Open Access Open Access  Restricted Access Subscription Access

Transcriptomic Comparison of Primary Bovine Horn Core Carcinoma Culture and Parental Tissue at Early Stage


Affiliations
1 Veterinary Officer (WBAH & VS), West Bengal Animal Resources Development Department, Bankura-772152, West Bengal, India
2 Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
3 Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
4 Hester Biosciences Limited, Ahmedabad, Gujarat, India
5 Veterinary Officer, MVC Sarenga, Government of West Bengal, Bankura, West Bengal, India
 

Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma) frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study.
Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified.
Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity.
Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.

Keywords

Cummerbund, Gene Ontology, Primary Culture, RNA-Sequencing, Squamous Cell Carcinoma of Horn, Transcriptome Profiling.
User
Notifications
Font Size

  • Yang, D.S. (2014) Novel prediction of anticancer drug chemosensitivity in cancer cell lines: Evidence of moderation by microRNA expressions. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference, 2014. p4780-4786.
  • Wei, W., Liu, Z., Chen, X. and Bi, F. (2014) Chemosensitivity of resistant colon cancer cell lines to lobaplatin, heptaplatin and dicycloplatin. Int. J. Clin. Pharmacol. Ther., 52(8): 702-707.
  • De la Cueva, A., Ramirez de Molina, A., Alvarez-Ayerza, N., Ramos, M.A., Cebrian, A., Del Pulgar, T.G. and Lacal, J.C. (2013) Combined 5-FU and ChoKalpha inhibitors as a new alternative therapy of colorectal cancer: Evidence in human tumor-derived cell lines and mouse xenografts. PLoS One, 8(6): e64961.
  • Giuffrida, D. and Rogers, I.M. (2010) Targeting cancer stem cell lines as a new treatment of human cancer. Rec. Patents Anti Cancer Drug Discov., 5(3): 205-218.
  • Supino, R., Binaschi, M., Capranico, G., Gambetta, R.A., Prosperi, E., Sala, E. and Zunino, F. (1993) A study of cross-resistance pattern and expression of molecular markers of multidrug resistance in a human small-cell lung-cancer cell line selected with doxorubicin. Int. J. Cancer, 54(2): 309-314.
  • Lefevre, D., Riou, J.F., Ahomadegbe, J.C., Zhou, D.Y., Benard, J. and Riou, G. (1991) Study of molecular markers of resistance to m-AMSA in a human breast cancer cell line. Decrease of topoisomerase II and increase of both topoisomerase I and acidic glutathione S transferase. Biochem. Pharmacol., 41(12): 1967-1979.
  • Cifola, I., Bianchi, C., Mangano, E., Bombelli, S., Frascati, F., Fasoli, E., Ferrero, S., Di Stifano, V., Zipeto, M.A., Magni, F., Signorini, S., Battaglia, C. and Perego, R.A. (2011) Renal cell carcinoma primary cultures maintain genomic and phenotypic profile of parental tumor tissues. BMC Cancer, 11(1): 244.
  • Craven, R.A., Stanley, A.J., Hanrahan, S., Dods, J., Unwin, R., Totty, N., Harnden, P., Eardley, I., Selby, P.J. and Banks, R.E. (2006) Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics, 6(9): 2853-2864.
  • Perego, R.A., Bianchi, C., Corizzato, M., Eroini, B., Torsello, B., Valsecchi, C., Di Fonzo, A., Cordani, N., Favini, P., Ferrero, S., Pitto, M., Sarto, C., Magni, F., Rocco, F. and Mocarelli, P. (2005) Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J. Proteome Res., 4(5): 1503-1510.
  • Bianchi, C., Bombelli, S., Raimondo, F., Torsello, B., Angeloni, V., Ferrero, S., Di Stefano, V., Chinello, C., Cifola, I., Invernizzi, L., Brambilla, P., Magni, F., Pitto, M., Zanetti, G., Mocarelli, P. and Perego, R.A. (2010) Primary cell cultures from human renal cortex and renal-cell carcinoma evidence a differential expression of two spliced isoforms of Annexin A3. Am. J. Pathol., 176(4): 1660-1670.
