroscopic
system of N particles. E = (1/2m)

∑3N

i=1 p
2
i + V (q1, q2, · · · , q3N) - the kinetic and potential energies. Note that

energy is defined for each micro state. For a macroscopic system of say N Ising spins, we have 2N micro states; note
each Ising spin can be in either ”up” (Si = +1) state or ”down” (Si = −1) state. E = −J

∑
〈i,j〉 Si Sj where Si

is the spin at lattice site i and J > 0 measures the strength of spin-spin interaction. Spins on nearest neighbour
lattice sites interact. The sum runs over all pairs of nearest neighbour spins

4kB = 1.38064852× 10−23 joules/kelvin
5we call it ergodicity; it is an hypothesis; the entire edifice of statistical mechanics is built on this hypothesis.



Indian Journal of Economics and Development,Vol 6(2) February 2018 ISSN(online):2320-9836
ISSN(Print):2320-9828

Ω̂(E, V,N) is the number of micro states of the isolated system of of N particles, confined to a
volume V , and with a fixed total energy of E. For an isolated system the expression for entropy
simplifies to

S(E, V,N) = kB ln Ω̂(E, V,N).

Entropy of a Closed System

For a closed system at temperature6 T = 1/[kBβ], we have

p(Cν) =
1

Q
exp[−βE(Cν)],

where

Q =

Ω̂∑

ν=1

exp[−βE(Cν)]

is called the canonical partition function.

Entropy of an Open System

For an open system we have

p(Cν) =
1

Q
exp[−β{E(Cν) − µN(Cν)}],

where µ is the chemical potential7 of the system, N(Cν) is the number of particles in the system
when it is in micro state Cν , and

Q(T, V, µ) =

Ω̂∑

ν=1

exp[−β{E(Cν) − µN(Cν)}],

is the grand canonical partition function.

Our aim is to simulate physical processes occurring in an equilibrium system and assemble a
large ensemble of micro states consistent with the given probabilities. To this end, we start with an
arbitrary initial micro state C0(∈ Ω) and generate a Markov chain8

C0(∈ Ω) → C1(∈ Ω) → C2(∈ Ω) → · · · → Ci(∈ Ω) → Ci+1(∈ Ω) → · · ·

employing Metropolis rejection algorithm [1], see the next section.

Note we have used Roman C to denote the micro states in the Markov chain. The subscript
stands for discrete time. Each micro state in the Markov chain is drawn from the set Ω containing
the micro states of the system. In the chain, it is quite possible Ci = Cj for several i s and j s.

6In thermodynamics, temperature is defined as T =

(
∂U

∂S

)

V,N

.

7the chemical potential gives the change in energy upon addition of a single particle keeping the entropy and volume

of the system at a constant value. In other words µ =

(
∂U

∂N

)

S,V

.

8See Appendix-B on Markov Chain
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2 Metropolis Rejection Algorithm

Let us say we have simulated the Markov chain upto Ci ∈ Ω starting from C0 ∈ Ω. Thus the
current micro state is Ci. Let pi = p(Ci) denote its probability. We make a small random change
in the current micro state and construct a trial micro state9 Ct ∈ Ω. Let pt = p(Ct) denote its
probability. Calculate p = minimum (1, pt/pi) . Then, the next micro state in the Markov chain
is given by,

Ci+1 =

{
Ct with probability p

Ci with probability 1 − p

The implementation of the above goes as follows :

• Generate a random number10 uniformly distributed between zero and unity. Denote it by the
symbol ξ.

• If ξ ≤ p, then accept the trial state and advance the Markov chain to Ci+1 = Ct.

• If not, reject the trial state and advance the Markov chain to Ci+1 = Ci.

• Repeat the process on Ci+1 to get Ci+2; and so on.

Generate a long Markov chain. The asymptotic part of the chain shall contain micro states belonging
to the ensemble characterized by the probabilities {p(Cν) : ν = 1, 2, · · · }.

Important Features of the Metropolis Algorithm

• The Metropolis algorithm demands only a knowledge of the ratio of probabilities of any two
micro states belonging to Ω. This is the most important property of the Metropolis algorithm.
As a conseqquence of this property, we need to know {p(Cν) : ν = 1, 2, · · · Ω̂} only up to a
normalization constant. It is precisely because of this reason we are able to simulate a closed
system, since we need to know only the Boltzmann weight exp[−βE(C)] of each micro state;
we need not have any knowledge what so ever of the canonical partition function.

• The next important property is that the Metropolis algorithm obeys balance condition11. This
ensures that the Markov chain shall definitely converge to an invariant probability density (of
the micro states).

