
http://www.iseeadyar.org/ijaai.html Research article14

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

Software Quality Assurance

ANSHUL GUPTA 1* , JUHI GAUTAM 2, NEHA GUPTA 3

1*, 2 & 3 Dronacharya College of Engineering, Farrukhnagar, Gurgaon , 
coolanshul2704@gmail.com 1*, gautam.juhi3@gmail.com 2, guptaneha234@gmail.com 3

Abstract
This paper describes the author’s experiences, gained during a complicated and long outsourcing project. 

The applied Software Quality Program is presented and possible approaches to these problems, ideas for its 
improvement are given. The problems of project management, software configuration management and main-
tenance are clarified. An achievable-both incremental and measurable - has been suggested. This paper sets out 
a number of challenges faced by software quality community. These challenges relate to the outspread view of 
quality and the consequences for software quality definitions.  These definitions are related to eight perspec-
tives of software quality in an end-to-end product life cycle. In conclusion the author shares a few possible 
directions for further research.

Keywords: Software quality assurance, Out sourcing,WWW

1. Introduction
Outsourcing means that software engineering activities are contracted to a third party who does the work 

for lower cost and higher quality (hopefully). Due to the shortage of software people with appropriate qualifica-
tion, skills and experiences, or lack of other facilities (hardware, development environment, communications, 
etc.,) the contractor looks for a vendor to solve these problems. Outsourcing can be imperfect– when only a few 
parts of the software system are contracted, or complete, when the whole software system under development 
is contracted. According to another classification the outsourcing can be planned or ad-hoc. The planned out-
sourcing is a part of company imperative business plan to beat new markets, to enter the market very fast or to 
create an attractive image, not having the resources needed. The ad-hoc outsourcing can be an attempt to deal 
with a project behind schedule or to solve unexpected software problems (McCall et al.,1997).

From the other side the benefits for the vendor are to obtain a real and pure software work keeping his/
her people busy and comparatively well paid. This can be a way to avoid some software company pre-project 
activities and a number of post-project activities (Boëhm,1978).

Research relating to software quality is typically rooted in the study of product quality factors and the usa-
bility of those products in a context. During this research and study, emphasis on quality assurance and meas-
urement is limited to this product perspective.  Furthermore, the domain in which quality is measured is limited 
to that of Information Systems (IS).  As far as it relates to the IS domain, the paper first considers definitions of 
quality and other related issues.

As evidenced by the needs of eCommerce it is also necessary to develop the study of software quality to 
embrace other domains like the World Wide Web (WWW).  In this domain, product quality necessitates the 
study of additional quality factors, which addresses access, interaction and navigation. Furthermore, the owners 
of eCommerce solutions have new expectations that they will gain competitive advantage from their sites and 
this introduces further perspectives of software quality beyond that of product quality.

2. A Case Study - our Outsourcing Project
2.1 The Project

In the early 1990’s a number of sequential software development projects were carried out in Bulgaria, 
ordered by the software development department of a big German corporation. All projects were in the field of 
software development and other types of dedicated software. The purpose was to develop a software tool for 
the analysis, planning and design of computer-based training programs. As a member of the development team, 



15Research article http://www.iseeadyar.org/ijaai.html

Indian Journal of Automation and Artificial Intelligence Vol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

I would like to share our experience gained during this complex and long outsourcing project. Further, in this 
paper we will call the representatives of the German company, the initiator of the project, with a general name 
customer, and the Bulgarian team – developer (Crosby, 1984)   .

Bearing in mind the well known from the literature software engineering recommendations, both sides 
made an attempt to define explicitly the initial conditions, constraints and risk factors and to outline the basic 
principles of project management and quality assurance program.
2.1.1 The following constraints were imposed on the Bulgarian developers:

 » The development cost and the project deadline had to be determined in advance and could not be 
reconsidered; 

 » The general characteristics of the hardware platform and the software tools for the project had to be 
determined by the customer, but

 » The selection and purchase had to be made by the developer; 
 » The developer had to articulate and submit for approval the project management scheme and the qual-
ity assurance plan;

 » During the development the customer had to be responsible for the requirements definition, external 
specifications and the independent testing, and

 » The developer had to be responsible for the detailed design, programming, internal testing and prepa-
ration of the maintenance documentation.

