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1. Introduction

Horizontal Gene Transfer (HGT) is the movement of 
genetic material from donor to a recipient organism other 
than by descent. This process of natural genetic trans-
formation is not merely transfer of genes but is in fact 
a multi–step process1. Firstly, the gene or a set of genes 
are transferred from one organism to another by way of 
Transformation, Conjugation or Transduction. The trans-
ferred gene then begins to be maintained in the recipient 
through replication. Finally, after sustaining the strong 
selective forces, the acquired gene travels through the 
generations as the cell divides and thus begins to amelio-
rate to its new lineage.

HGT was discovered nearly half a century back2 and 
is believed to play a significant role in genetic plasticity  

in many bacterial species. Acquisition of new genes by 
lateral transfer rather than due to alterations in gene 
functions have resulted in the adaptability of organisms 
(especially bacteria and archaea) to new environment 
in the course of evolution. An evolutionary force has 
been suggested to enhance bacterial adaptation to envi-
ronment contaminated with heavy metals3 and toxic 
compounds4. Along with this, HGT has also allowed 
adaptation of pathogenic bacteria by acquiring resistance 
to antibiotics5. Comparative studies of bacterial, archaeal 
and eukaryotic genomes indicates that a considerable 
proportion of genes in prokaryotic genomes have been 
subjected to HGT6. The common example of transfer of 
part of Tumor–inducing (Ti) plasmid of Agrobacterium 
tumefaciens to plants7 and to yeast8 demonstrates the role 
of HGT in transferring genetic material between different 
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phylogenetic groups. There is growing evidence that gene 
transfer events have played a significant role in evolution 
of prokaryotic genomes, unlike eukaryotes that evolve 
through modification of existing genetic information9. 
Hence, to gain a complete insight into the evolutionary 
processes in prokaryotes and to uncover different societal 
implications, HGT deserves a detailed study. The current 
avalanche of genome sequence information has paved 
way for in silico analysis to realize a classified overview 
monitoring the lateral transfer of genes across completely 
sequenced genomes.

In the present study, we report the HGT of the Phenol 
2–Monooxygenase Gene in a wide range of prokaryotic 
taxa. We found that HGT plays a vital role in the evolu-
tion of the Phenol 2–Monooxygenase Gene and transfers 
between distant families are presented with compelling 
evidences.

1.1 Phenol 2–Monooxygenase Gene
Phenolic compounds constitute the second largest group 
of natural compounds. In the past few decades, phenolic 
effluents of industrial origin have further increased the 
number of these compounds. Due to the toxic and haz-
ardous impact of phenols and their derivatives on the 
environment, these have emerged as a major group of 
pollutants in the industrialized nations. Apart from being 
potent carcinogens, their entry into the food chain, the 
most important component of the ecosystem, has severe 
effects10. In light of the toxicity of these compounds to 

higher organisms and their occurrence in nature at an 
alarming rate, several scientists have focused their research 
on the bioremediation of these compounds. Conventional 
methods involve various chemical and physical means of 
detoxification but due to the problematic secondary efflu-
ents, the alternative cost effective remediation by way of 
microorganisms is preferred. There are many reports in 
literature documenting the degradation of phenols and 
their derivatives in diverse groups of organisms includ-
ing bacteria, filamentous fungi, yeasts and algae11. The 
analysis of gene flow among different species and genera 
becomes essential for the evaluation of possible conse-
quences of the deliberate environmental release of natural 
or recombinant bacteria for bioremediation purposes12. 
Such analyses are now possible, thanks to the completion 
of majority of prokaryotic genomes.

 But, not all the genes are prone to the mechanism 
of HGT. According to the ‘Complexity Hypothesis’ pro-
posed by Jain et al.13, genes with fewer interactions with 
other genes (called as Operational Genes) are more 
prone to gene transfer. Phenol 2–Monooxygenase or 
Phenol Hydroxylase (E.C 14.3.7), also considered as an 
operational gene, catalyses the hydroxylation of phenol 
to catechol. This reaction is considered to be the first 
and rate–limiting step in the degradation of phenol. 
Two different types of phenol hydroxylases have been 
identified in bacteria: Single–chain Flavoproteins and 
Multicomponent Hydroxylases, with latter to be more 
widely distributed among different bacteria (Figure 1). 

