
 

   
 

                                                               
                                                                       

A VEM–based mesh–adaptive
strategy for potential problems
Abstract
The Virtual Element Method (VEM) is an evolution of the mimetic finite
di�erence method which overcomes many limitations a�ecting classic Finite
Element Methods (FEM). VEM for 2D problems allows for exploiting meshes
consisting of any polygonal elements. No limitations on their internal angles
are needed. Hanging nodes are easily treated. Notably, VEM is well apt
to mesh–adaptive algorithms. In this paper we detail an implementation of
mesh–adaptive VEM for potential problems. We suggest a fresh, promising
approach. We show on suitable test problems that a gain in e�ciency can be
obtained, respect to uniform, fine discretizations.

Index terms - VEM, MESH ADAPTIVITY, POISSON PROBLEM.

1 Introduction
In the last two decades, the numerical treatment of partial di�er-
ential equations (PDEs) has been focused on treating meshes with
arbitrarily-shaped polygonal/polyhedral (polytopal, for short) ele-
ments. A non-exhaustive list of such methods include the Mimetic
Finite Di�erence method [14, 15, 19, 42, 44–47] the Polygonal Finite
Element Method [48, 51, 52], the polygonal Discontinuous Galerkin
Finite Element Methods [4, 8, 26, 27] the Hybridizable Discontinuous
Galerkin and Hybrid High-Order Methods [33, 35], the Gradient Dis-
cretization method [34, 38], the Finite Volume Method [37], and the
BEM-based FEM [50].

An alternative approach that proved to be successful is the Virtual
Element method (VEM), originally proposed in [10] for the numer-
ical treatment of second-order elliptic problems [29, 30], and read-
ily extended to linear and nonlinear elasticity [11, 16], plate bending
problems [25], Cahn-Hilliard equation [2], Stokes equations [1], Darcy-
Brinkam equation [55], discrete topology optimization problems [3],
fracture networks problems [22], eigenvalue problems [40, 54]. The
mixed virtual element formulation was proposed in [12, 24]. The non-
conforming formulations for second-order elliptic problems are ana-
lyzed in [7], and later extended to general advection-reaction-di�usion
problems, Stokes equation, the biharmonic problems, the eigenvalue
problem, and the Schrodinger equation in [5, 23, 31]. The p- and hp

versions of the VEM were developed in [13, 21] and e�cient multigrid
methods for the resulting linear system of equations were investigated
in [6]. A posteriori error estimates can be found in [18, 28]. It is also
worth mentioning that a peculiar feature of VEM is designing approx-
imation spaces characterized by high continuity properties; For details
see cf. [17] and the works on high-order partial di�erential equations
as the biharmonic equations mentioned above.

VEM is notably apt for mesh–adaptive methods. Unlike using con-
forming FEM, using VEM one can manage many arbitrary types of
polygonal elements, and hanging nodes, hence mesh refinement is
straightforward: elements with consecutive co-planar edges are al-
lowed. Locally adapted meshes do not require any expensive local
mesh post-processing: no complex procedures for obtaining a con-
forming, refined mesh [49] are required.

On the other hand, identifying a suitable a posteriori error esti-
mator, and an attached criterion for identifying the elements to be
refined, is a crucial task [18, 28], like in FEM [9, 32, 41, 49].

We use an adaptive algorithm for elliptic problems consisting of the
classic steps: solve, estimate, mark, refine [36]. In this context, given
a polygonal subdivision of the problem domain, one solves the VEM
problem, estimates the error using our a posteriori error bound, marks
a subset of elements for refinement, and refines marked elements.

We restricted to linear VEM since we design the analysis of
hydraulic–like problems. While for mechanical–like problems few,
high order VEM elements are usually enrolled, hydraulic–like prob-
lems typically involve a large number of low–order elements.

An a posteriori error estimator is completely worked out after [28].
Its behavior in our test problems was analyzed by extensive numerical
computations.

This paper is organized as follows. Section 2 recalls our model
problem, Section 3 depicts the proposed refinement procedure. Sec-
tion 4 sketches our test problems. Section 5 shows and discusses our
numerical results. Section 6 summarizes our conclusions.