2.1.2 At the beginning of the project some risk factors have been identified and analyzed, namely:
 » The requirements definition was incomplete and fuzzy, not allowing the precise estimation of the size 
and complexity of the desire

2.1.3 Software system:
 » The distant development was to some extent new for all participants and the lack of experience re-
quired finding out the appropriate

2.1.4  Solutions by testing several alter-natives:
 » In this distant development the daily communications by e-mail should be in a language (English) 
foreign to both sides.

2.1.5 The SQA program has been created on the following three assumptions:
 » The quality of the software product depends on the quality of the people involved in the project and 
their proper management

 » The quality of the software product depends on the quality of the development process; 
 » The quality of the software product in a remote development project depends heavily on the quality of 
the communications system. 

The Project Management program described the gradual development, the responsibilities of the teams and 
a detailed schedule for all distant activities and face-to-face joint meetings.
2.2 Project results and their evaluation

The work on the developed tool had several continuations and finally ended (due to some financial reasons) 
a year ago. Now from the distance of the time passed we can evaluate the project and to summarize the results 
of this experimental outsourced software development.

We can report a successful Software Quality Assurance (SQA) program. The de-fined set of three assump-
tions really managed to ensure an efficient SQA policy. Next we will remind each assumption and will describe 
our brief comment for it.
2.2.1 Assumption 1. 



http://www.iseeadyar.org/ijaai.html Research article16

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

The quality of the software product depends on the quality of the people involved in the project and their 
proper management.

The size and the structure of the teams, the requirements for education, qualification and experience of the 
developers, the scope of their work and responsibility have been planned carefully and followed strictly. The 
high professional level gave us the possibility to solve all arising problems (both algorithmic and technical). 
The developers were motivated not only by their salaries but by the challenges of the project itself. A number 
of research papers, describing some problems and their innovative solutions have been published during and 
after the project

The lesson: Select the right partner to be qualified, loyal and highly motivated.
2.2.2 Assumption 2. 

The quality of the software product depends on the quality of the development process.
A model for a step-by-step development has been implemented. Two consecutive prototypes have been created. 
Unfortunately, the preliminary defined schedule was modified several times due to very often changes of the 
requirements.

The lesson: It is not possible to predict the duration and cost of each project phase. So as a step-wise pro-
cedure for project scheduling should be applied: a rough schedule with definition of the basic phases at the be-
ginning of the project and a refinement only for the next phase, specifying the expected results, the acceptance 
criteria and the proportional payment.
2.2.3 Assumption 3. 

The quality of the software product in a remote development project depends heavily on the quality of the 
communications system.

The whole organization of the communication (who, when, how often, the control and distribution rules, 
etc.) was described in the so called communication protocol. Those days when the Internet made its first steps 
we encountered many technical problems. Fortunately they are not valid anymore because of the reliable and 
fast Internet connections now.

The lesson: A communication protocol has to be established at the beginning of the project and has to be 
strictly followed.

3. A modify approach to outsourced software development
The experience from a set of distant projects and the additional research work give us the possibility to 

propose a number of improvements to the overall development style in software outsourcing.
3.1 Our approach to SE activities

We describe our general approach to the software engineering activities, performed in a software company. 
Here we will present its basic principles only to make possible for the reader to understand how they can be 
applied to outsourced development. 
The basic characteristics of our approach are the following:

 » The approach is an incremental. At the beginning it can be applied only for one software engineering 
activity – e.g. Software Quality Assurance. After the evaluation at the end of the period for experi-
mental use, the approach can be expanded to cover other activities, too.