• Another important property is that the Metropolis algorithm obeys a stricter condition called
detailed balance12

The consequences of this are two fold.

9For example if we are simulating an Ising spin system, select randomly an Ising spin from the current spin
configuration (micro state) and flip it to construct a trial spin configuration. If we are simulating a collection of
particles, then select a particle randomly and change its there position coordinates and three momentum coordinates
by small random amounts to construct a trial micro state.

10employ the random number generator available in your computer. The (pseudo) random numbers are real numbers
independently and uniformly distributed between zero and one. Random number generation and testing are non-trivial
tasks and they constitute highly specialized areas of research. Most Monte Carlo practitioners are not aware of the
subtleties and difficulties associated with random number generation employing deterministic algorithms and testing
of the generated random numbers for randomness. We take the available random generator and use it as a black box.

11see Appendix-C on Time Homogeneous Markov Chain.
12see section under Detailed Balance in Appendix - C on Time Homogeneous Markov Chain
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(i) Detailed balance ensures the Markov chain converges to an equilibrium ensemble consistent
with the given probability weights of the micro states : Boltzmann weights for canonical
ensemble; and Gibbs weights for grand canonical ensemble; etc. We can choose the nature
of the equilibrium state.

(ii) Detailed balance ensures the Markov chain is reversible, see e.g. [2], and hence is most
suited for describing an equilibrium system13; for, no matter what kind of observations you
make on an equilibrium system, you can not tell which way time moves, past to present
to future or the reverse, future to present to past. Equilibrium is a time-reversal invariant
state. Detailed balance captures this subtle property. Note also that detailed balance
implies balance and not vice versa.

Estimation of Averages and Statistical Errors

Generate a Markov chain until it equilibrates14. Continue the Markov chain and collect a reasonably
large number of micro states {Ci : i = 1, 2, · · ·M} from the equilibrated Markov chain. Let O
be a property of interest and O(C) its value when the system is in micro state C. Then the Monte
Carlo estimate of the property O is given by15,

OM =
1

M

M∑

i=1

O(Ci);
Limit

M→∞ OM = 〈O〉.

A little thought will tell you that the quantity OM is a random variable. It will fluctuate from one
realization of a Monte Carlo sample to another.

What is the nature of these fluctuations ?
The Central limit theorem16 (CLT) tells that the quantity OM is a Gaussian random variable

when M is large. The average of the Gaussian is 〈O〉 and its variance is σ2/M , where σ2 =
〈O2〉−〈O〉2. A possible statement of the statistical error associated with the Monte Carlo estimate
OM is obtained from the following considerations.

Take a Gaussian random variable with mean ζ and standard deviation Σ. The area under the
Gaussian17 between ζ − Σ and ζ +Σ is 0.682695. This means that with 68.27% confidence, you
can say that a randomly sampled number from the Gaussian shall lie between ζ−σ and ζ+σ. The
one-sigma confidence interval provides a neat quantification of the statistical error associated with
Monte Carlo estimates, see below.

We calculate the second moment,

O
2

M
=

1

M

M∑

i=1

O2(Ci);
Limit

M→∞
O

2

M
= 〈O2〉.

13see Appendix-D on Time Symmetry
14calculate the moving average of energy. When it stabilizes to a constant value but for some small statistical

fluctuations, we can say the system has equilibrated.
15We reserve the symbol 〈O〉 to denote the unknown exact value of the canonical ensemble average of the property

O formally given by

〈O〉 =
1

Q

Ω̂∑

ν=1

O(Cν) exp[−βE(Cν)]; Q =

Ω̂∑

ν=1

exp[−βE(Cν)].

16see Appendix-E on Central Limit Theorem
17

1

Σ
√
2π

∫ ζ+Σ

ζ−Σ

dx exp

[
−(x − ζ)2

2Σ2

]
= 0.682695
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From the calculated values of the first and second moments we estimate the variance as,

σ2

M
= O

2

M
− (OM)2.

(
σ2 = 〈O2〉 − 〈O〉2 = Limit

M→∞
σ2

M

)
.

We then estimate the one-sigma confidence interval and quote the Monte Carlo result as
OM ± σM/

√
M. The above means that with 0.6827 probability we can expect the Monte Carlo

estimate OM to lie in the one sigma interval around 〈O〉, i.e. to lie between 〈O〉 − σM/
√
M and

〈O〉 + σM/
√
M .

The statistical error decreases with increase of M . This is indeed a desirable property. This
tells us, atleast in principle, we will get things right if M is sufficiently large. Usually we would be
interested in comparing our Monte Carlo predictions with experiments. Hence we can take the Monte
Carlo sample size to be large enough to ensure that the statistical error is less that the experimental
error bar.