2 The problem
Let us consider the Poisson model problem

I
≠Ò · (Òu) = f, in �
u = g, on ˆ�d,

(Òu) · n̨ = q, on ˆ�n,

(1)

� µ R2 being a polygonal domain whose boundary is ˆ� = ˆ�d fi
ˆ�n, ˆ�d fl ˆ�n = ÿ. Here ˆ�d is the Dirichlet boundary portion,
while ˆ�n bears Neumann boundary conditions. Moreover, f is a
given source function œ L

2(�), n̨ is the outward unit normal to the
boundary ˆ�; g œ H

1/2(ˆ�d) is the Dirichlet function, while the flux
function is q œ L

2(ˆ�n).
In the sequel, (·, ·) is the standard scalar product in L

2(�), and
x = (x, y) is a point in R2.

Let v œ H
1(�). By multiplying each side of the di�erential equation

in (1), and by Green’s second theorem, we can rewrite our di�erential
problem into the variational formulation

Y
]

[

Find u œ V := H
1(�), such that

u = g, on ˆ�d,

a(u, v) = L(v), ’v œ Vˆ�d
:= H

1
ˆ�d

(�),
(2)

where

a(u, v) =
⁄ ⁄

�
Òu · Òvd�,

L(v) =
⁄ ⁄

�
fvd� +

⁄

ˆ�n

qvds. (3)

We enrol the low-order, linear VEM. Our implementation is stan-
dard, based upon the projection operator �Ò, which is associated to
the bilinear form a(·, ·) in eq. (3). The local sti�ness matrix is decom-
posed into the sum of a consistency matrix, and a stability matrix.
The consistency matrix can be computed, while the stability matrix
is not computable. The latter is approximated by introducing a local
symmetric positive definite, element–wise bilinear form S

E(·, ·). This
form is introduced in order to scale the element–wise discretization of
a(·, ·) on the kernel of �Ò

E
.

For the details, see [20].
Recall that the number of Degrees Of Freedom (DOF) for linear

VEM equals the number of vertices in the mesh.

3 Refinement procedure
Our refinement procedure starts from an initial partition P1, of the
problem domain, which is assumed to be a convex polygon itself. The
partition P1 is made by a “small” number of convex polygons, which
can be a mixture of triangles, quadrilaterals, pentagons, etc. Note
that when refining a non–convex polygonal element, our refinement
procedure can add some nodes which lie outside the polygon, hence
non–convex polygonal elements cannot be enrolled.

© 2019 RAME Publishers 30
Int. J. of Analytical, Experimental and FEA                                                                               www.rame.org.in

International Journal of Analytical, Experimental and Finite Element Analysis (IJAEFEA), Issue. 1, Vol. 6, March 2019

e-ISSN: 2394-5141, p-ISSN: 2394-5133, pp 30 - 39

DOI: 10.26706/IJAEFEA.1.6.20190301

Annamaria Mazzia

Flavio Sartoretto

annamaria.mazzia@unipd.it

Dipartimento di Ingegneria Civile,
Edile e Ambientale,

Università di Padova,
via F. Marzolo 9,

35131 Padova, Italy

flavio.sartoretto@unive.it

1

1

2

2

DAIS
Università Ca’ Foscari Venezia,

Via Torino 155,
30172 Mestre VE, Italy



 

   
 

                                                               
                                                                       

Figure 1: Sample polygon, refinement strategy.

Let P¸ = T¸ be a partition of the polygonal domain � into non–
overlapping polygonal elements E, computed by our refinement pro-
cedure. It consists of NE elements, being hE the diameter of a given
element E, and let Nv be the total number of vertexes in our partition.

The approximated numerical solution ũi, i = 1, . . . , Nv , to Poisson
problem (1) is computed on each vertex of our partition.

Our refinement procedure relies upon identifying those elements
which must be refined in our total NE elements, and then partitioning
each convex Ns–sides polygonal element into Ns smaller quadrilater-
als, as sketched in Figure 1 for a pentagon. Each side midpoint is
connected with the center of the polygon. Thanks to the high robust-
ness of VEM, possible hanging nodes are left as such.

Concerning the identification of the elements which must be refined,
for each given element E in a given discretization T¸ we compute

÷E = h
2
E

||fh||2(0,E)+

S
(E) ((� ≠ I)uh, (� ≠ I)uh) +

ÿ

sµˆE

hsÎJsÎ2
0,s

.

where hE is the diameter of element E, fh is our discretization of the
source function in the model problem (1); � is a shorthand for �Ò

E

above, and uh is our VEM approximated solution. Moreover, hs is
the side length, Js is the jump across side s. The estimator ÷E was
adapted to Poisson problem after Theorem 13 in [28].