 »  The approach is based on the idea to keep the control over the whole project all the time. But it is 
well known that we cannot control what we cannot measure. So we propose to use the universal 
technique of comparative analysis and a set of supporting tools so as to measure the progress in any 
observed activity;

 » The approach is adjustable to the specific features and style of work in a given soft- ware company. 
For each applied technique at least two different levels of complexity should be defined. After the 
corresponding cost/benefits analysis the senior managers of the company can decide which activi-



17Research article http://www.iseeadyar.org/ijaai.html

Indian Journal of Automation and Artificial Intelligence Vol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

ties will be covered and to what extent. In our opinion this makes the approach more pragmatic and 
feasible.

The introduction of this approach to given software company comprises the following steps:

 » Defining the main goal to be achieved (e.g. an efficient development process, high quality software 
products, stable and attractive market image, etc.)

 » Selecting a few basic SE activities to start with;
 » For any activity - developing a systematic methodology and a plan for its implementation;
 »  Starting a pilot project to examine the validity of the concrete approach version.
 » Evaluating of the results and making a decision how to proceed.

Table .1 The outline of the basic activities content (Eskenazi , Maneva & Radev 2000; http:// www.testlabs.com/
white_papers.html)

Activity Method/Technique Comment
Pre-contract and Contract Activities

Select the software parts 
to be  out- sourced Cost/benefits analysis

Choose the right 
developer Comparative analysis Criteria: qualification, experience in shipped products, standard 

and stable development environment, QA practice

Create a con-
tract and assess it

Formal review through checklists
To achieve the SQA goals state a number
of  milestones with defined deliverables, acceptance procedures 
and payments

Management
Personnel
management

People management capability maturity 
model

A number of key practice areas for software people should be 
identified

Product management Comparative analysis to measure the 
progress

Criteria: size, complexity, functionality,
flexibility, etc.

Process management
Incremental development
through consecutive proto- types

Well specified local and umbrella activities

Project management
A rough schedule for the
whole project and a detailed schedule only 
for the current and the next stage

Project tracking, risk analysis and mitigation

Software Quality Assurance

Testing Static and dynamic methods Unit testing at the developer’s site and complete and repeatable 
system test at customer’s environment

Quality
evaluation

Quality evaluation models and methods Software ranking for a set of quality Characteristics

Quality control Reviews, software metrics, comparative 
analysis Create a SQA plan and follow it

Software Configuration Management

Change con-
Troll

Regulations for changing any item, 
“freeze” 
requirements

Auditable and repeatable creation of soft-
ware using a controlled project library

Configuration
control

Configuration audit for each
increment

Release notes - to restrict the dependency
on the developer



http://www.iseeadyar.org/ijaai.html Research article18

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

3.2 A program for an efficient outsourcing development
We would like to apply our approach to the outsourcing development. Following the above mentioned 

steps, first we have to define the main goal of the program. The goal is to keep the control over the people, 
product, process and project. This goal leads to the initial set of three activities– two with already recognized 
importance- “Project Management and Quality Assurance” - and a new one, underestimate till now – “the 
Software Configuration Management”. We decide to include it because the analysis of project results shows the 
need of special efforts for change management. After the final acceptance test of the software system the initial 
set of activities should be expanded with the maintenance activity. The outline of the basic activities content is 
given in the Table 1. 
3.3 Maintenance of the Outsourced Software Products

The problems of maintenance after the end of the outsourcing project are not well studied till now. In our 
project after the 12-months guarantee period for corrective maintenance there was a number of additional con-
tracts for adapting and enhancement. Generally speaking, three approaches are possible:

 » Maintenance is done within the developer’s organization. This was our case. It seems to work for 
a complete outsourcing and can be even cost-efficient because no need for additional efforts to 
understand the programs so as to change them. The main is advantage was that many members of 
the developer’s team had already other primary responsibilities and couldn’t devote much time to 
this “old” project;

 » Maintenance is done within the customer’s organization. It seems to work for both partial and com-
plete outsourcing projects, but it is possible only in case there is a permanent group, working to-
gether with the developers especially to be prepared for the future maintenance;

 » Maintenance is contracted to a third part. This situation is a imagined – who will dare (and for 
how much money?) to maintain software, created by others?

We believe that after a successful SQA and Project Management program accomplishment the maintenance 
efforts will be pretty small, but anyway we need prescriptions for them. We start an investigation on this topic 
and we hope that our general approach will work for maintenance, too.