 

Figure 1. Schematic representation of two types of Phenol 2–Monooxygenase Gene. The multicomponent enzyme consists 
of a set of enzymes encoded by an operon. For example, dmp operon present in Pseudomonas sp. CF600. The dmp K, L M, N, 
O and P, and their corresponding products, P0, P1, P2, P3, P4 and P5, all code for components of Phenol 2–Monooxygenase 
multicomponent enzyme.
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Degradation of aromatic hydrocarbons like phenol by 
bacteria is generally divided into an upper pathway, which 
produces di–hydroxylated aromatic intermediates by the 
action of monooxygenases (Phenol 2–Monooxygenase or 
Phenol Hydroxylase), followed by a lower pathway, which 
processes these intermediates to compounds that enter 
the citric acid cycle14.

1.2 Motivation
Phenol catabolism too is a suitable model for analyzing 
horizontal evolution or adaptation in diverse micro-
organisms capable of degrading aromatic compounds. 
The transfer of Phenol 2–Monoxygenase Gene allows a 
microorganism to expand its ecological niche, allowing 
its proliferation in the presence of noxious compounds. 
But, detection and study of HGTs is not an easy task. 
Gene transfer experiments in natural environment are 
technically difficult. Though, studies using microcosm 
experiments have been done, they are only an approxi-
mation of natural environment. Such experiments enable 
manipulation of physicochemical variables (pH, tem-
perature, carbon, nitrogen sources), which are impossible 
to manipulate in the natural environment. Hence, the 
results are viewed within the limitations of an experimen-
tal design. Moreover, frequency of transfer is shown to be 
lower in the presence of native microbial population15,16. 
Also, genetic transfer under laboratory conditions is done 
using plasmids and transposons. However, in the absence 
of suitable selective markers, the transformed cells may 
lose the newly incorporated gene by random mutation 
due to the absence of providing any adaptive advantage to 
the host cells. In other cases, the cells may die because the 
foreign gene may be toxic to the host cells17.

These restrictions are overcome to a large extent by 
using in–silico analysis or predictions of gene transfer 
events over a wide range of a group of organisms. In addi-
tion to this, the availability of large number of complete 
genome sequences has given an implausible impetus 
to this growing field in computational biology and to 
study the mechanism of horizontal gene transfer in an 
efficient manner. Methods of HGT detection include 
Parametric and Phylogenetic methods31,35. Parametric or 
Compositional Methods detect atypical nucleotide com-
position for genes in question in comparison with the 
whole genome. Since base composition and codon usage 
vary in characteristic ways from one genome to another, 
the foreign or alien sequences which are not native to the 
host genome can be detected as deviants. Such statistical  

analysis can be performed by different softwares like the 
ones used in the present study. Additionally, phyloge-
netic methods search for topological conflicts between 
the phylogeny inferred for a gene under study (gene 
tree) and the corresponding organismal phylogeny (spe-
cies tree). Since, conserved molecules like16S rRNA or 
23S rRNA gene sequences are assumed to be refractory 
to HGT, comparing the phyletic groupings between 
the gene tree and species tree can reveal putative gene 
transfer events in a set of organisms under study18. These 
methods are based on the implications or consequences 
of HGT. They are: 

Firstly, HGT will cause an unusually high degree of 
similarity between the donor and recipient organism for 
the character in question9. 

Secondly, the transferred genes can be identified 
by their atypical nucleotide compositions or patterns 
of codon usage bias. This is due to the fact that foreign 
sequences that are new to a recipient genome will retain 
their sequence characteristics and thus will be different 
from the recipient genome. 