However, notice the statistical error decreases painfully slowly with the sample size. The decrease
is logarithmically slow : to better the results by one extra decimal accuracy we need to increase the
sample size a hundred fold. Often this would prove to be an exercise in futility; for, the computing
time is linear in M .

We need variance reduction devices that significantly reduce the fluctuations without affecting
the averages. Importance sampling is a variance reduction device. It helps us sample micro states
from important regions of the sample space e.g. micro states with high Boltzmann weights. Notice
a randomly selected micro state would be, most likely, of high energy18, hence of low Boltzmann
weight; its contribution to the partition sum would be negligible. In fact the Metropolis algorithm is
an importance sampling device. I am not going to talk of importance sampling or of other variance
reduction techniques; those interested can consult for example [5, 6, 7].

Instead, in what follows, I am going to investigate the nature of the invariant distribution of the
Markov chain of micro states whose probabilities are inversely proportional to the density of states :
micro states of high entropy region have low probabilities; and those of low entropy region have high
probabilities. This kind of prescription does not help simulate any physical system or any physical
processes. Nevertheless it has certain advantages and this will become clear in the sequel.

3 Markov Chain with Flat Energy Histogram

Consider a system with micro states Ω = {Cν : ν = 1, 2, · · · ,M}. Let Ω̂(E) denote its density
of states. For purpose of illustration we assume that the density of states is known. Let Cµ ∈ Ω and
Eµ = E(Cµ). We prescribe

P (Cµ) ∝ 1

Ω̂(Eµ)
.

Let me emphasize two points before we proceed further :

• We do not know the density of states. After all, if we know the density of states we can estimate
all the properties of the system employing the well developed machinery of thermodynamics
and statistical mechanics. We do not need Monte Carlo simulation.

• There is no physical system for which the probability of a micro state is inversely proportional
to the density of states.

18entropy increases with energy.
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Nevertheless we shall consider Monte Carlo simulation of such an un-physical system employing
Metropolis algorithm and investigate the nature of the micro states of the equilibrated Markov
chain. Accordingly we generate a Markov chain based on these probabilities and Metropolis rule.
Note we need to know the probabilities of the micro states only upto a normalization constant.

Let Ci be the current micro state in the Markov chain and Ei = E(Ci) its energy. We take

pi = p(Ci) ∝
1

Ω̂(Ei)
,

as its probability. Let Ct be the trial state and Et = E(Ct) its energy. We take

pt = p(Ct) ∝ 1

Ω̂(Et)
,

as its probability. The probability of acceptance of the trial state is then given by

p = minimum

(
1,

pt

pi

)
= minimum

(
1,

Ω̂(Ei)

Ω̂(Et)

)

Note that if the trial micro state belongs to a lower entropy region it gets accepted with unit prob-
ability; however if it belongs to higher entropy region its acceptance probability is less than unity.
Thus the algorithm pushes the Markov chain preferentially toward low entropy region. This pref-
erence cancels statistically exactly the natural tendency of randomly sampling of trial micro states
from high entropy region. As a result the Markov chain shall have equal number of micro states in
equal regions of energy. In other words the energy histogram of the visited micro states shall be flat.

Thus the Markov chain visits all regions of energy with equal ease. It does not see any energy
barriers insurmountable or otherwise, that might be present in the system under investigation. This
is a great advantage because there are indeed energy barriers that emerge close to first order phase
transition and which are responsible for the super critical slowing of the dynamics. Also glassy
systems have free energy profile with numerous ups and downs. Perhaps it is worthwhile investigating
and inventing methods that that help obtain the density of states iteratively. May be we have to to
abandon the comforts of Markov Chain methodology and violate detailed balance of the Metropolis
rule to achieve this. This line of thoughts lead us naturally to non-Boltzmann Monte Carlo algorithms
Also notice that if we manage to get the density of states then we get easy access to entropy and
other thermal properties. It is indeed very difficult to estimate entropy and other thermal quantities
by conventional Boltzmann Monte Carlo methods.

What is it that renders calculation of entropy a difficult task ? To answer this question we have
to realize that the usefulness of the Monte Carlo methods considered upto now, is tied crucially to
our ability to assign a numerical value of the property O to every micro state of the system. Consider
estimating a property like entropy. We can not assign a numerical value for entropy to any single
micro state of the system. All the micro states collectively own entropy. Hence thermal properties
in general and entropy in particular are not easily accessible to conventional Monte Carlo methods
based on Metropolis algorithm. Let us bring all the conventional Monte Carlo methods under one
single umbrella and call them Boltzmann Monte Carlo methods.

For computing thermal properties we need to go beyond Boltzmann Monte Carlo methods. We
need non-Boltzmann Monte Carlo methods.