Following Dörfler criterion [36], we performed the steps detailed
in [39]. For any given mesh P¸ = T¸, we detect the minimal set
M µ T¸ such that

◊

ÿ

EœT¸

÷
2
E

Æ
ÿ

EœM

÷
2
E

,

for a given 0 < ◊ < 1, We mark for refinement only those elements in
M, counting let us say NM elements.

Our refinement strategy, sketched in Figure 1, splits any triangle
into three quadrilaterals, and any given n–side polygon, n > 3, into
n quadrilaterals. On this ground, we compute an expected number of
elements NG in the refined mesh, as

NG = NE + 3 NM .

If NG is larger than a prescribed value N
(E)
max, we assume that a “too

fine” refinement is required, hence the refinement is not performed.
Our procedure is stopped.

Otherwise, a refined mesh P¸+1 is built, and the refinement process
can be started again.

4 Test problems
To check our adaptive strategy, we assign the forcing function f and
compute the boundary conditions in eq. (1), so that its “test” solution
is a function u undergoing large variations on a small portion of the
domain.

First, we consider the classical Gaussian function, centered on a
given point Q0 = (x0, y0), i.e.

u(x, y) = exp(≠c

!
(x ≠ x0)2 + (y ≠ y0)2)

"
. (4)

The parameter c is a large positive value that generates a high “hump”
around Q0. In the sequel, we set c = 200.

Let us assume that we numerically solve the Poisson problem (1) in
� = [0, 1]2, ˆ�d = ˆ�, having set the Dirichlet boundary conditions
such that its solution is the function (4). The setting Q0 = (1/2, 1/2),
the center of our domain, corresponds to the 2D problem called PG
in the sequel, where “G” stands for “Gaussian–based” test problem.
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Figure 2: Contour regions for the solution of the test prob-

lem PG.
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Figure 3: Contour regions for the solution of the test prob-

lem PA.

Any adaptive procedure is likely to be e�ective when finer dis-
cretizations adopt a large number of discretization nodes near the
point Q0 where a large variation in u occurs. On the other hand,
“far away” from Q0 the u values are small, and u does not display
large variations, so the nodes can be distributed quite coarsely with
no appreciable loss of accuracy.

As a further test problem we consider, as in [43]

u(x, y) = tan≠1(1000 x
2

y
2 ≠ 1). (5)

This function displays a “hill” rising from the bottom left side of [0, 1]2.
Figure 3 shows the contour levels of the surface.

We numerically solve the Poisson problem (1) in � = [0, 1]2, ˆ�d =
ˆ�, having set the Dirichlet boundary conditions such that its solution
is the function (5).

The ensuing di�erential problem is labeled test problem PA, where
“A” is the mnemonic for the “Arctan–based” test solution.

5 Numerical results
We now compare the accuracy one can obtain using linear VEM by
exploiting our adaptive refined meshes, respect to using uniformly
refined meshes.

The results documented in the sequel were obtained by running
our Matlab code on a Dell Inspiron 5749 PC with one Intel i5-5200U
CPU @ 2.20GHz (2 cores, 4 threads). The PC works under Linux
3.16.0-4, and is equipped with a 8 GB RAM.

Let us assume that we perform successive, either adaptive or uni-
form, refinements of initial conforming meshes, made by either tri-
angles, or squares, or n–side polygons, n Ø4. The polygon mesh
were obtained by Polymesher software [53]. Figure 4 shows our initial
meshes.

From now on, the term “triangle mesh” denotes an initial mesh
made by triangular elements, or one of its refinements. Analogously,
the terms “square mesh”, and “polygon mesh” refer to initial meshes
made by either squares or polygons, respectively, and their refine-
ments.
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Figure 4: Top, center, and bottom frame shows the initial

meshes made by triangles, squares, and n–side polygons,

n = 4, 5, 6, respectively.

- triangles squares polygons
¸ NE Nv NE Nv NE Nv

1 32 25 16 25 32 66
2 128 81 64 81 128 257
3 512 289 256 289 512 1022
4 2048 1089 1024 1089 2048 4088
5 8192 4225 4096 4225 8192 16318

Table 1: Number of elements and vertices in our uniformly

refined meshes.