Thirdly, the genes introduced into a genome can also 
be identified by their unusual G+C and GC3 content. 
Otherwise, all the genes in a particular genome have fairly 
similar G+C content. 

Fourthly, it is often seen that horizontally transferred 
genes are flanked by transposable elements, which further 
attest their foreign origin in the genome. 

Lastly, phylogenetic incongruencies are observed 
between the ‘gene tree’ and the corresponding ‘species 
tree’.

Here, we report the gene transfer events of Phenol 
2–Monoxygenase Gene in prokaryotic taxa. To explore 
this issue, we performed an in–depth bioinformatic anal-
ysis using both parametric and phylogenetic methods. 
The data presented led to the conclusion that HGT has 
played a significant role in the evolution of this gene.

2. Materials and Methods

2.1 Sequence Retrieval and Analysis
Sequenced genomes of all the organisms were retrieved 
from Composition Vector Tree Version 2 (http://tlife.
fudan.edu.cn/cvtree/)19. Gene sequences of single unit 
Phenol 2–Monooxygenase (EC:1.14.13.7) and catalytic 
subunit of multi subunit Phenol 2–Monooxygenase as 
well as 16S rRNA sequences from 75 prokaryotes were 
retrieved from KEGG (Kyoto Encyclopedia of Genes  
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and Genomes) (http://www.genome.ad.jp). Motif–finding 
algorithm, MEME 3.0 (http://meme.sdsc.edu/meme/
website/)20 was used to find conserved motifs in the 
Phenol 2–Monooxygenase Gene sequences. MEME dis-
covers one or more motifs in a collection of unaligned 
DNA or protein sequences.

2.2 Phylogenetic Methods
75 selected sequences were aligned using the CLUSTAL 
X program version 1.81b21 and phylogenetic trees for 
Phenol 2–Monooxygenase Gene and 16S rRNA gene 
sequences were constructed using the DNA Parsimony 
and Maximum Likelihood methods of PHYLIP package, 
version 3.522. The resultant tree topologies were evalu-
ated using 1000 replications by the program SEQBOOT22 
to estimate the statistical confidence for each node in 
phylogenetic trees. The trees were then viewed using 
TREEVIEW version 1.6.523. Horizontal gene transfer 
events were detected by T–REX software24. Robinson and 
Foulds topological distance was used to construct the gene 
transfer tree25. Bootstrap validation was done for assess-
ing the reliability of a particular gene transfer event.

2.3 GC Content
The GC Content of Phenol 2–Monooxygenase Gene for 
each organism was calculated using the online program 
Oligo Calc Software (http://www.basic.northwestern.edu/
biotools/oligocalc.html)26. The GC Content for the whole 
genomes was obtained from NCBI (http://www.ncbi.nlm.
nih.gov/genomes/).

2.4 Measures of Codon Bias
The software Codon W (http://mobyle.pasteur.fr/cgi-bin/
portal.py?form=codonw)27 was used to calculate CAI, Nc 
and %GC3 values for Phenol 2–Monooxygenase Gene 
and all the ORFs of the genome sequences under study. 
Nc values compiled from all the ORF’s of the genome 
(Expected values) as well as the Nc values from the single 
ORF–the Phenol 2–Monooxygenase (Observed value) 
were subjected to Chi Square Test.

3. Results and Discussion
In the present study, gene sequences of Phenol 2– 
Monoxygenase were retrieved from KEGG GENES data-
base (Kyoto Encyclopedia of Genes and Genomes) from a 
large range of prokaryotic groups (75 organisms, 48 gen-
era: 32 belonging to Proteobacteria, 1 to Acidobacteria,  

13 to Actinobacteria, a single Firmicute and 2 to Archaea). 
Hence, it can be clearly seen that the gene showed an 
unusual distribution in certain bacterial classes and gen-
era. This unusual species distribution of genes is a prima 
facie indicator of HGT events29.