That a non-Boltzmann sampling can provide a legitimate and perhaps superior alternative to
Boltzmann methods has been recognized even during the very early days of Monte Carlo practice,
see e.g. [8] and to these issues we turn our attention, below.
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Torrie and Valleau [9] were, perhaps, the first to propose a non-Boltzmann algorithm to calculate
the thermal properties. Their method called umbrella sampling has since undergone a series of
metamorphoses. We have the multi-canonical Monte Carlo of Berg and Neuhaus [10], entropic
sampling of Lee [11] and the algorithm of Wang and Landau [12].

We describe below the Wang-Landau algorithm.

3.1 Wang-Landau Algorithm

Wang and Landau [12] proposed an algorithm to estimate iteratively the density of states of the
system. The algorithm is described below.

Define a function g(E) and set it to unity for all E. Define also an histogram H(E) and set it
to zero for all E. Start with an arbitrary initial micro state C0. Let E0 = E(C0) be its energy.
Update g(E) and H(E) as follows :

g(E0) = g(E0) × α; H(E0) = H(E0) + 1.

Here α is the Wang-Landau factor and we take α = e1 = 2.7183 in the first iteration. Construct
a trial state and accept/reject it on the basis of Metropolis algorithm where we take

p(C) ∝ 1

g(E(C))
.

Every time we advance the chain, we update the functions g(E) and H(E). We start employing
the updated g from the very next rejection/acceptance step. Carry out the simulation of the chain
of micro states until the energy histogram of becomes flat over, at least, a small range of energy.
This constitutes one Wang-Landau iteration.

Note that the function g(E) is updated at every step; the updated function is employed for
decision making, from the the very next step. As a result the chain of micro states generated, is not
Markovian. The probability of transition between two micro states at any stage in the chain depends
on how many times the chain has visited these two micro states in its past. The transition from
present to future depends on the entire past. Hence we shall refer to the sequence of micro states as
simply a chain and not a Markov chain.

At the end of the first Wang-Landau iteration, change α to
√
α. Reset H(E) to zero for all E;

but continue with g(E). Carry out the second Wang-Landau iteration. The histogram would spread
out and would at the same time become flatter over a wider range of energy.

Upon further iterations the value of alpha will move closer and closer to unity. For example, after
some twenty five iterations we shall have α = 1+3×10−7. The histogram of energy would become
flat at least over the range of energy of interest after a few Wang-Landau iteration runs.

The flatter the histogram, closer would be g(E) to the true but unknown density of states Ω̂(E).
We take g(E) obtained at the end of the last iteration - the one which generates a reasonably flat

energy histogram, as an estimate of Ω̂(E), the true density of states.
We can define a suitable criteria for measuring the flatness of the histogram. For example we can

consider the histogram to be flat if the smallest and largest entries do not differ from each other by
say more than say ten percent. Depending upon the requirement of accuracy and the availability of
computing resources, we can relax or tighten the flatness criterion.

There is no hard and fast rule about either the choice of the initial value of the Wang-Landau
factor or its evolution from one iteration to the next. The choice of α = α0 = e1 at the begin-
ning of the first iteration and the square-root rule of evolution, were recommended by Wang and
Landau[12]. In principle, α0 can be any real number greater than unity and it should decrease,
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preferably monotonically, to unity. Some authors, see e.g. [13, 14], have found it advantageous vary
α non-monotonically. The important point is any choice of variation of α that flattens the histogram
would serve the purpose. In a sense the histogram provides a diagnostic tool with which you can
monitor whether you are doing things right or wrong. The flatness of the histogram tells you how
close has the density of states converged to its true value.

The Wang-Landau algorithm estimates the density of states only upto a normalization constant.
In other words the micro canonical entropy is estimated only upto an additive constant. This is quite
adequate since we need to calculate only change in entropy rather than absolute entropy in almost
all applications.

In principle we can stop here. Once we know the density of states then we can employ the
machinery of thermodynamics and know everything else about the system.

Entropic Ensemble

Alternately, we can employ the converged density of states in a production run and generate a large
ensemble of micro states. The sequence of micro states generated in the production run constitute
a legitimate Markov chain, obeying detailed balance. However the invariant probabilities are un-
physical : the probability of a micro state C is inversely proportional the density of states at E =
E(C). The Markov chain obeys detailed balance and hence convergence to the desired ensemble,
though unphysical, is guaranteed.

Let us call the set of micro states generated in the production run as an an entropic ensemble
or Wang-Landau ensemble. By employing un-weighting and re-weighting techniques19 we can make,
from the entropic ensemble, statically reliable estimates of physical quantities.