  • Twine, N.A., Janitz, K., Wilkins, M.R. and Janitz, M. (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer's disease. PLoS One, 6(1): e16266.
  • Naik, S.N., Balakrishna, C.R. and Randelia, H.P. (1969) Epidemiology of horn cancer in Indian zebu cattle: Breed incidences. Br. Vet. J., 125: 222-230.
  • Joshi, B.P., Soni, P.B., Fefar, D.T., Ghodasara, D.J. and Prajapati, K.S. (2009) Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J. Field Vet., 5: 15-18.
  • Burggraaf, H. (1935) Kanker aan de basis van de hoorns bijzebus. T. Diergeneesk, 62: 1121-1136.
  • Rezende, A.M.L. and Naves, P.T. (1975) Horn core cancer in a zebu cow, imported to Brazil. Pesqui. Agropecu. Bras. Ser. Vet., 10: 41-44.
  • Zubaidy, A.J. (1976) Horn cancer in cattle in Iraq. Vet. Pathol., 13: 435-454.
  • Kulkarni, H.V. (1953) Carcinoma of horn in bovines of Old Baroda state. Indian Vet. J., 29: 415-421.
  • Damodaran, S., Sundararaj, A. and Ramakrishnan, R. (1979) Horn cancer in bulls. Indian Vet. J., 56: 248-249.
  • Gupta, R.K., Sadana, J.R., Kuchroo, V.K. and Kalra, D.S. (1980) Horn cancer in an intact bull. Vet. Rec., 107: 312.
  • https://doi.org/10.1136/vr.107.13.312
  • Chattopadhyay, S.K., Jandrotia, V.S. and Ramkumar Iyer, P.K.R. (1982) Horn cancer in sheep. Indian Vet. J., 59: 319-320.
  • Luna, L.G., editor. (1968) Pathology AFIo. Manual of Histologic Staining Methods; of the Armed Forces Institute of Pathology. Blakiston Division, McGraw-Hill, New York.
  • Freshney, R.I. (2006) Basic principles of cell culture. Culture of Cells for Tissue Engineering. John Wiley & Sons, Inc., Hobokan, New Jersey. p3-21.
  • Roth, V. (2006) Available from: http://www.doubling-time.com/compute.php . Accessed on 18/12/2016.
  • Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2013) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol. DOI: 10.1111/vco.12079.
  • Wu, T.D. and Watanabe, C.K. (2005) GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 21(9): 1859-1875.
  • Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28(5): 511-515.
  • Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Prot., 4(1): 44-57.
  • Thomas, P.D., Kejariwal, A., Guo, N., Mi, H., Campbell, M.J., Muruganujan, A. and Ulitsky, B.L. (2006) Applications for protein sequence–function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nuc. Acids Res., 34: W645-W650.
  • Gao, J., Wu, H., Wang, L., Zhang, H., Duan, H., Lu, J. and Liang, Z. (2016) Validation of targeted next-generation sequencing for RAS mutation detection in FFPE colorectal cancer tissues: comparison with Sanger sequencing and ARMS-Scorpion real-time PCR. BMJ Open, 6(1): e009532.
  • Koringa, P.G., Jakhesara, S.J., Bhatt, V.D., Meshram, C.P., Patel, A.K., Fefar, D.T. and Joshi, C.G. (2016) Comprehensive transcriptome profiling of squamous cell carcinoma of horn in Bos indicus. Vet. Comp. Oncol., 14(2): 122-136.
  • Krol, M., Polanska, J., Pawllowski, K.M., Turowski, P., Skierski, J., Majewska, A., Ugorski, M., Morty, R.E. and Motyl, T. (2010) Transcriptomic signature of cell lines isolated from canine mammary adenocarcinoma metastases to lungs. J. Appl. Genet., 51(1): 37-50.
  • Pal, D., Wu, D., Haruta, A., Matsumura, F. and Wei, Q. (2010) Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell Cycle, 9(20): 4117-4129.
  • Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon, L.I., Stewart, R.A., Look, A.T. and Jette, C. (2012) Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet., 8(8): e1002922.