- PG

¸ triangles squares polygons

1 9.33E-01 1.06E+00 1.07E+00

2 6.17E-01 7.92E-01 6.17E-01

3 4.91E-01 4.52E-01 3.41E-01

4 2.76E-01 2.53E-01 1.76E-01

5 1.41E-01 1.27E-01 8.99E-02

- PA

¸ triangles squares polygons

1 8.88E-01 1.11E+00 1.09E+00

2 8.09E-01 8.28E-01 7.15E-01

3 5.82E-01 6.24E-01 4.67E-01

4 3.03E-01 3.16E-01 2.31E-01

5 1.57E-01 1.66E-01 1.20E-01

Table 2: H1–errors raised by VEM when approximating

problems PG and PA by uniformly refined meshes.

vs h

PG PA

¸ triang. squares polyg. triang. squares polyg.

1 n.c. n.c. n.c. n.c. n.c. n.c.

2 0.60 0.43 0.80 0.13 0.42 0.62

3 0.33 0.81 0.93 0.48 0.41 0.67

4 0.83 0.84 0.94 0.94 0.98 1.00

5 0.97 0.99 0.93 0.95 0.93 0.91

vs DOF

PG PA

¸ triang. squares polyg. triang. squares polyg.

1 n.c. n.c. n.c. n.c. n.c. n.c.

2 -0.35 -0.25 -0.40 -0.08 -0.25 -0.31

3 -0.18 -0.44 -0.43 -0.26 -0.22 -0.31

4 -0.43 -0.44 -0.48 -0.49 -0.51 -0.51

5 -0.49 -0.51 -0.49 -0.48 -0.47 -0.48

Table 3: Estimated H1–convergence order p¸,¸≠1 vs the

mesh diameter h (upper Table), and q¸,¸≠1 vs DOF number

(lower Table), raised by VEM when approximating prob-

lems PG and PA by uniformly refined meshes. The acronym

“n.c.” means “not computable”: level ¸ = 0 does not exist.

We performed uniform refinements until level ¸ = 5. Level ¸ = 6
gives a “too large” number of elements, i.e. NE ∫ N

(E)
max. Here and

in the sequel we assume N
(E)
max = 8 ◊ 103.

For each element E in a given mesh, let u(c
E

) the exact solution
on its center c

E
= (c(E)

1 , c
(E)
2 ) of E. Let ũ

(c
E

) be the corresponding
approximate, numerical solution on the center, obtained by projection
of the approximate solution values computed on the vertices of E.
Analogously, let Òu be the gradient vector of the exact solution, then

Òũ(c
E

) = Òm�(ũ),

is the gradient of the numerical solution on the center.
For each given mesh T , featuring NE elements and Nv vertices, we

consider the following error measure:

eH1
=

1ss
�

..Òu(c
E

) ≠ Òũ
(c

E
)
..2

dxdy

21/2

1ss
�

..Òu(c
E

)
..2

dxdy

21/2 ,

Table 1 reports the number of elements in the corresponding uni-
formly refined meshes. Table 2 shows the corresponding H1–errors
raised by VEM, when attacking either problem PG, or problem PA.

For shortness, let us assume that e is the eH1
error, and h is the

mesh diameter. Let us also assume that the following asymptotic
convergence relation holds

e
(¸) = C

!
h

(¸)"p

,

for a given p, and a constant C not depending on the refinement level
¸.

If D
(¸) is the corresponding number of DOF, one has [28]

D
(¸) ƒ

1
h2 , h ƒ

1
Ô

D(¸)
,

e
(¸) = C

1 1
Ô

D(¸)

2
p

= C

!
D

(¸)"≠p/2
.

Hence by defining q = ≠p/2,

pj,k =
log

!
e

(j)
/e

(k)
"

log
!

h(j)/h(k)
" , (6)

one has the asymptotic relations

qj,k =
log

!
e

(j)
/e

(k)
"

log
!

D(j)/D(k)
" æ q Ω ≠pj,k/2, (7)

when j > k, j, k æ +Œ.
Table 3 shows either the corresponding H1–convergence order es-

timation p, or the q estimation. Our code implements linear VEM
technique. One can see that p estimations approach 1, when the re-
finement level increases, as expected. On the other hand, q estimations
approach -1/2, confirming that our code displays linear convergence
order.

Figure 4 shows our initial triangular mesh, the square one, and the
polygon one.

Let us assume now that we exploit our adaptive refinement proce-
dure, by setting ◊ = 0.3.

The top frame in Figure 5 shows the triangle mesh obtained by
¸ =10 adaptive refinements, when attacking problem PG. The bot-
tom frame shows the ¸ =20 refinement. Note that the mesh was
refined exactly where the solution undergoes large variations, as one
can see by comparing the frames in Figure 5 with the contour regions
shown in Figure 2, which are reported for in the background for easy
comparison.