In what follows I shall show how to convert the entropic ensemble to a micro canonical ensemble
and to a canonical ensemble.

Entropic → Micro Canonical Ensemble

Let {Ci : i = 1, 2, · · · ,M} denote a set ofM micro states belonging to the entropic ensemble. We
attach a statistical weight unity to each of these micro states : {W (Ci) = 1 : i = 1, 2, · · · ,M}
These micro states have been sampled from a probability distribution p(Ci) ∝ 1/g(E(Ci)). Hence
we first carry out un-weighting, see footnote (19) :

W (Ci) =
W (Ci)

1/g(E(Ci))
= W (Ci) × g(E(Ci)).

Note that the micro states of the entropic ensemble are not necessarily of the same energy. In fact
the ensemble contains equal number of micro states in equal regions of energy - in other words the
energy-histogram is flat. For a micro canonical ensemble all micro states are of the same energy and
are equally probable. Hence we the re-weighting factor is 1 × δ(E − E(Ci)); the delta function
ensures that we assemble only those micro statesEvery time we advance the chain, we update the
functions g(E) and H(E). We start employing the updated g from the very Every time we advance
the chain, we update the functions g(E) and H(E). We start employing the updated g from the
very n n with the desired energy. Thus we have

W (Ci) = g(E(Ci)) δ(E − E(Ci)).

19 See Appendix-F on Un-weighting and Re-weighting
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Let O(Ci) be the value of a property when the system is in micro state Ci. The micro canonical
ensemble average of O is given by,

〈O〉µC(E) = Limit

M→∞

∑M

i=1
O(Ci)g(E(Ci))δ(E(Ci) − E)

∑M

i=1
g(E(Ci))δ(E(Ci) − E)

In the above we have taken E as the energy of the isolated system described by the micro canonical
ensemble.

Thus weighted averaging over micro states of given energy belonging to the unphysical entropic
ensemble equals averaging over a physical micro canonical Every time we advance the chain, we
update the functions g(E) and H(E). We start employing the updated g from the very Every time
we advance the chain, we update the functions g(E) and H(E). We start employing the updated
g from the very n nensemble modelling an isolated system.

Entropic → Canonical Ensemble

The un-weighting factor remains the same as the one derived for converting entropic ensemble to
micro canonical ensemble. The re-weighting factor however is the Boltzmann weight. Thus

W (Ci) = g(E(Ci))× exp[−βE(Ci)].

All the micro states of the entropic ensemble contribute to the canonical ensemble average.
The canonical ensemble average of O is given by

〈O〉C = Limit

M→∞

∑M

i=1
O(Ci)g(E(Ci)) exp[−βE(Ci)]∑M

i=1
g(E(Ci)) exp[−βE(Ci)]

Thus the weighted average over the unphysical entropic ensemble is equivalent to average over a
physical canonical ensemble modelling a closed system.

From one single ensemble of micro states we can calculate averages over a large number of distinct
canonical ensembles at different temperatures. This is a huge advantage especially for problems in
which we need the properties on a fine grid of temperatures in the neighbourhood of a phase transition.
Every time we advance the chain, we update the functions g(E) and H(E). We start employing
the updated g from the very Every time we advance the chain, we update the functions g(E) and
H(E). We start employing the updated g from the very n n

4 End Note

We have discussed about Metropolis algorithm to sample micro states from a given ensemble, physical
or otherwise. If sampling is done from a physical ensemble we call it Boltzmann Monte Carlo.
Boltzmann sampling has been eminently successful for estimating mechanical properties like energy.
The reason is simple. A value for a mechanical property can be assigned to each micro state. All the
micro states of the entropic ensemble contri However Boltzmann sampling is Every time we advance
the chain, we update the functions g(E) and H(E). We start employing the updated g from
theEvery time we advance the chain, we update the functions g(E) and H(E). We start employing
the updated g from the very Every time we advance the chain, we update the functions g(E) and
H(E). We start employing the updated g from the very n n very n quite clumsy when it comes
to estimatEing thermal properties like entropy and free energies. The clumsiness owes its origin to
the fact that a numerical value for entropy can not be assigned to any single micro state. All the
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micro states, collectively, own entropy. Entropy is a property of an ensemble and not of any single
micro state. This problem about estimating entropy was recognized even in the early days of Monte
Carlo methods development and Torrie and Valleau[9] invented umbrella sampling which precisely
and brilliantly addressed these issues. Umbrella sampling has since inspired and given rise to a whole
host of non-Boltzmann methods; the latest to arrive on the Monte Carlo scene, is the method from
Wang and Landau[12]. We have described the basic theory behind Wang-Landau algorithm and how
to implement it on a practical problem.