  • Lu, Z., Zhou, L., Killela, P., Rasheed, A.B., Di, C., Poe, W.E., McLendon, R.E., Bigner, D.D., Nicchitta, C. and Yan, H. (2009) Glioblastoma proto-oncogene SEC61γ is required for tumor cell survival and response to endoplasmic reticulum stress. Cancer Res., 69(23): 9105-9111.
  • Wallgard, E., Nitzsche, A., Larsson, J., Guo, X., Dieterich, L.C., Dimberg, A., Olofsson, T., Pontén, F.C., Mäkinen, T., Kalén, M. and Hellström, M. (2012) Paladin (X99384) is expressed in the vasculature and shifts from endothelial to vascular smooth muscle cells during mouse development. Dev. Dyn., 241(4): 770-786.
  • Wang, H., Ke, F. and Zheng, J. (2014) Hedgehog-glioma-associated oncogene homolog-1 signaling in colon cancer cells and its role in the celecoxib-mediated anti-cancer effect. Oncol. Lett., 8(5): 2203-2208.
  • Zhao, M., Tang, Q., Wu, W., Xia, Y., Chen, D. and Wang, X. (2014) miR-20a contributes to endometriosis by regulating NTN4 expression. Mol. Biol. Rep., 41(9): 5793-5797.
  • Wang, L., McDonnell, S.K., Hebbring, S.J., Cunningham, J.M., St. Sauver, J., Cerhan, J.R., Isaya, G.,. Schaid, D.J. and Thibodeau, S.N. (2008) Polymorphisms in mitochondrial genes and prostate cancer risk. Cancer Epidemiol. Biomarkers Prev., 17(12): 3558-3566.
  • Zeller, C., Dai, W., Steele, N.L., Siddiq, A., Walley, A.J., Wilhelm-Benartzi, C.S.M., Rizzo, S., Van Der Zee, A., Plumb, J.A. and Brown, R. (2012) Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene, 31(42): 4567-4576.
  • Brocato, J. and Costa, M. (2015) SATB1 and 2 in colorectal cancer. Carcinogenesis, 36(2): 186-191.
  • Xiao, M., Chen, L., Wu, X. and Wen, F. (2014) The association between the rs6495309 polymorphism in CHRNA3 gene and lung cancer risk in Chinese: A meta-analysis. Sci. Rep., 4: 6372.
  • Ewens, K.G., Kanetsky, P.A., Richards-Yutz, J., Purrazzella, J., Shields, C.L., Ganguly, T. and Ganguly, A. (2014) Chromosome 3 status combined with BAP1 and EIF1AX mutation profiles are associated with metastasis in uveal melanoma gene mutations associated with metastasis in UM. Invest. Ophthalmol. Visual Sci., 55(8): 5160-5167.
  • Chandran, U.R., Ma, C., Dhir, R., Bisceglia, M., Lyons-Weiler, M., Liang, W., Michalopoulos, G., Becich, M. and Monzon, F.A. (2007) Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer, 7(1): 1.
  • Pang, J., Liu, W.P., Liu, X.P., Li, L.Y., Fang, Y.Q., Sun, Q.P., Liu, S.J., Li, M.T., Su, Z.L. and Gao, X. (2009) Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE based proteomics analysis. J. Proteome Res., 9(1): 216-226.
  • Schonthal, A.H. (2001) Role of serine/threonine protein phosphatase 2A in cancer. Cancer Lett., 170(1): 1-13.
  • Bartek, J. and Hodny, Z. (2010) SUMO boosts the DNA damage response barrier against cancer. Cancer Cell, 17(1): 9-11.
  • Wei, J., Costa, C., Ding, Y., Zou, Z., Yu, L., Sanchez, J.J., Qian, X., Chen, H., Gimenez-Capitan, A., Meng, F. and Moran, T. (2011) mRNA expression of BRCA1, PIAS1, and PIAS4 and survival after second-line docetaxel in advanced gastric cancer. J. Natl. Cancer Inst., 103(20): 1552-1556.
  • Jovov, B., Araujo-Perez, F., Sigel, C.S., Stratford, J.K., McCoy, A.N., Yeh, J.J. and Keku, T. (2012) Differential gene expression between African American and European American colorectal cancer patients. PLoS One, 7(1): e30168.
  • Possemato, R., Marks, K.M., Shaul, Y.D., Pacold, M.E., Kim, D., Birsoy, K., Sethumadhavan, S., Woo, H.K., Jang, H.G., Jha, A.K. and Chen, W.W. (2011) Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 476(7360): 346-350.