3.1 Phylogenetic Analysis
Discordant branching patterns were observed in 16S rRNA 
‘Species Tree’ (Figure 2) and Phenol 2–Monooxygenase 
Gene tree (Figure 3), indicating the possibility of HGT. 
In other words, the placement of some organisms was not 
congruent with their taxonomic affliation, but was instead 
closer to an evolutionary distant organism. For example, a 
γ–proteobacterium (Marinomonas sp. MWYL1) clustered 
with members of α–proteobacteria rather than with other 
γ–proteobacterial species; the tight grouping of Bacillus 
tusciae DSM 2912 (Firmicutes) was observed with 
Thermomonospora curvata DSM 43183 (Actinobacteria) 
and members of β–proteobacteria & γ–proteobacteria. 
Further, Azospirillum sp. B510 (α–proteobacteria) and 
Verminephrobacter eiseniae EF01 2 (β–proteobacteria) 
formed a monophyletic clade. Interestingly, Nocardia farci-
nica IFM 10152 (Actinobacteria) grouped with members 
of both β–proteobacteria and γ–proteobacteria. These 
observations indicated the possibility of HGT between 
Gram Positive and Gram Negative organisms. The case 
for such anomalous placement was further strengthened 
when same topology was observed with more than one 
tree building algorithm (DNA Parsimony and Maximum 
Likelihood Method of PHYLIP package, version 3.63). To 
further study this incongruity between the species and 
gene trees, T–REX software24 was used, which maps the 
gene tree into the species tree and then estimates the pros-
pect of a HGT for each pair of branches of the species tree. 
Horizontal transfers of the considered gene are shown by 
arrows in the species Phylogeny (Supplementary Figure). 
A bootstrap validation procedure was also employed by 
this software to assess the reliability of a specific gene 
transfer. The gene transfer tree was constructed using 
Robinson and Foulds (RF) Topological Distance. This 
distance is equal to the minimum number of elementary 
operations, consisting of merging and splitting nodes, 
necessary to transform one tree to another25–30. 

3.2 Analysis based on GC Contents, Nc and 
Codon Usage
To further support these phylogenetic incongruencies 
and scrutinize HGT of Phenol 2–Monoxygenase Gene, 
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parametric method comprising of detailed comparative 
analysis with parameters, namely %GC, %GC3 Content, 
Nc and CAI values of Phenol 2–Monooxygenase gene 
and the respective host genome was conducted. Unlike 
Phylogenetic Methods, Parametric Methods do not require  

alignment of homologous sequences and are therefore 
more suitable to examine less conserved and rapidly 
evolving genes31. In view of the fact that, base composi-
tion, codon usage and statistical features like %GC and 
%GC3 Content vary in significant ways from genome 
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to genome, it is possible to identify foreign sequences 
as deviants from such genome specific characteristics. 
Since G+C content varies significantly as a function 
of the position within the codon, four discrete G+C  

content signatures can be identified. The first corresponds  
to the overall G+C content and is computed by consid-
ering all of the nucleotides in a genome. The remaining 
three signatures are denoted by G+C (n), with n = 1, 2, 3.  
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Each number corresponds to the value of the G+C 
content as the latter is determined by considering 
only those nucleotides occupying the nth position 
within each codon32. Nc (effective Number of codons) 
is an easy method to measure codon bias. It ranges 
from 20 (when just one codon is used per amino acid) 
to 61 (when each and every codon is used in equal 
probability)33. Nc is easily computed from codon usage 
data and its value provides an intuitively obvious mea-
sure of the extent of codon preference of a gene34. CAI 
(Codon Adaptation Index) estimates the extent of bias 
towards codons that are known to be favored in highly 
expressed genes and its value varies from 0 to 1.018. 
It is evident from Table 1 that there is a good deal of 
deviation in %GC3 and Nc values between the Phenol 
2–Monooxygenase Gene and the respective genomes 
of the studied strains, further indicating HGT of this 
gene. The difference in the GC content of Phenol 2–Mo-
nooxygenase Gene and whole genome is evident for 
α–proteobacteria (Bradyrhizobium japonicum USD 110, 
Methylocella silvestris BL2 & Methylobacterium sp. 4–46), 
β–proteobacteria (Verminephrobacter eiseniae EF01 2 &  
Burkholderia thailandensis) and γ–proteobacteria 
(Acinetobacter sp. DR1 & Kangiella koreensis DSM 
16069). The GC content of newly acquisited gene is 
found to differ from the GC content of whole genome. 
This provides an important conclusion that the gene is 
transferred horizontally and has been acquired recently. 
In order to determine whether these observed deviations 
are true statistical deviations, we used the following  
equation: (NcObserved - NcExpected)