4. Quality defined
There are many different definitions of quality. It is typically defined in terms of conformance to specifi-

cation and fitness for purpose.  Figure 1 shows a number of acknowledged definitions
There are difficulties with definitions that focus on conformance to specification and fitness for purpose. In  

the  first  instance  it follows that if there is a deficiency in the specification then there will be a deficiency in 
the quality, yet the definition would imply that conformance to the specification will produce a quality product. 
This  is not  the  case  and  an inferior   or   deficient   specification   will   not produce  a  high  quality  product. 
Fitness for purpose can also be challenged along the same lines. For  example,  there  are  many  types  of motor 
cars that are fit for the purpose of transportation of two to four individuals from A to B.   But they are not all 
Rolls-Royce quality cars. So, fitness  for  purpose  does  not  fully define quality either. International standards 
organization also define quality (ISO/IEC 9126-1, 2001).

When the quality relates to software quality it is mainly defined in terms of characteristics of a  product  
and  its  use. There are  two  very important points in these definitions.   The first is, they emphasise the 
product and in the case of software this is the application delivered to the purchaser.  The second is that they 
introduce the desirability of measurement by using words like totality and degree

This is in keeping with a natural description of high or low quality which in scientific terms might equate 
to a scale such as  0  to  100. In  the  domain  of  Information Systems, quality is limited to measuring the at-
tributes (the quality factors) of the software product and measuring its use. This is the narrow view of quality 
which only addresses quality-of-process, quality-of-product and quality-of-use.

A broader view of quality is suggested by the founding father of the Japanese quality movement,  Kaoru  



19Research article http://www.iseeadyar.org/ijaai.html

Indian Journal of Automation and Artificial Intelligence Vol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

Ishikawa.  His view  of quality is shown in Fig. 3.
On this basis, it follows that limiting software quality to the process by which the product is built and to 

its usability is too narrow a view and that there are a number of perspectives of quality (some of which are not 
widely researched). Eight perspectives are represented on the newly extended Software Quality Star mark II as 
illustrated in Fig.4.

The Software Quality Star mark II is an enhanced version of the original model.  Its original motivation was 
to illustrate the principal points of focus in ISO 12207 which relates to  software  life  cycle  processes. Mark 
II  is enhanced to incorporate end-to-end perspectives together with domains like the World Wide Web which 
are additional to the Management Information Systems domain.

The eight perspectives in the Software Quality Star are quality-of-procurement, quality- of-contract, 
quality-of-production, quality-of- project, quality-of-process, quality-of-product, quality-of-use and quali-
ty-of-maintenance. So, it  is  appropriate  to  step  back  and consider quality on a higher level.  It can easily be 
argued from the definitions in Figures 1, 2 & 3 that quality is a measure of something (other than product 
characteristics) relating to the different  perspectives  and  this  paper  proposes that at the higher level quality 
is a measure f excellence. The excellence should then be quantified for each perspective.  For example, in the  
case  of  quality-of-product,  the  excellence will  relate  to  product  external  and  internal quality  factors. 
In the  quality-of-production perspective the excellence will relate to the producer considerations and in the 
perspective of the owner the excellence relates to procurement and issues like value for money and competitive  
advantage. So, software quality could be defined in terms of a measure of excellence in the perspectives of the 
end-to-end software product life cycle.
4.1 Quality in life cycle models
Fig.1.  Definitions of quality (Crosb, 1984; Deming, 2000; Feigenbaum, 1961; Juran, 1989;  Oakland, 1993; 
Shingo 1988; Taguchi,1987)

The third challenge addressed in this paper focuses on quality in the life cycle. Popular conceptual sys-
tem-life-cycle models  are  software engineering  focused with processes mainly centered on the creation of 
the software product. That is, they address quality- of-process, quality-of-product and quality-of-use in a con-
text of use.   But the broader view of quality dictates that a life cycle that focuses only on software development 
is insufficient and that a full end-to-end software product life cycle is required. Such a model would embrace 



http://www.iseeadyar.org/ijaai.html Research article20

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

quality from product conception through to product retirement and would address all of the quality perspectives  
of  the  Software  Quality  Star  – Fig.4. That   is,   quality-of-procurement, quality-of-contract, quality-of-pro-
duction, quality-of-project, quality-of-process, quality-of- product, quality-of-use and quality-of- maintenance.