The top frame in Figure 6 shows our refined square mesh at level
¸ =10. In the background, a sketch of the contour regions for problem
PG is shown. The bottom frame shows the ¸ =20 adaptively refined
mesh, obtained when solving Problem PG. Like when an initial trian-
gle mesh is exploited, the square mesh was refined exactly where the
solution undergoes large variations, as one can see by comparing the
refined meshes with the contour regions in Figure 2, reported in the
background of Figure 6.

The top frame in Figure 7 shows our adaptively refined mesh at
level ¸ =10, obtained by the refining our initial polygon mesh. The

© 2019 RAME Publishers 32
Int. J. of Analytical, Experimental and FEA                                                                     www.rame.org.in

A VEM–based mesh–adaptive strategy for potential problems



 

   
 

                                                               
                                                                       

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

0

0.2

0.4

0.6

0.8

1

z

Figure 5: Problem PG, triangular mesh at level ¸ = 10 (top

frame) and at ¸ = 20 (bottom frame).
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Figure 6: Problem PG, square mesh at level ¸ = 10 (top

frame) and at ¸ = 20 (bottom frame).
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Figure 7: Problem PG, polygonal mesh at level ¸ = 10 (top

frame) and at ¸ = 20 (bottom frame).
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Figure 8: Problem PA, triangle mesh at level ¸ = 10 (top

frame) and at ¸ = 30 (bottom frame).
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Figure 9: Problem PA, square mesh at level ¸ = 10 (top

frame) and at ¸ = 30 (bottom frame).
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Figure 10: Problem PA, hexagon mesh at level ¸ = 10 (top

frame) and at ¸ = 30 (bottom frame).

Uniform refinements

problem elements ¸ eH1 NE NV

PG triangles 5 1.41E-01 8192 4225

PG squares 5 1.27E-01 4096 4225

PG polygons 5 8.99E-02 8192 16318

PA triangles 5 1.57E-01 8192 4225

PA squares 5 1.66E-01 4096 4225

PA polygons 5 1.20E-01 8192 16318

Adaptive refinements

problem elements ¸ eH1 NE NV

PG triangles 20 1.07E-01 663 756

PG squares 20 1.16E-01 634 746

PG polygons 21 8.36E-01 1080 1231

PA triangles 25 1.38E-01 1349 1611

PA squares 24 1.53E-01 904 1101

PA polygons 27 1.11E-01 2721 3167

Table 4: Best accuracy with uniform refinements compared

with adaptive refinements.

0.01

0.1

1

10

10 100 1000 10000
# DOF

Problem PG, uniform refnements

triangle
square
polygon
DOF(-1/2)

Figure 11: Problem PG, errors raised by uniform refine-

ments. The values of eH1
are shown vs the number of DOF,

together with the DOF
≠1/2

line.

bottom frame reports the ¸ =20 refined mesh. Analogously, comfort-
ing conclusions can be drawn concerning the adaptive refinements, as
for the preceding triangular and square meshes.

Note that only when square elements are exploited, the refined
meshes consist of the same type of polygons (squares) as in the initial
mesh. Using our peculiar terminology we can say that only “square
meshes” are made exclusively by squares.

Let us now focus on problem PA. Figures 8, 9, 10, shows our re-
finements for triangular, square, and polygonal meshes, respectively.
In the background, contour regions for the solution of problem PA are
sketched.

Analogous conclusions concerning the refinement regions as for
problem PG can be drawn, by comparing the given frames with the
contour regions in the background, which are also given in Figure 3.
Refinements are performed “only inside domain regions where refine-
ments are positively needed”.

Figure 11 shows the behaviors of our error measures, when problem
PG is solved by uniformly refined, meshes. One can observe that
triangle and square meshes allow for attaining quite the same accuracy,
while polygon meshes allow for attaining a slighter larger accuracy.
Comparing our convergence lines with DOF≠1/2 we can confirm that
linear convergence speed (q = ≠1/2) is attained.

Table 2 reports the H1–errors raised when exploiting uniform dis-
cretizations.
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10 100 1000 10000
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Problem PA, uniform refnements

triangle
square
polygon
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Figure 12: Analogous to Figure 11, concerning Problem PA.
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Figure 13: Problem PG, adaptive refinements, H1-errors vs

the DOF number, together with the DOF
≠1/2

line.
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Figure 14: Analogous to Figure 13, concerning Problem PA.