  • Cadenas, C., Franckenstein, D., Schmidt, M., Gehrmann, M., Hermes, M., Geppert, B., Schormann, W., Maccoux, L.J., Schug, M., Schumann, A. and Wilhelm, C. (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res., 12(3): 1.
  • Arner, E.S. and Holmgren, A. (2006) The thioredoxin system in cancer. Semin. Cancer Biol., 16(6): 420-426.
  • Sotgia, F., Menezes, D.W., Outschoorn, U.E.M., Salem, A.F., Tsirigos, A., Lamb, R., Sneddon, S., Hulit, J., Howell, A. and Lisanti, M.P. (2012) Mitochondria "fuel" breast cancer metabolism: fifteen markers of mitochondrial biogenesis label epithelial cancer cells, but are excluded from adjacent stromal cells. Cell Cycle, 11(23): 4390-4401.
  • Budinska, E., Popovici, V., Tejpar, S., D'Ario, G., Lapique, N., Sikora, K.O., Di Narzo, A.F., Yan, P., Hodgson, J.G., Weinrich, S. and Bosman, F. (2013) Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol., 231(1): 63-76.
  • Christenson, L.K., Gunewardena, S., Hong, X., Spitschak, M., Baufeld, A. and Vanselow, J. (2013) Research resource: Preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol. Endocrinol., 27(7): 1153-1171.
  • Abeele, F.V., Lemonnier, L., Thébault, S., Lepage, G., Parys, J.B., Shuba, Y., Skryma, R. and Prevarskaya, N. (2004) Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J. Biol. Chem., 279(29): 30326-30337.
  • Zhang, Q., He, J., Lu, W., Yin, W., Yang, H., Xu, X. and Wang, D. (2010) Expression of transient receptor potential canonical channel proteins in human non-small cell lung cancer. Zhongguo Fei Ai Za Zhi, 13(6): 612-616.
  • Kashiwagi, E., Shiota, M., Yokomizo, A., Itsumi, M., Inokuchi, J., Uchiumi, T. and Naito, S. (2012) Downregulation of phosphodiesterase 4B (PDE4B) activates protein kinase A and contributes to the progression of prostate cancer. Prostate, 72(7): 741-751.
  • Mareddy, J., Nallapati, S.B., Anireddy, J., Devi, Y.P., Mangamoori, L.N., Kapavarapu, R. and Pal, S. (2013) Synthesis and biological evaluation of nimesulide based new class of triazole derivatives as potential PDE4B inhibitors against cancer cells. Bioorgan. Med. Chem. Lett., 23(24): 6721-6727.
  • Valdora, F., Freier, F., Garzia, L., Ramaswamy, V., Seyler, C., Hielscher, T., Brady, N., Northcott, P.A., Kool, M., Jones, D.T. and Witt, H. (2013) KCNJ2 constitutes a marker and therapeutic target of high-risk medulloblastomas. Cancer Res., 73 8 Suppl: 5050.
  • Kim, H.S., Kim, D.H., Kim, J.Y., Jeoung, N.H., Lee, I.K., Bong, J.G. and Jung, E.D. (2010) Microarray analysis of papillary thyroid cancers in Korean. Korean J. Intern. Med., 25(4): 399-407.
  • Li, Y.L. (2013) Silencing of KCNJ2, a potassium influx channel, increases cisplatin-induced cell death in oral cancer. Cancer Res., 73 8 Suppl: 2119.
  • Kovacevic, Z. and Richardson, D.R. (2006) The metastasis suppressor, Ndrg-1: A new ally in the fight against cancer. Carcinogenesis, 27(12): 2355-2366.
  • Ghalayini, M.K., Dong, Q., Richardson, D.R. and Assinder, S.J. (2013) Proteolytic cleavage and truncation of NDRG1 in human prostate cancer cells, but not normal prostate epithelial cells. Biosci. Rep., 33(3): e00042.
  • Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. and Morishita, K. (2012) The increased expression of integrin α6 (ITGA6) enhances drug resistance in EVI1 high leukemia. PLoS One, 7(1): e30706.
  • Cheng, I., Plummer, S.J., Neslund-Dudas, C., Klein, E.A., Casey, G., Rybicki, B.A. and Witte, J.S. (2010) Prostate cancer susceptibility variants confer increased risk of disease progression. Cancer Epidemiol. Biomarkers Prev., 19(9): 2124-2132.
