Open Access Open Access  Restricted Access Subscription Access

Role of Horizontal Gene Transfer Events in the Evolution of Phenol 2–Monooxygenase Gene: a Comparative Study across 75 Prokaryotic Genomes


Affiliations
1 S.G.T.B. Khalsa College, Delhi University, India
2 Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi–110007, India
 

Horizontal Gene Transfer (HGT) is a major evolutionary force with a significant role in microbial evolution. In the present study, we report an in silico evidence for HGT of Phenol 2–Monooxygenase Gene which is responsible for converting Phenol to Catechol and is the initial and rate–limiting step in phenol degradation. Five computational approaches were applied across 75 completely sequenced prokaryotic genomes for studying the prospects of horizontal gene transfer of Phenol 2–Monooxygenase Gene. The phylogenetic incongruencies between the species tree (based on 16S rRNA gene) and the gene tree (using Phenol 2–Monooxygenase Gene) supported by high bootstrap values, discrepancies in %GC content, %GC3 content, codon usage analysis based on Codon Adaptation Index (CAI) and effective Number of codons (Nc) led to the conclusion that Horizontal Gene Transfer events might have taken place during the evolution of this gene. Tree and Reticulogram Reconstruction (T–REX) was constructed that detected the HGT events with significant bootstrap values, further making HGT an evident event in the evolution of this gene.

Keywords

Horizontal Gene Transfer, Phenol 2-Monooxygenase
User
Notifications

  • Eisen J. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev. 2000; 10(6):606–611.
  • Syvanen M. Horizontal gene transfer: evidence and possible consequences. Annu Rev Genet. 1994; 28:237–261. doi:10.1146/annurev.ge.28.120194.001321.
  • Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev. 1999 Sep; 63(3):507–522.
  • Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003 Jun; 14(3):262–269.
  • Walsh TR. Combinatorial genetic evolution of multiresistance. Curr Opin in Microbiol. 2006 Oct; 9(5):476–482.
  • Koonin EV, Makarova KS, AravindL. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001; 55:709–742. doi:10.1146/annurev.micro.55.1.709.
  • Zupan JR, Zambryski P. Transfer of T–DNA from Agrobacterium to the plant cell. Plant Physiol. 1995 Apr; 107(4):1041–1047.
  • Bundock P, den–Dulk–Ras A, Beijersbergen A, Hooykaas PJ. Transkingdom T–DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisae. EMBO J. 1995 Jul; 14(13):3206–3214.
  • Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000 May; 405(6784):299–304.
  • Enroth C, Neujahr H, Schneider G, Lindqvist Y. The crystal structure of Phenol 2–Monooxygenase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis. Structure. 1998 May 15; 6(5):605–617.
  • Dos Santos VL, Monteiro Ade S, Braga DT, Santoro MM. Phenol degradation by Aureobasidium pullulans FE13 isolated from industrial effluents. J Hazard Mater. 2009 Jan 30; 161(2–3):1413–1420.
  • Davison J. Genetic exchange between bacteria in the environment. Plasmid. 1999 Sep; 42(2):73–91.
  • Jain R, Rivera MC, Lake JA. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci, USA. 1999 Mar 30; 96(7):3801–3806.
  • Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, Pucci P, Donato AD. Phenol hydroxylase and toluene/o–xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol. 2004 Apr; 70(4):2211–2219.
  • Stewart GJ, Sinigalliano CD. Exchange of chromosomal markers by natural transformation between the soil isolate Pseudomonas stutzeri JM 300 and the marine isolate Pseudomonas stutzeri strain ZoBell. Antonie van Leeuwenhoek. 1991 Jan; 59(1):19–25.
  • Top E, Mergeay M, Springael D, Verstraete W. Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl Environ Microbiol. 1990 Aug; 56(8):2471–2479.
  • Kurland CG, Canback B, Berg OG. Horizontal gene transfer: a critical view. Proc Natl Acad Sci, USA. 2003 Aug 19; 100(17):9658–9662.
  • Makarenkov V, Boc A, Delwiche CF, Philippe H. A new efficient method for detecting horizontal gene transfers: modeling partial and complete gene transfer scenarios. Université du Québec à Montréal. 2003; Départementd’informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal (Québec), Canada, H3C 3P8.
  • Xu Z, Hao B. CVTree update: a newly designed phylogenetic study platform using composition vectors and whole genomes. Nucleic Acids Res. 2009 Jul 1; 37(Web Server issue):W174–W178.
  • Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol. 1994; 2:28–36 .
  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec 15; 25(24): 4876–4882.
  • Felsenstein J. PHYLIP (PHYLogeny Inference Package), version 3.5c. Department of Genome Sciences, University of Washington, Seattle, USA; 1993.
  • Page RDM. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug; 12(4):357–358.
  • Makarenkov V. T–Rex: reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics. 2001 Jul; 17(7):664–668.
  • Robinson DR, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981; 53:131–147 .
  • Kibbe WA. OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res. 2007 Jul; 35(Web Server Issue):W43–W46. doi:10.1093/nar/gkm234.
  • Peden J. Analysis of codon usage [PhD Thesis]. United Kingdom: The University of Nottingham; 1999.
  • Smith MW, Feng D–F, Doolittle RF. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992 Dec 1; 17(12):489–493.
  • Brown JR. Ancient horizontal gene transfer. Nat Rev Genet. 2003 Feb; 4(2):121–132.
  • Makarenkov V, Leclerc B. An optimal way to compare additive trees using circular orders. J Comput Biol. 2000; 7(5):731–744.
  • Zaneveld JR. Nemergut DR, Knight R. Are all horizontal gene transfers created equal? prospects for mechanism–based studies of HGT patterns. Microbiology. 2008 Jan; 154(Pt 1):1–15.
  • Tsirigos A, Rigoutsos I. A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 2005 Feb 16; 33(3):922–933.
  • Mondal UK, Sur S, Bothra AK, Sen A. Comparative analysis of codon usage patterns and identification of predicted highly expressed genes in five Salmonella genomes. Indian J of Med Microbiol. 2008 Oct–Dec; 26(4):313–321.
  • Wright F. The effective number of codons used in a gene. Gene. 1990 Mar 1; 87(1):23–29.
  • Azad RK, Lawrence JG. Towards more robust methods of alien gene detection. Nucleic Acids Res. 2011 May; 39(9) 1–11. doi:10.1093/nar/gkr059.
  • Setubal JC, dos Santos P, Goldman BS, Ertesvåg H, Espin G, Rubio LM, Valla S, Almeida NF, Balasubramanian D, Cromes L, Curatti L, Du Z, Godsy E, Goodner B, Hellner–Burris K, Hernandez JA, Houmiel K, Imperial J, Kennedy C, Larson TJ, Latreille P, Ligon LS, Lu J, Maerk M, Miller NM, Norton S, O’Carroll IP, Paulsen I, Raulfs EC, Roemer R, Rosser J, Segura D, Slater S, Stricklin SL, Studholme DJ, Sun J, Viana CJ, Wallin E, Wang B, Wheeler C, Zhu H, Dean DR, Dixon R, Wood D: Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol. 2009 Jul; 191(14): 4534–4545.
  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed A, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold–Hurek B, Kaiser O, Goesmann A. Complete genome of the mutualistic, N2–fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol. 2006 Nov; 24(11): 1385–1391.
  • Anderson FE, Swofford DL. Should we be worried about long branch attraction in real data sets? investigations using metazoan18S rDNA. Mol Phylogenet Evol. 2004 Nov; 33(2):440–451.