The take home message is that non-Boltzmann Monte Carlo methods are as good as Boltzmann
methods, if not more, for purpose of calculating mechanical properties. They also provide reliable
estimates of thermal properties, not accessible to Boltzmann Monte Carlo methods.

We must quickly add that all is not cozy about the non-Boltzmann Monte Carlo methods. There
are several issues and difficulties associated with the Wang-Landau algorithm in particular and non-
Boltzmann Monte Carlo methods in general. A typical Monte Carlo aficionado, see e.g. [15], is
not quite comfortable with the Wang-Landau algorithm since it does not obey detailed balance;
in fact the chain generated is not even Markovian. What are the implications of these issues to
the convergence of the density of states ? The convergence, we must say, has been unambiguously
established numerically on several problems. But then do we have a proof that g(E) would converge
to the true density of states Ω(E) ?

Another problem is the algorithm performs miserably poorly if the Hamiltonian of the system
under simulation is continuous. This problem has attracted the attention of several authors, se
Every time we advance the chain, we update the functions g(E) and H(E). We start employing
the updated g from the very ne e.g. [13, 14, 16, 17]. But to the best of our knowledge no saEtisfactory
solution has yet emerged. All the suggestions that have been proposed so far, E including the method
of frontier sampling seem ad-hoc at least in our perspective.

There are also issues about errors - both systematic and statistical - associated with the computed
density of states. How does one translate the non-flatness of the energy histogram to error bars in
the estimated density of states ? After all, a Monte Carlo practitioner often takes pride in in the fact
that the method gives not only an estimate of a property but also of associated statistical error. But
then, we do not know how to calculate Monte Carlo error bars in Wang-Landau simulation ? We
hope these and other issues would get resolved soon and we shall have the Non-Boltzmann Monte
Carlo methods on a strong theoretical and practical footing, sooner than later.

References

[1] N Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of

State Calculations by Fast CEomputing Machines, Journal of Chemical Physics 21 1087 (1953);
see also G. Bhanot, The Metropolis Algorithm, Reports of Progress in Physics 51, 429 (1988).

[2] K. P. N. Murthy and V. S. S. Sastry, Markov chain Monte Carlo Methods in Statistical Physics,
PoS(SMPRI2005)018 (2005).

[3] W. Feller, An Introduction to Probability Theory and Applications I and II, John Wiley (1968)

[4] A. Papoulis, Probabilty Theory, Random Variables, and Stochastic Processes McGraw Hill
(1965)

[5] K. P. N. Murthy, Monte Carlo Methods in Statistical Physics, Universities Press (2004)

[6] K. P. N. Murthy, Monte Carlo : Basics, Report ISRP - TD-3, Indian Society for Radiation
Physics, Kalpakkam Chapter (2000); Esee arXiv:cond-mat/014215v1, 12 Apr. 2001



Indian Journal of Economics and Development,Vol 6(2) February 2018 ISSN(online):2320-9836
ISSN(Print):2320-9828

[7] E. J. McGrath, and D. C. Irving, ETechnqiues for Efficient Monte Carlo Simulation Volume
III : Variance Reduction, Report SAI - 72 - 590 - LJ , Office of the Naval Research, Department
of the Navy, Arlington, Virginia 22217 USA (March 1973)

[8] L. D. Fosdick, Monte Carlo Computation on the Ising Lattice in Methods of Computational
Physics, Vol. 1, Editor B Adler, p.245 (1963).

[9] G. M. Torrie, and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy

estimation: Umbrella sampling, Journal of Computational Physics 23 187 (1977). E

[10] B. A. Berg, and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-order

phase transitions, Physical Review Letters 68, 9 (1992).E

[11] J. Lee, New Monte Carlo algorithm: Entropic sampling, Physical Review Letters 71, 211
(1993); Erratum, 71, 2353 (1993)

[12] F. Wang, and D. P. Landau, Efficient, Multiple-Range Random Walk Algorithm to Calculate

the Density of States, Physical Review Letters 86, 2050 (2001).

[13] D. Jayasri, V. S. S. Sastry, and K. P. N. Murthy, Wang-Landau Monte Carlo simulation of

isotropic-nematic transition in liquid crystals, Physical Review E 72, 36702 (2005).

[14] P. Poulin, F. Calvo, RE. Antoine, M. Broyer, P. Dugord, Performances of Wang-Landau algo-

rithms for continuous systems, Physical Review E 73, 56704 (2006).

[15] W. Janke, Monte Carlo Simulations in Statistical Physics – From Basic Principles to Advanced

Applications, in Order, Disorder and Criticality: Advanced Problems of Phase Transition The-

ory, Vol. 3 (edited by Y. Holovatch), World Scientific (2012)pp. 93-166.