  • Dusek, R.L., Bascom, J.L., Vogel, H., Baron, S., Borowsky, A.D., Bissell, M.J. and Attardi, L.D. (2012) Deficiency of the p53/p63 target Perp alters mammary gland homeostasis and promotes cancer. Breast Cancer Res., 14(2): 1.
  • Beaudry, V.G., Jiang, D., Dusek, R.L., Park, E.J., Knezevich, S., Ridd, K., Vogel, H., Bastian, B.C. and Attardi, L.D. (2010) Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet., 6(10): e1001168.
  • Ji, P., Diederichs, S., Wang, W., Böing, S., Metzger, R., Schneider, P.M., Tidow, N., Brandt, B., Buerger, H., Bulk, E. and Thomas, M. (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22(39): 8031-8041.
  • Lomnytska, M.I., Becker, S., Gemoll, T., Lundgren, C., Habermann, J., Olsson, A., Bodin, I., Engström, U., Hellman, U., Hellman, K. and Hellstrom, A.C. (2012) Impact of genomic stability on protein expression in endometrioid endometrial cancer. Br. J. Cancer, 106(7): 1297-1305.
  • Pang, H., Rowan, B.G., Al-Dhaheri, M. and Faber, L.E. (2004) Epidermal growth factor suppresses induction by progestin of the adhesion protein desmoplakin in T47D breast cancer cells. Breast Cancer Res., 6(3): 1.
  • Morgan, E., Kannan-Thulasiraman, P. and Noy, N. (2010) Involvement of fatty acid binding protein 5 and PPAR/in prostate cancer cell growth. PPAR Res., 2010: Article ID: 234629, 9.
  • Levi, L., Lobo, G., Doud, M.K., Von Lintig, J., Seachrist, D., Tochtrop, G.P. and Noy, N. (2013) Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res., 73(15): 4770-4780.
  • Takakura, S., Kohno, T., Manda, R., Okamoto, A., Tanaka, T. and Yokota, J. (2001) Genetic alterations and expression of the protein phosphatase 1 genes in human cancers. Int. J. Oncol., 18(4): 817-824.
  • Velusamy, T., Palanisamy, N., Kalyana-Sundaram, S., Sahasrabuddhe, A.A., Maher, C.A., Robinson, D.R., Bahler, D.W., Cornell, T.T., Wilson, T.E., Lim, M.S. and Chinnaiyan, A.M. (2013) Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci., 110(8): 3035-3040.
  • Abba, M.C., Drake, J.A., Hawkins, K.A., Hu, Y., Sun, H., Notcovich, C., Gaddis, S., Sahin, A., Baggerly, K. and Aldaz, C.M. (2004) Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression. Breast Cancer Res., 6(5): 1.
  • Honma, K., Iwao-Koizumi, K., Takeshita, F., Yamamoto, Y., Yoshida, T., Nishio, K., Nagahara, S., Kato, K. and Ochiya, T. (2008) RPN2 gene confers docetaxel resistance in breast cancer. Nat. Med., 14(9): 939-948.
  • Arrigo, A.P., Simon, S., Gibert, B., Remy, C.K., Nivon, M., Czekalla, A., Guillet, D., Moulin, M., Diaz-Latoud, C. and Vicart, P. (2007) Hsp27 (HspB1) and αB‐crystallin (HspB5) as therapeutic targets. FEBS Lett., 581(19): 3665-3674.
  • Heinrich, J.C., Tuukkanen, A., Schroeder, M., Fahrig, T. and Fahrig, R. (2011) RP101 (brivudine) binds to heat shock protein HSP27 (HSPB1) and enhances survival in animals and pancreatic cancer patients. J. Cancer Res. Clin. Oncol., 137(9): 1349-1361.
  • Fan, J., Zhang, Y.Q., Li, P., Tong, C., Tan, L. and Zhu, Y.S. (2004) Interaction between plasminogen activator inhibitor type-2 and pre-mRNA processing factor 8. Acta Biochim. Biophys. Sin., 36(9): 623-628.
  • Kozaric, A.K., Przychodzen, B., Singh, J., Konarska, M.M., Clemente, M.J., Otrock, Z.K., Nakashima, M., Hsi, E.D., Yoshida, K., Shiraishi, Y. and Chiba, K. (2015) PRPF8 defects cause missplicing in myeloid malignancies. Leukemia, 29(1): 126-136.
  • Chang, Y.C., Jan, Y.H., Chan, Y.C., Yang, Y.F., Su, C.Y., Lai, T.C., Liu, Y.P. and Hsiao, M. (2013) Identification of ALDOA as a new Lung adeonocarcinoma predict gene involve cancer metabolism and tumor metastasis. FASEB J., 27(1_MeetingAbstracts): 58-61.