2/NcExpected) for calculat-
ing Chi–Square statistical values. There were 8 cases of 
strong inconsistencies in the phylogenetic tree based on 
high bootstrap value (≥500) with organisms distantly 
related by 16S rRNA sequence and were further sup-
ported by significant chi square values and deviations in 
GC contents. These events might thus have arisen due 
to HGT (Table 2).

Demonstration of conserved sequence motifs would 
further provide a supporting evidence for an evolution-
ary relationship between different prokaryotic Phenol 
2–Monooxygenases. Hence, in the present study, MEME 
3.0 was used to analyze a divergent set of Phenol 2– 
Monooxygenases. For example, three strongly conserved 
motifs were identified between Phenol 2–Monoxygenase 
sequence of Azospirillum sp. B510 (α–proteobacteria) and 
Verminephrobacter eiseniae EF01 2 (β–proteobacteria) 
with significant sequence similarities between these 
organisms (data not shown). It was also observed that 

bacterial and archaeal Phenol 2–Monooxygenase Genes 
do not share homology as members of both domains 
form separate clades and are distinct from each other. 
Inter estingly, Candidatus Koribacter versatilis Ellin 
345 (Acidobacteria) and Bdellovibrio bacteriovorus 
(Deltaproteobacteria) form a monophyletic clade and 
supported by extremely high bootstrap value, but there 
is no significant overall sequence similarity between 
these organisms. This may be because the sequences have 
diverged so far that the evolutionary relationships are no 
longer readily evident. Further, these proteins may have 
arrived at a common function by convergent evolution 
from different progenitors.

4. Ecological Context of HGT
The close associations of bacteria belonging to different 
ecological niches make HGT possible. For instance, both 
Burkholderia phymatum STM815 and Agrobacterium 
radiobacter K84 are mesophillic and such a com-
mon ecological niche provides a propagation ground 
for HGT. Similarly, Bacillus tusciae DSM 2912 and 
Thermomonospora curvata DSM 43183 are thermophilic 
bacteria. Azotobacter vinelandii DJ is a soil bacterium that 
fixes nitrogen under aerobic conditions36 and Azoarcus 
sp. strain BH72 is also of agrobiotechnological inter-
est because it supplies biologically fixed nitrogen to its 
host37. Xanthobacter autotrophicus strain Py2 has multiple 
habitats, and hence HGT is not limited by geographical 
barriers.

5. Conclusion
Keeping in view the impact of horizontal gene transfers 
on the ecological and pathogenic character of genomes, 
algorithms were sought after, that can computationally 
determine which genes in a given genome are products 
of HGT events. Though, these algorithms or tools have 
been quite successful in their aim, but still many intricate 
and exciting challenges remain to be overcome before a 
clearer global picture of HGT patterns can come forward. 
Apart from the computationally challenging problems 
that arise from large datasets and quantifying disagree-
ments among trees for detecting HGT, one of the major 
challenges that this approach faces include determining 
whether the disagreements are indeed due to HGT. For 
example, the compositional methods are usually appli-
cable to recent transfers, because the older the transfer is, 
the more the gene adapts to the new genome. Moreover, 
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Table 2. Different associations of organisms indicating horizontal gene transfer of Phenol 2–Monooxygenase 
Gene