Fig.2.  International standards definitions of quality (ISO/IEC 12207, 1995; ISO/IEC 9126-1)

Fig.3. Ishikawa’s broader view of quality (Kaoru  Ishikawa, 1985)

This end-to-end  model  also  addresses  the fact that the word quality is not mentioned in the popular con-
ceptual system-life-cycle models. Expressions like validation and verification or test or evaluation are used 
but quality as a focus of management during the life cycle is not given the significance it merits. This contrasts 
with the inclusion of risk management in Boëhm’s spiral model.  The traditional approach to quality relates to 
the term Quality Assurance (QA) which is associated with code testing.  It is more appropriate   to   refer   
to   managing software quality in order to emphasize the on-going end- to-end life cycle aspects.  This, 



21Research article http://www.iseeadyar.org/ijaai.html

Indian Journal of Automation and Artificial Intelligence Vol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

too, is illustrated in the Software Quality Star mark II by the cyclical-flow dotted line shown in Figure 4

Fig.4. Software Quality Star mark II (SQ-Star) (Fitzpatrick , 2003)

Having identified the eight different quality perspectives (Section 2) it follows that each perspective has 
its own interpretation of quality. For example, when interpreting quality-of- product perspective, the topics of 
interest are product   quality   factors. Likewise,   when interpreting the quality-of-procurement (ownership) 
and quality-of-production the topics have to do with procurement factors and production factors.   Such a set 
of factors was identified as software quality strategic drivers.  These are presented in Figure 5 where they also 
include familiar software quality terminology for each driver.

5. Redefining quality for evolving technologies
As part of quality-of-use, ISO 9126-1 explains the need to refer to context of use, that is, one product with 

opportunities to use it in different contexts.  While the context of use may change, the domain of use is consist-
ent - the domain is Information Systems.  But the World Wide Web (WWW) is a different domain and different 
quality factors apply.

Multiple domains (typically the WWW) are illustrated in Fig. 4 & 5 by the second cyclical-flow dotted line.  
Five additional quality factors for the WWW were identified. These five are visibility, intelligibility, credibility, 
engagibility and differentiation and are shown together with their sub- characteristics in Fig. 6.



http://www.iseeadyar.org/ijaai.html Research article22

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

Fig.5. Producer and Procurer strategic drivers of software quality (Fitzpatrick 2001, Fitzpatrick & O’Shea, 
2004)

Fig.6. Taxonomy of domain-specific quality factors for the World Wide Web (Fitzpatrick, 2000)

The study of quality in the domain of the World Wide Web highlights new challenges as technology evolves 
– other domains will have different quality  factors. For the WWW the challenges include methods and metrics 
for estimating, managing quality during the product life cycle and quality-of-use measurement. They will also 
include new emphasis on creating sites that support quality-of-ownership.



23Research article http://www.iseeadyar.org/ijaai.html

Indian Journal of Automation and Artificial Intelligence Vol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

In their paper Software Quality Revisited address challenges relating to Web site quality. They address in-
terpreting the Strategic Drivers in relation to quality Web sites and they also address the need for measurement 
methods and metrics in this domain.

6. Conclusion
The current paper summarizes the experience gained from an outsourcing project. The evaluation of the 

SQA and Project management programs has been made and some suggestions for their improvement has been 
proposed. Our future research will be directed to standardization of the proposed procedures thus facilitating 
their practical use. We will try to find a small and not very sophisticated project suitable for distant develop-
ment so as to examine and approbate the feasibility and the usefulness of our new approach.
This   paper also has set out a number of challenges which face those interested in software quality. 
These include:

 » A  definition  of  quality  which  focuses  on measuring excellence.
 » That   interpreting   the   term  usability   as meaning anything that impacts the end user is a  more  
natural  interpretation  of  the  term usability.