  • Migneco, G., Menezes, D.W., Chiavarina, B., Cros, R.C., Pavlides, S., Pestell, R.G., Fatatis, A., Flomenberg, N., Tsirigos, A., Howell, A. and Martinez-Outschoorn, U.E. (2010) Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: Evidence for stromal-epithelial metabolic coupling. Cell Cycle, 9(12): 2412-2422.
  • Li, K.K.W., Pang, J.C.S., Ching, A.K.K., Wong, C.K., Kong, X., Wang, Y., Zhou, L., Chen, Z. and Ng, H.K. (2009) miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum. Pathol., 40(9): 1234-1243.
  • Tripathi, A.K., Koringa, P.G., Jakhesara, S.J., Ahir, V.B., Ramani, U.V., Bhatt, V.D., Sajnani, M.R., Patel, D.A., Joshi, A.J., Shanmuga, S.J. and Rank, D.N. (2012) A preliminary sketch of horn cancer transcriptome in Indian zebu cattle. Gene, 493(1): 124-131.
  • Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Forsberg, M., Zwahlen, M., Kampf, C., Wester, K., Hober, S. and Wernerus, H. (2010) Towards a knowledge-based human protein atlas. Nat. Biotechnol., 28(12): 1248-1250.
  • Das, S., Samant, R.S. and Shevde, L.A. (2011) Hedgehog signaling induced by breast cancer cells promotes osteoclastogenesis and osteolysis. J. Biol. Chem., 286(11): 9612-9622.
  • Ferraro, A., Schepis, F., Leone, V., Federico, A., Borbone, E., Pallante, P., Berlingieri, M.T., Chiappetta, G., Monaco, M., Palmieri, D. and Chiariotti, L. (2013) Tumor suppressor role of the CL2/DRO1/CCDC80 gene in thyroid carcinogenesis. J. Clin. Endocrinol. Metab., 98(7): 2834-2843.
  • Hjerpe, E., Brage, S.E., Carlson, J., Stolt, M.F., Schedvins, K., Johansson, H., Shoshan, M. and Lundqvist, E.A. (2013) Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin. Pathol., 13(1): 1.
  • Li, X., Roslan, S., Johnstone, C.N., Wright, J.A., Bracken, C.P., Anderson, M., Bert, A.G., Selth, L.A., Anderson, R.L., Goodall, G.J. and Gregory, P.A. (2014) MiR-200 can repress breast cancer metastasis through ZEB1-independent but moesin-dependent pathways. Oncogene, 33(31): 4077-4088.
  • Singhi, A.D., Mathews, A.C., Jenkins, R.B., Lan, F., Fink, S.R., Nassar, H., Vang, R., Fetting, J.H., Hicks, J., Sukumar, S. and De Marzo, A.M. (2012) MYC gene amplification is often acquired in lethal distant breast cancer metastases of unamplified primary tumors. Modern Pathol., 25(3): 378-387.
  • Rokavec, M., Oner, M.G., Li, H., Jackstadt, R., Jiang, L., Lodygin, D., Kaller, M., Horst, D., Ziegler, P.K., Schwitalla, S. and Slotta-Huspenina, J. (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest., 124(4): 1853-1867.
  • Tell, R.W. and Horvath, C.M. (2014) Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors. Proc. Natl. Acad. Sci., 111(35): 12787-12792.
  • Kumar, V.P., Sehgal, P., Thota, B., Patil, S., Santosh, V. and Kondaiah, P. (2014) Insulin like growth factor binding protein 4 promotes GBM progression and regulates key factors involved in EMT and invasion. J. Neuro Oncol., 116(3): 455-464.
  • Ueno, K., Hirata, H., Majid, S., Tabatabai, Z.L., Hinoda, Y. and Dahiya, R. (2011) IGFBP‐4 activates the Wnt/beta‐catenin signaling pathway and induces M‐CAM expression in human renal cell carcinoma. Int. J. Cancer, 129(10): 2360-2369.
  • Wen, D., Geng, J., Li, W., Guo, C. and Zheng, J. (2014) A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer. Andrologia, 46(6): 625-632.
  • Sorrells, S., Carbonneau, S., Harrington, E., Chen, A.T., Hast, B., Milash, B., Pyati, U., Major, M.B., Zhou, Y., Zon, L.I. and Stewart, R.A. (2012) Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet., 8(8): e1002922.
  • Goicoechea, S.M., Bednarski, B., Garcia-Mata, R., Prentice-Dunn, H., Kim, H.J. and Otey, C.A. (2009) Palladin contributes to invasive motility in human breast cancer cells. Oncogene, 28(4): 587-598.