Name of Organism Chi Square Value Bootstrap Value Associated Organisms
Verminephrobacter eiseniae EF01 2 
(β–proteobacteria)

8834.70 995 Azospirillum sp. B510 (α–proteobacteria)

Bdellovibrio bacteriovorus 
(δ–proteobacteria)

2195.85 1000 Candidatus Koribacter versatilis Ellin345 
(Acidobacteria)

Nocardia farcinica IFM 10152 
(Actinobacteria)

2928.52 718 Methylibium petroleiphilum PM1, Ralstonia eutropha 
H16 (β–proteobacteria)

Azoarcus sp. BH72 
(β–proteobacteria)

3354.08 643 Azotobacter vinelandii DJ
(γ–proteobacteria)

Paracoccus denitrificans PD1222 
(α–proteobacteria)

4362.43 565 Burkholderia phymatum STM815
(β–proteobacteria)

Marinomonas sp. MWYL1 
(γ–proteobacteria)

4991.31 838 Agrobacterium radiobacter K84
(α–proteobacteria)

Bacillus tusciae DSM 2912 
(Firmicutes)

4451.85 564 Thermomonospora curvata DSM 43183 
(Actinobacteria)

Xanthobacter autotrophicus Py2 
(α–proteobacteria)

6545.54 961 β–proteobacterial group

one drawback of the phylogenetic incongruence approach  
is that the horizontal transfers between taxa in the refer-
ence tree cannot be detected. Also, the results obtained are 
dependent on the choice of the reference tree. Thus, with 
voluminous data to interpret, the tree–based approaches 
are slow and tend to scale poorly to genome–wide applica-
tions. In addition, inference of correct phylogenetic trees 
is a difficult problem, and inferred gene trees can be incor-
rect, particularly when lineages evolve at different rates38.

Despite the limitations of the current inference meth-
ods, the overall aim of this work was to provide additional 
insight into the areas of computational biology involving 
phylogenetics and HGT. More specifically, it benchmarks 
the phylogenetic reconstruction methods, using existing 
methods of HGT detection, and putting together a frame-
work to help users with phylogenetic detection methods. 
Specifically, we were interested in how the sequence 
length, and total number of sequences affect the recon-
struction methods. To answer this question, we selected 
a large data set comprising of 75 prokaryotic genomes. 
Given how imperfect HGT detection methods are, we 
obtained an approximate picture at best. Additionally, 
we have used genome data to estimate atypical statisti-
cal parameters of genomes, rather than providing a single 
phylogenetic tree only, which is an important step towards 
the improvement in the reconstruction of the evolution-
ary history of prokaryotes.

Thus, it is evident from this study that horizontal gene 
transfers are difficult to prove and various supporting 
lines of evidence are usually necessary for a convinc-
ing case. In order to study gene transfer phenomenon, 
sequences from a protein or a gene should be available 
from numerous and evolutionary distant organisms28. 
This is feasible now–a–days, thanks to the large number 
of genome sequences deposited in the Gene bank data-
bases. From the present study, it was clearly observed 
that horizontal gene transfers should be considered care-
fully and there should be sufficient number of evidences, 
strongly in favour of a ‘True HGT Event’. Because, as in 
every prediction, there will be false positives (genes that 
appear to be transferred but are not). Hence, ruling out 
these false positives and identifying evolution of a gene by 
HGT involves detailed study using a combined approach 
of various detection methods. 

In conclusion, it is clear from the analysis of 
Phylogenetic Methods (incongruencies between Phenol 
2–Monoxygenase Gene tree and 16S rRNA species tree) 
and Parametric Methods (statistically significant devia-
tions in parameters such as %G+C and %GC3 Content, 
Nc, CAI and Chi–Square Tests) that HGT may be a major 
contributor for the evolution of Phenol 2–Monoxygenase 
Gene. Finally, our results are consistent with earlier claims 
of the important role of HGT in the evolution of micro-
organisms.
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