Open Access Open Access  Restricted Access Subscription Access

Phenotypic and Genotypic Characterization of Antimicrobial Susceptibility of Avian Pathogenic Escherichia coli Isolated from Broiler Chickens


Affiliations
1 Department of Bacteriology, Mycology and Immunology, Mansoura University, El Mansoura-35516, Egypt
 

Aim: Avian pathogenic Escherichia coli (APEC) is pathogenic strains of E. coli that are responsible for one of the most common bacterial diseases affecting poultry worldwide. This study was designed to determine the occurrence, antibiotic resistance profile, and antibiotic resistance genes of E. coli isolated from diseased and freshly dead broilers.
Materials and Methods: In that context, a total of 200 broilers samples were examined by standard microbiological techniques for isolation of E. coli, and tested for their antimicrobial susceptibility against 15 antimicrobial agents using disc diffusion method. In addition, E. coli isolates were screened by multiplex polymerase chain reaction for detection of a number of resistance genes including aadA1 gene encodes streptomycin/neomycin, tetA encodes resistance to tetracycline, sul1 encodes sulfonamides, and β-lactamase encoding genes (blaTEM and blaSHV).
Results: A total of 73 (36.5%) isolates were biochemically identified as E. coli strains. O78, O2, and O1 are the most prevalent serotypes detected. E. coli displayed a high resistance against penicillin (100%), followed by cefepime (95.8%) and a low resistance to norfloxacin (36.9%), and chloramphenicol (30%). Depending on the results of PCR, sul1 gene was the most predominant antibiotic resistant gene (87%) followed by blaTEM (78%), tetA genes (60%), and aadA (54%). However, blaSHV had the lowest prevalence (23%).
Conclusion: The obtained results demonstrated the importance of studies on APEC and antibiotic resistance genes in our region which associated with intensive poultry industry, aiming to acquire preventive measures to minimize losses due to APEC and associated multidrug-resistance and resistance genes that of high significance to the rational use of antibiotics in clinical and public health.

Keywords

Antimicrobial Resistance, Broilers, Escherichia coli, Multiplex Polymerase Chain Reaction, Resistant Genes.
User
Notifications
Font Size

Abstract Views: 164

PDF Views: 0




  • Phenotypic and Genotypic Characterization of Antimicrobial Susceptibility of Avian Pathogenic Escherichia coli Isolated from Broiler Chickens

Abstract Views: 164  |  PDF Views: 0

Authors

Gamal Younis
Department of Bacteriology, Mycology and Immunology, Mansoura University, El Mansoura-35516, Egypt
Amal Awad
Department of Bacteriology, Mycology and Immunology, Mansoura University, El Mansoura-35516, Egypt
Nada Mohamed
Department of Bacteriology, Mycology and Immunology, Mansoura University, El Mansoura-35516, Egypt

Abstract


Aim: Avian pathogenic Escherichia coli (APEC) is pathogenic strains of E. coli that are responsible for one of the most common bacterial diseases affecting poultry worldwide. This study was designed to determine the occurrence, antibiotic resistance profile, and antibiotic resistance genes of E. coli isolated from diseased and freshly dead broilers.
Materials and Methods: In that context, a total of 200 broilers samples were examined by standard microbiological techniques for isolation of E. coli, and tested for their antimicrobial susceptibility against 15 antimicrobial agents using disc diffusion method. In addition, E. coli isolates were screened by multiplex polymerase chain reaction for detection of a number of resistance genes including aadA1 gene encodes streptomycin/neomycin, tetA encodes resistance to tetracycline, sul1 encodes sulfonamides, and β-lactamase encoding genes (blaTEM and blaSHV).
Results: A total of 73 (36.5%) isolates were biochemically identified as E. coli strains. O78, O2, and O1 are the most prevalent serotypes detected. E. coli displayed a high resistance against penicillin (100%), followed by cefepime (95.8%) and a low resistance to norfloxacin (36.9%), and chloramphenicol (30%). Depending on the results of PCR, sul1 gene was the most predominant antibiotic resistant gene (87%) followed by blaTEM (78%), tetA genes (60%), and aadA (54%). However, blaSHV had the lowest prevalence (23%).
Conclusion: The obtained results demonstrated the importance of studies on APEC and antibiotic resistance genes in our region which associated with intensive poultry industry, aiming to acquire preventive measures to minimize losses due to APEC and associated multidrug-resistance and resistance genes that of high significance to the rational use of antibiotics in clinical and public health.

Keywords


Antimicrobial Resistance, Broilers, Escherichia coli, Multiplex Polymerase Chain Reaction, Resistant Genes.