[16] B. J. Schulz, K Binder, M. Müller, and D. P. Landau, Avoiding Boundary Effects in Wang-

Landau Sampling Physical Review E 67, 67102 (2003).

[17] C. Zou, and R. N. Bhatt, Understanding and Improving the Wang-LandauE Algorithm, Physical
Review E 72, 25701(R) (2005).

Appendix - A

Internal Energy and the First Law of Thermodynamics:

In thermodynamics, internal energy is defined completely in terms of work done in adiabatic processes
: Select a reference point O in the thermodynamic phase plane. Define a function U as follows.
Assign an arbitrary value to U(O). Without loss of generality we take it as zero : U(O) = 0.
Consider a point A. E Measure or calculate work done in an adiabatic process that takes the system
from O to A. Then define : U(A) = U(O) + W ad.

i
The superscript ad. tells that the process

considered is adiabatic. Employ the convention : work done on the system is positive and work done

by the system is negative. By considering adiabatic processes we can define U at all points on the
phase plane. If there exists a point, say B, whiEch is not ac Every time we advance the chain, we
update the functions g(E) and H(E). We start employing the updated g from the very ncessible
adiabatically from O then consider an adiabatic process that takes the system from B to O for
purpose of defining U : U(B) = U(O) − W ad.

B→O. Then consider an arbitrary process from C to
D. Let W be the work done and ∆U = U(D)−U(C). Then, ∆Q = ∆U−W is called heat and
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this is a statement of the first law of thermodynamics. Heat is the difference between actual work
and adiabatic work. Thus the first law of thermodynamics establishes the mechanical equivalence
of heat. As an off-shoot, we get to define a thermodynamic property calledE the intEernal energy,
denoted by the symbol U

Appendix - B

Markov Chain

Consider a sequence of micro states visited by the system at discrete times starting from C0 at time
0. Let us denote the sequence by

C0 → C1 → · · · → Cn−1 → Cn,

where the subscript denote the discrete time index. Our interest is to calculate the joint probability
of the sequence. From Bayes’ theorem we have,

P ( Cn,Cn−1, · · ·C1,C0) =

P ( Cn | Cn−1,Cn−2 · · ·C1,C0 ) × P ( Cn−1,Cn−2 · · ·C1,C0 ).

If P ( Cn | Cn−1,Cn−2, · · ·C1,C0 ) = P ( Cn | Cn−1 ) , then C0 → C1 → · · ·Cn−1 → Cn

is a Markov chain : The future depends only on the present and not on the past. Thus, once the
present is specified, the future is independent of the past.

Under Markovian condition, the expression for the joint probability of the chain of micro states,
simplifies to

P ( Cn, Cn−1, · · ·C1, C0 ) = P ( Cn | Cn−1 ) × P ( Cn−1, Cn−2 · · ·C1, C0 ),

= P ( Cn | Cn−1 ) × P ( Cn−1 | Cn−2 ) × P ( Cn−2, Cn−3 · · ·C1, C0 ),

= · · · · · · · · · ,
= P ( Cn | Cn−1 ) × P ( Cn−1 | Cn−2 ) × · · · × P ( C1 | C0 ) × P ( C0 ).

Since we are interested in equilibrium properties we consider a sequence of states visited by an
equilibrium system : The conditional probability, P ( Cn | Cn−1 ) is independent of the time index.
In other words P ( Cn = Cµ | Cn−1 = Cν ) = Wµ,ν, and this quantity is independent of time.
Once we know the transition probability matrix W and initial probabilities of all the micro states,
we can calculate the probabi lity of any given Markov Chain. The transition probability matrix W
is a square matrix of size Ω̂. We have

0 ≤ Wµ,ν ≤ 1 ∀ µ, ν

and
Ω̂∑

µ=1

Wµ,ν = 1 ∀ ν.

The elements of each column add to unity.
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Appendix - C

Time Homogeneous Markov Chain

Let P (Cj, n) be the probability for the system to be in micro state Cj at discrete time n. Let
Wi,j denote the probability for transition from micro state Cj to micro state Ci, in one time step.
We consider time homogeneous Markov chain for which the transition probabilities {Wi,j : i, j =

1, 2, · · · Ω̂} are independent of time. We have Wi,j = P ( Ci | Cj ), the conditional probability
that the system is in micro state Ci at any instant of time given it was in micro state Cj at the
previous instant of time.
Master Equation : The probabilities obey the Master equation,

P (Ci;n + 1) =
∑

j : j 6=i

P (Cj, n)Wi,j + P (Ci, N) Wi,i

We have
∑

i Wi,j = 1 ∀ j. Therefore, Wi,i = 1−
∑

j : j 6=i Wj,i. We can write the Master equation
as

P (Ci;n + 1) =
∑

j 6=i

P (Cj, n) Wi,j + P (Ci, n)

(
1 −

∑

j : j 6=i

Wj.i

)

= P (Ci, n) +
∑

j 6=i

[P (Cj, n) Wi,j − P (Ci, n)Wj,i]

Balance Condition : When the system equilibrates we have

P (Ci, n + 1) = P (Ci, n) = p(CEi) ∀ i.