Abstract Views: 432

PDF Views: 361




  • Role of Horizontal Gene Transfer Events in the Evolution of Phenol 2–Monooxygenase Gene: a Comparative Study across 75 Prokaryotic Genomes

Abstract Views: 432  |  PDF Views: 361

Authors

Jaspreet Kaur
S.G.T.B. Khalsa College, Delhi University, India
Shailly Anand
Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi–110007, India
Mansi Verma
Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi–110007, India
Rup Lal
Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi–110007, India

Abstract


Horizontal Gene Transfer (HGT) is a major evolutionary force with a significant role in microbial evolution. In the present study, we report an in silico evidence for HGT of Phenol 2–Monooxygenase Gene which is responsible for converting Phenol to Catechol and is the initial and rate–limiting step in phenol degradation. Five computational approaches were applied across 75 completely sequenced prokaryotic genomes for studying the prospects of horizontal gene transfer of Phenol 2–Monooxygenase Gene. The phylogenetic incongruencies between the species tree (based on 16S rRNA gene) and the gene tree (using Phenol 2–Monooxygenase Gene) supported by high bootstrap values, discrepancies in %GC content, %GC3 content, codon usage analysis based on Codon Adaptation Index (CAI) and effective Number of codons (Nc) led to the conclusion that Horizontal Gene Transfer events might have taken place during the evolution of this gene. Tree and Reticulogram Reconstruction (T–REX) was constructed that detected the HGT events with significant bootstrap values, further making HGT an evident event in the evolution of this gene.

Keywords


Horizontal Gene Transfer, Phenol 2-Monooxygenase

References