  • Bhattacharya, R., Kwon, J., Ali, B., Wang, E., Patra, S., Shridhar, V. and Mukherjee, P. (2008) Role of hedgehog signaling in ovarian cancer. Clin. Cancer Res., 14(23): 7659-7666.
  • Mourtada, J.S., Yang, D., Tworowska, I., Larson, R., Smith, D., Tsao, N., Opdenaker, L., Mourtada, F. and Woodward, W. (2012) Detection of canonical hedgehog signaling in breast cancer by 131-iodine-labeled derivatives of the sonic hedgehog protein. BioMed Res. Int., 11: 257-258.
  • Kang, H.C., Wakabayashi, Y., Jen, K.Y., Mao, J.H., Zoumpourlis, V., Del Rosario, R. and Balmain, A. (2013) Ptch1 overexpression drives skin carcinogenesis and developmental defects in K14Ptch FVB mice. J. Invest. Dermatol., 133(5): 1311-1320.
  • Zhang, J., Zheng, F., Yu, G., Yin, Y. and Lu, Q. (2013) miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells. Biochem. Biophys. Res. Commun., 440(4): 582-588.
  • Wan, F., Cheng, C., Wang, Z., Xiao, X., Zeng, H., Xing, S., Chen, X., Wang, J., Li, S., Zhang, Y. and Xiang, W. (2015) SATB1 overexpression regulates the development and progression in bladder cancer through EMT. PLoS One, 10(2): e0117518.
  • Wang, Z., Hou, J., Lu, L., Qi, Z., Sun, J., Gao, W., Meng, J., Wang, Y., Sun, H., Gu, H. and Xin, Y. (2013) Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One, 8(11): e79117.
  • Yu, C., Luo, C., Qu, B., Khudhair, N., Gu, X., Zang, Y., Wang, C., Zhang, N., Li, Q. and Gao, X. (2014) Molecular network including eIF1AX, RPS7, and 14-3-3γ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch. Biochem. Biophys., 564: 142-155.
  • Bachelor, M.A., Lu, Y. and Owens, D.M. (2011) L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J. Dermatol. Sci., 63(3): 164-172.
  • Cheng, Y., Liu, W., Kim, S.T., Sun, J., Lu, L., Sun, J., Zheng, S.L., Isaacs, W.B. and Xu, J. (2011) Evaluation of PPP2R2A as a prostate cancer susceptibility gene: A comprehensive germline and somatic study. Cancer Genet., 204(7): 375-381.
  • Liu, X., Liu, Q., Fan, Y., Wang, S., Liu, X., Zhu, L., Liu, M. and Tang, H. (2014) Downregulation of PPP2R5E expression by miR‐23a suppresses apoptosis to facilitate the growth of gastric cancer cells. FEBS Lett., 588(17): 3160-3169.
  • Erickson, J.W. and Cerione, R.A. (2010) Glutaminase: A hot spot for regulation of cancer cell metabolism? Oncotarget, 1(8): 734-740.
  • Nilsson, J.A. and Cleveland, J.L. (2003) Myc pathways provoking cell suicide and cancer. Oncogene, 22(56): 9007-9021.
  • Lu, Y., Yi, Y., Liu, P., Wen, W., James, M., Wang, D. and You, M. (2007) Common human cancer genes discovered by integrated gene-expression analysis. PLoS One, 2(11): e1149.
  • Anderson, D.D., Woeller, C.F. and Stover, P.J. (2007) Small ubiquitin-like modifier-1 (SUMO-1) modification of thymidylate synthase and dihydrofolate reductase. Clin. Chem. Lab. Med., 45(12): 1760-1763.
  • Woeller, C.F., Anderson, D.D., Szebenyi, D.M. and Stover, P.J. (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J. Biol. Chem., 282(24): 17623-17631.
  • Fernandez-Chacon, R. and Sudhof, T.C. (2000) Novel SCAMPs lacking NPF repeats: ubiquitous and synaptic vesicle-specific forms implicate SCAMPs in multiple membrane-trafficking functions. J. Neurosci., 20(21): 7941-7950.
  • Vogelstein, B. and Kinzler, K.W. (2004) Cancer genes and the pathways they control. Nat. Med., 10(8): 789-799.
  • Dawany, N.B., Dampier, W.N. and Tozeren, A. (2011) Large‐scale integration of microarray data reveals genes and pathways common to multiple cancer types. Int. J. Cancer, 128(12): 2881-2891.