Therefore we have ∑

j

[
p(Cj) × Wi,j − p(Ci) × Wj,i

]
= 0.

This is called the balance condition which ensures that the Markov chain eventually equilibrates.

Detailed Balance

Look at the balance condition given above. We can make a stricter demand that each term in the
sum be zero. Then we get the detailed balance condition :

p(Cj) × Wi,j = p(Ci) × Wj,i ∀ i, j = 1, 2, · · · , Ω̂.

It is quite easy to show that the Metropolis rejection algorithm obeys detailed balance condition.

Appendix - D

Time Symmetry

By observing an equilibrium system we can not tell which direction time flows. Both directions are
equally probable and equally unverifiable. Consider a Markov chain of micro states visited by an
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equilibrium system : C0 → C1 → · · ·Cn → Cn+1 → · · ·CM . The transition probabilities are
given by Wi,j = P (Cn = Ci|Cn−1 = Cj)

At discrete time M let us reverse the Markov chain and get CM → CM−1 → · · ·Cn+1 →
Cn → · · ·C1 → C0. A little thought will tell you the above is also a Markov chain : for, the
future depends only on the present and not on the past for a Markov chain, Hence once the present
is specified the future is independent of the past. Past is independent of the future which renders
the time reversed chain, Markovian.

Let us denote the transition probability matrix of the time reversed chain by the symbol WR.
We have

WR
i,j

= P (Cn = Ci|Cn+1 = Cj) =
P (Cn = Ci, Cn+1 = Cj)

p(Cj)

=
P (Cn+1 = Cj|Cn = Ci) p(Ci)

p(Cj)

=
Wj,i p(Ci)

p(Cj)

The condition for reversibility is WR
i,j

= Wi,nj : The transition probability matrix should be the
sane for both Markov chains - the time forward and the time reversed. Hence on the left hand side
of the above equation replace WR

i,j
by Wi,j and Every time we advance the chain, we update the

functions g(E) and H(E). We start employing the updated g from the very n reorganize. Then
the condition for reversibility reads as,

Wi,j p(Cj) = Wj.i p(Ci).

We recognize this as the detailed balance condition, see Appendix - C on Time Homogeneous Markov
Chain. Thus a Markov chain of micro states of an equilibrium system obeys detailed balance condition
and hence is reversible;

Apendix - E

Central Limit Theorem (CLT)

Let Y = X1 + X2 + · · ·XM denote the sum of N independent random variables each of finite
mean and variance. The central limit theorem says that Y is a Gaussian in the limit of M → ∞
and the variance of the Gaussian distribution is proportional to M . The Central Limit Theorem is
a glorious culmination of a series of studies starting from the Chebyshev inequality, see e.g. [3, 4]
followed by various laws of large numbers, see any standard text book, see e.g. [3, 4] on Probability
theory to know about these issues. Chebyshev inequality tells us the probability that a realization
of a random variable would deviate from its mean beyond kσ, is less than 1/k2 for k ≥ 1, where σ
is the standard deviation of the random variable.

Apendix - F

Un-Weighting and Re-Weighting

Let me explain un-weighting and re-weighting in a simple manner[5, 6]. Let x be a random variable
and f(x) its probability density. Let h(x) be some function of x. The f -ensemble average of h is
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formally expressed as,

〈h〉f =

∫ +∞

−∞

dx h(x) f(x).

Let g(x) be a density function. We call it importance density function. Let us generate an ensemble,

Ωg = {xi : i = 1, 2, · · ·M}

by random sampling from g(x).
Our aim is to make an estimate of 〈h〉f employing the ensemble Ωg.
Consider the following.

〈h〉f =

∫ +∞

−∞

dx h(x)f(x) =

∫ +∞

−∞

dx h(x)
f(x)

g(x)
g(x) = 〈 h(1/g)f 〉g

The above is an exact result. The left hand side is an f ensemble average of h. The right hand side
is a g ensemble average of h unweighted by 1/g and re-weighted by f .

The implementation goes as follows.

〈h〉f = Limit

M→∞

1

M

M∑

i=1

h(xi) ×
1

g(xi)
× f(xi).
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