Open Access Open Access  Restricted Access Subscription Access

Elastic, Mechanical and Thermal Properties of Wurtzite BeO Nanowires


Affiliations
1 University School of Information Communication and Technology, Guru Gobind Singh, Indraprastha University, Dwarka, Delhi-110078, India
2 Department of Electronics and Communication Engineering, Amity School of Engineering and Technology, Sector-125, Noida-201313, India
3 Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida-201313, India
 

This paper describes the elastic, mechanical, thermal and ultrasonic properties of BeO-nanowires (BeO-NWs) in high temperature regime. The elastic properties of BeO-NWs are computed using Lennard-Jones potential model. Using the higher order elastic constants, the mechanical constants of the material are calculated at room temperature. The Pugh's indicator value confirms the brittle nature of the material. Various ultrasonic parameters such as ultrasonic velocities, Grüneisen parameter, ultrasonic attenuation are obtained with the help of elastic constants and density. In addition, the thermal conductivity of BeO-NWs has also been computed using Morelli and Slack approach. The properties studied in the present investigation are discussed and compared with the previous theoretical and experimental results on NWs.

Keywords

Elastic Constant, Nanowire, Thermal Conductivity, Ultrasonic Property.
User
Notifications
Font Size

  • Akishin G.P., Turnaev S.K., Vaispapir V.Y. et al., Thermal conductivity of beryllium oxide ceramic, Refract. Ind. Ceram. 50 (2009) 465-468.
  • Koh D., Yum J.H., Banerjee S.K., et al., Investigation of atomic layer deposited beryllium oxide material properties for high-k dielectric applications, J. Vac. Sci. Technol. B 32 (2014) 03D117(pp. 1-8).
  • Rankin D.W., CRC Handbook of Chemistry and Physics, Taylor and Francis, New York, (2009).
  • Byggmästar J., Hodille E.A., Ferro Y. and Nordlund K., Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions, Condens. Matter Phys. 30(13) (2018)135001(pp. 1-18).
  • Lakel S., Elhamra F. and Almi K., Structural phase transition, electronic, and mechanical properties of beryllium oxide: temperature and pressure?induced effects. Phys. Status Solidi B 255 (2018) 1700524 (pp. 1-8).
  • Malakkal L., Szpunar B., Siripurapu R.K. et al., Thermal conductivity of wurtzite and zinc blende cubic phases of BeO from ab initio calculations. Solid State Sci. 65 (2017) 79-87.
  • Shein I.R., Kiĭko V.S., Makurin Y.N. et al., Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO: Ab initio calculations. Phys. Solid State, 49 (2007) 1067-1073.
  • Bamba C.O., Inakpenu R., Diakite Y.I. et al., Accurate electronic, transport, and related properties of wurtzite beryllium oxide (w-BeO). J. Mod. Phys. 8 (2017) 1938-1949.
  • Lee S.M., Jang Y., Jung J. et al., Atomic-layer deposition of crystalline BeO on SiC, Appl. Surf. Sci. 469 (2019) 634-640.
  • Pandey D. and Pandey S., In Acoustic wave: Ultrasonics: A technique of material characterization (Ed. D W Dissanayak, Croatia: Scio Publisher) (2010) 397-430.
  • Dhawan, P.K., Wan M., Verma S.K. et al., Effect of diameter and surface roughness on ultrasonic properties of GaAs nanowires. J. Appl. Phys. 117 (2015) 074307(pp. 1-6).
  • Gupta M., Dhawan P.K., Verma S.K. and Yadav R.R., Diameter dependent ultrasonic characterization of InAs semiconductor nanowires. Open J. Acoust. 5 (2015) 218-225.
  • Dhawan P.K., Upadhyay S., Verma S.K. et al. Size and temperature dependent ultrasonic properties of thermoelectric nanowires. Mater. Lett. 114 (2014) 15-18.
  • Tripathi S., Agarwal R. and Singh D., Size dependent elastic and thermo physical properties of ZnO nanowires, Johnson Matthey Technol. Rev. 63 (2019) 166-176.
  • Yadav A.K., Yadav R.R., Pandey D.K. and Singh D., Ultrasonic study of fission products precipitated in the nuclear fuel. Mater. Lett. 62 (2008) 3258-3261.
  • Hill R., The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A 65 (1952) 349-354.
  • Yadav C.P., Pandey D.K. and Singh D., Ultrasonic study of Laves phase compounds ScOs2 and YOs2, Indian J Phys (2019). https://doi.org/10.1007/s12648-019-01389-8 (First Online: 08 February 2019).
  • Mason W.P. and Bateman T.B., Relation between third?order elastic moduli and the thermal attenuation of ultrasonic waves in nonconducting and metallic crystals, J.Acoust. Soc. Am. 40 (1966) 852-862.
  • Nandanpawar M. and Rajagopalan S., Grüneisen numbers in hexagonal crystals.J.Acoust. Soc. Am. 71 (1982) 1469-1472.
  • Mason W.P. and Rosenberg A., Thermal and electronic attenuations and dislocation drag in the hexagonal crystal cadmium. J. Acoust. Soc. Am. 45 (1969) 470-480.
  • Tripathy C., Singh D. and Paikaray R., Behaviour of elastic and ultrasonic properties of curium monopnictides. Can. J. Phys., 96 (2018) 513-518
  • Kohli M.I., Islam M.S. and Rahman M.A., Ab-initio study of C-15- type Laves phase superconductor LaRu2. Cogent Physics 4 (2017) 1360461 (pp. 1-12).
  • Bentle G.G., Elastic constants of single crystal BeO at room temperature. J. Am. Ceram. Soc. 49 (1966) 125-128.
  • Cline C.F., Dunegan H.L. and Henderson G.W., Elastic constants of hexagonal BeO, ZnS, and CdSe, J. Appl. Phys. 38 (1967) 1944-1948.
  • Milman V. and Warren M.C., Elasticity of hexagonal BeO, Condens. Matter Phys. 13 (2001) 241-251.
  • Hazen R.M. and Finger L.W., High-pressure and high-temperature crystal chemistry of beryllium oxide, J. Appl. Phys. 59 (1986) 3728-3733.
  • Yadav C.P. and Pandey D.K., Temperature dependent ultrasonic characterization of wurtzite boron nitride, J.Pure Appl. Ultrason. 39 (2017) 103-109.
  • Nye J.F., Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, New York, (1985)
  • Lau K. and McCurdy A.K., Elastic anisotropy factors for orthorhombic, tetragonal, and hexagonal crystals, Phys.Rev. B 58 (1998) 8980-8984.
  • Pandey D.K., Singh D. and Yadav R.R., Ultrasonic wave propagation in IIIrd group nitrides, Appl. Acoust. 68 (2007) 766-777.
  • Wang S.Q. and Ye H.Q., A plane-wave pseudopotential study on III-V zinc-blende and wurtzite semiconductors under pressure, Condens. Matter Phys. 14 (2002) 9579-9587.
  • Gray D.E., American Institute of Physics Handbook, IIIrd edn., McGraw-Hill, New York (1972).
  • Verma S.K., Pandey D.K. and Yadav R.R., Size dependent ultrasonic properties of InN nanowires. Physica B 407 (2012) 3731-3735.