Table 5 summarizes our main numerical results when approximat-
ing the solution of problem PG, by VEM, using our adaptive mesh
procedure.

Note that our adaptive refinement procedure, with the proposed
parameter values, at each level adds few elements, as compared with
uniform refinements. Our stop citerion NE ∫ N

(E)
max is attained by

performing a quite larger number of adaptive refinement levels ¸A Ø
29, than for uniform refinements (recall ¸U Æ 5).

Let us roughly assume that the computational cost of our adaptive
procedure is proportional to the number DOF, which in linear VEM
is equal to N

¸, in the adapted mesh at a given refinement level ¸. Let
us consider two mesh levels, one labeled ¸U , pertaining to uniform
refinements, which counts N

(¸U )
V

vertices. Another, labelled ¸A, ob-
tained by adaptive steps, which counts N

(¸A)
V

vertices. Assume that
the error e

(¸A) raised by using the adaptive mesh is smaller that the
error e

(¸U ) raised by the unformly refined mesh, i.e. e
(¸U )

> e
(¸A).

Our adaptive procedure can be expected to be computationally e�-
cient if N

(¸U )
V

∫ N
(¸A). In other words, better accuracy is attained

using our adaptive refinement, by expoiting a far smaller number of
DOF in the adaptively refined mesh, than in the uniform refinement.

By inspecting Figure 13 one can see the behavior of the H1–error
for Problem “Gauss” (PG), when solved by adaptively refining either
a triangle, or square, or Polymesher, initial mesh. The convergence
order q approaches -1/2, as graphically confirmed by comparing with
the DOF≠1/2 line, also reported. One can see that when ¸ Ø 10, say,
the error strictly decreases, proportionally to the refinement level ¸.
Each refinement level adds few elements to our meshes, as compared
to uniform refinements (see columns 2, 6, 10). One could check that
by computing q¸+1,¸ using formula (7), poor approximations to q are
obtained (not shown). In order to display sound approimations, we
computed q¸,10 approximations, for ¸ > 10. They are reported in
Table 5, columns 5, 9, 13. Note that, an an example, the q29,10 values
confirm linear convergence (q =-1/2) both for triangle, and square,
and polygonal meshes.

Concerning our approximations to the solution of Problem PA, by
examining Table 6 and Figure 14, one can infer the same observations
as for PG problem given above.

Le us go back to solving problem PG using an initial mesh consist-
ing of triangles. Let us examine the top frame in Figure 15. One can
see that, when comparing uniform and adaptive meshes with quite
the same number of DOF, adaptive refinements of our initial triangle
mesh allow for higher accuracy than uniform refinements. By inspect-
ing level ¸ =5 in Tables 1, and 2, in order to attain the best accuracy
e

(U,5)
H1

=1.41E-1, by uniform refinements of the initial triangle mesh,
N

(U,5)
V

=4,225 DOF are required. Comparing with Table 5, one can
infer that as few as N

(A,20)
V

=756 π N
(U,5)
E

elements are required in
order to achieve e

(A,20)
H1

=1.07E-1 < e
(U,5)
H1

.
Analogous results can be inferred for square and polygon adaptive

meshes, by inspecting level ¸ =5 in Tables 1, and 2, together with
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Figure 15: Problem PG, uniform and adaptive refinements.

Lines pointing out the minimum errors achievable by uni-

form refinements are also shown.
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Figure 16: Analogous to Figure 15, concerning Problem PA.
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Table 5, and Figure 13.
Table 4 summarizes our results. In all our tests we found that

the best attainable accuracy with uniform refinements is attained by
exploiting a far smaller number of elements in our adaptively refined
meshes.

Summarizing, our adaptive procedure is likely to be really e�ective
when exploiting both triangle meshes, and square ones, as well as
polygon ones.

6 Conclusions
The following points are worth mentioning.

• A mesh–adaptive VEM–based procedure was described, imple-
mented, and tested.

• The abstract criterion proposed in [28] for identifying the el-
ements to be refined is worked out for our problem, and the
assessment of the involved parameters is performed.

• Our adaptive refinement procedure refines any initial mesh only
where the solution undergoes large variations.

• Our adaptive refinement procedure allows for attaining a bet-
ter accuracy than the best one that can be reached by uniform
refinements, by using a far smaller number of DOF.
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