Abstract Views: 162

PDF Views: 1




  • Transcriptomic Comparison of Primary Bovine Horn Core Carcinoma Culture and Parental Tissue at Early Stage

Abstract Views: 162  |  PDF Views: 1

Authors

Sharadindu Shil
Veterinary Officer (WBAH & VS), West Bengal Animal Resources Development Department, Bankura-772152, West Bengal, India
R. S. Joshi
Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
C. G. Joshi
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
A. K. Patel
Hester Biosciences Limited, Ahmedabad, Gujarat, India
Ravi K. Shah
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
Namrata Patel
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
Subhash J. Jakhesara
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
Sumana Kundu
Veterinary Officer, MVC Sarenga, Government of West Bengal, Bankura, West Bengal, India
Bhaskar Reddy
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
P. G. Koringa
Department of Animal Biotechnology, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India
D. N. Rank
Department of Animal Genetics & Breeding, College of Veterinary Sciences and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, India

Abstract


Aim: Squamous cell carcinoma or SCC of horn in bovines (bovine horn core carcinoma) frequently observed in Bos indicus affecting almost 1% of cattle population. Freshly isolated primary epithelial cells may be closely related to the malignant epithelial cells of the tumor. Comparison of gene expression in between horn’s SCC tissue and its early passage primary culture using next generation sequencing was the aim of this study.
Materials and Methods: Whole transcriptome sequencing of horn’s SCC tissue and its early passage cells using Ion Torrent PGM were done. Comparative expression and analysis of different genes and pathways related to cancer and biological processes associated with malignancy, proliferating capacity, differentiation, apoptosis, senescence, adhesion, cohesion, migration, invasion, angiogenesis, and metabolic pathways were identified.
Results: Up-regulated genes in SCC of horn’s early passage cells were involved in transporter activity, catalytic activity, nucleic acid binding transcription factor activity, biogenesis, cellular processes, biological regulation and localization and the down-regulated genes mainly were involved in focal adhesion, extracellular matrix receptor interaction and spliceosome activity.
Conclusion: The experiment revealed similar transcriptomic nature of horn’s SCC tissue and its early passage cells.

Keywords


Cummerbund, Gene Ontology, Primary Culture, RNA-Sequencing, Squamous Cell Carcinoma of Horn, Transcriptome Profiling.

References