Abstract Views: 229

PDF Views: 2




  • Elastic, Mechanical and Thermal Properties of Wurtzite BeO Nanowires

Abstract Views: 229  |  PDF Views: 2

Authors

Sudhanshu Tripathi
University School of Information Communication and Technology, Guru Gobind Singh, Indraprastha University, Dwarka, Delhi-110078, India
Rekha Agarwal
Department of Electronics and Communication Engineering, Amity School of Engineering and Technology, Sector-125, Noida-201313, India
Devraj Singh
Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida-201313, India

Abstract


This paper describes the elastic, mechanical, thermal and ultrasonic properties of BeO-nanowires (BeO-NWs) in high temperature regime. The elastic properties of BeO-NWs are computed using Lennard-Jones potential model. Using the higher order elastic constants, the mechanical constants of the material are calculated at room temperature. The Pugh's indicator value confirms the brittle nature of the material. Various ultrasonic parameters such as ultrasonic velocities, Grüneisen parameter, ultrasonic attenuation are obtained with the help of elastic constants and density. In addition, the thermal conductivity of BeO-NWs has also been computed using Morelli and Slack approach. The properties studied in the present investigation are discussed and compared with the previous theoretical and experimental results on NWs.

Keywords


Elastic Constant, Nanowire, Thermal Conductivity, Ultrasonic Property.

References