 » That  the  broader  view  of  quality  dictates that a life cycle that focuses only on software develop-
ment is insufficient and that a full end- to-end software product life cycle is required as  illustrated  
in  the  Software  Quality  Star mark II.

 » The expression Quality Assurance does not fully address the need for quality management through-
out the product life cycle.

 » New challenges are presented by the need for quality of WWW solutions.

7. References
1. Applying software quality  assurance  to  outsourced  software  development.  http:// www.testlabs.com/

white_papers.html
2. Boëhm B (1978) Characteristics of  software quality. Vol (1)   of   TRW   series    on   software technol-

ogy, North-Holland, Amsterdam, Netherlands.
3. Crosby PB (1984)   Quality   without   tears, McGraw-Hill books, NY, USA, pp:60.
4. Deming WE (2000) Out of the crises, MIT Press, Cambridge, Mass., USA, pp: 168-169.
5. Eskenazi A, Maneva N, R Radev (2000) Project management and quality assurance in a distant software 

development project. Proceedings 5th SQM Congress, Bonn.
6. Feigenbaum AV (1961) Total quality  control: Engineering  and  Management,  McGraw-Hill,  NY, pp:13.
7. Fitzpatrick P Smith and O’Shea B (2004) Software   quality   revisited,   Proceedings   of   the software   

measurement   european   forum   (SMEF 2004, Rome), Istituto di Ricerca Internazionale S.r.l., Milan, 
Italy, pp: 307-315, ISBN 88-86674-33-3.

8. Fitzpatrick R   (2000) Additional   quality factors for the world wide web. Proceedings of the second   
world   congress    for   software   quality, Yokohama, Japan,  Union of Japanese scientists and Engineers 
(JUSE), Tokyo, Japan.

9. Fitzpatrick R (2001) Strategic   drivers  of software quality:   Beyond   external   and   internal software 
quality”, second asia-pacific conference on quality software, Proceed. APAQS 2001, Hong Kong; IEEE  
computer  society  press,   California, USA.

10. Fitzpatrick R (2003) The Software Quality Star: A   conceptual   model   for   the    software   quality 
curriculum, workshop paper, Proceedings of closing the gaps:   Software    engineering   and   human- 
Computer  Interaction, INTERACT 2003: Ninth IFIP TC 13 International Conference on Human-Com-
puter Interaction, September 2003, Zurich, Switzerland.



http://www.iseeadyar.org/ijaai.html Research article24

      
 Indian Journal of Automation and Artificial IntelligenceVol: 1  Issue: 1   January 2013  ISSN   2320 – 4001 

11. Genichi   Taguchi Elsayed   A.   Elsayed   and Thomas   Hsiang (1989)   Quality   engineering   in pro-
ductions systems, McGraw-Hill, NY, USA, pp: 2/3

12. ISO/IEC 12207 (1995) International  Standard. Information technology-Software life cycle processes, 
International Organisation for Standardisation, Genève, Switzerland

13. ISO/IEC 9126-1 (2001) International Standard. Software engineering-Product quality-Part 1: Quality 
model, International Organisation for Standardisation, Genève, Switzerland.

14. Juran JM (1989)  Juran  on   leadership   for quality, Free press, NY, U.S.A, pp:16
15. Kaoru  Ishikawa (1985)  What  is  Total  quality control? : The Japanese way. Prentice Hall, Englewood 

Cliffs, London, UK, pp: 44/5.
16. Maneva M and Maneva N (1994) Software product ranking.  Proceedings 23th spring conference of the 

UBM, (1994) 238-244. 
17. McCall J, Richards P and Walters G (1997) Factors in software quality. Vol I-III,  Rome Aid Defence 

Centre, Italy
18. Oakland JS (1993) Total Quality  Management, Butterworth-Heinemann, pp:4.
19. S(higeo) Shingo (1986) Zero Quality  Control: Source    inspection    and    the    poka-yoka    system, 

productivity press, Cambridge, Mass, USA, page vi.


